Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет»

Факультет компьютерных технологий и прикладной математики Кафедра вычислительных технологий

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.12 «МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ИНФОРМАЦИОННЫХ СИСТЕМ И ПРОЦЕССОВ»

Направление
подготовки/специальность <u>02.04.02 Фундаментальная информатика и</u>
информационные технологии

(код и наименование направления подготовки/специальности)

Направленность (профиль) / специализация _____

Интеллектуальные системы и технологии

(наименование направленности (профиля) специализации)

Программа подготовки <u>академическая</u>

(академическая /прикладная)

Форма обучения <u>очная</u>

(очная, очно-заочная, заочная)

Квалификация (степень) выпускника <u>магистр</u>

(бакалавр, магистр, специалист)

Рабочая программа дисциплины Б1.О.12 «МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ИНФОРМАЦИОННЫХ СИСТЕМ И ПРОЦЕССОВ» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.04.02 Фундаментальная информатика и информационные технологии

Программу составил(а):	Muy
Лапина Ольга Николаевна, доцент, к. фм. н.	
Ф.И.О., должность, ученая степень, ученое звание	подпись

Рабочая программа дисциплины утверждена на заседании кафедры вычислительных технологий от «26» апреля 2019 г., протокол № 7

Заведующий кафедрой (разработчика) Ю.М. Вишняков

Рабочая программа обсуждена на заседании кафедры вычислительных технологий от $\ll 26$ » апреля 2019 г., протокол № 7

Заведующий кафедрой (выпускающей) Ю.М. Вишняков

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол № 1 от «15» мая 2019 г.

Председатель УМК факультета Коваленко А.В.

Рецензенты:

Схаляхо Ч.А., доцент КВВУ им.С.М.Штеменко, к.ф.-м.н., доцент

Гаркуша О.В., доцент кафедры информационных технологий ФБГОУ ВО «Кубанский государственный университет», кандидат физико-математических наук, доцент.

1. Цели и задачи изучения дисциплины.

1.1. Цели освоения дисциплины.

Целью преподавания и изучения дисциплины «Математическое моделирование информационных систем и процессов» является изучение фундаментальных основ теории моделирования информационных систем и протекающих в них процессов, методики разработки компьютерных моделей, методов и средств построения математических моделей и обработки результатов вычислительных экспериментов, а также формирование представления о работе с современными инструментальными системами моделирования.

1.2. Задачи дисциплины.

Студент должен **знать** основные понятия, методы и технологии математического моделирования информационных систем и процессов, инструментальные средства и языки моделирования; **уметь** применять теории и методы математического моделирования, объектно-ориентированного проектирования и программирования; **владеть** технологиями проектирования информационных систем.

1.3. Место дисциплины в структуре образовательной программы

Дисциплина «Математическое моделирование информационных систем и процессов» относится к базовой части цикла Б1 профессиональных дисциплин. Для изучения дисциплины необходимо знание основ объектно-ориентированного проектирования и программирования, баз данных. Знания, получаемые при изучении моделирования информационных систем, используются при изучении других дисциплин профессионального цикла учебного плана магистра, а также при работе над магистерской диссертацией.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся общекультурных/общепрофессиональных/профессиональных компетенций $(OK/O\Pi K/\Pi K)$

No	Индекс	Содержание	В результате	изучения учебной	і дисциплины
	компет	компетенции (или её	об	учающиеся должі	НЫ
п.п.	енции	части)	знать	уметь	владеть
1.	ОПК-1	Способен находить,	Способен находить, фундаменталь пр		методами
		формулировать и	ные	фундаменталь	разработки
		решать актуальные	математически	ные	математически
		проблемы	е модели	математически	х моделей
		прикладной	информацион	е модели	информацион
		математики,	ных систем	информацион	ных систем и
		фундаментальной		ных систем	процессов
		информатики и		для решения	
		информационных		научных и	
		технологий		проектно-	
				технологическ	
				их задач.	

No	Индекс	Содержание	- •	изучения учебной	
п.п.	компет	компетенции (или её	00	учающиеся долж	НЫ
	енции	части)	знать	уметь	владеть
2	ОПК-3	Способен проводить	Основные	Проводить	Способностью
		анализ	математически	анализ	проводить
		математических	е модели,	математически	анализ
		моделей, создавать	инновационны	х моделей,	математически
		инновационные	е методы	создавать	х моделей,
		методы решения	решения	инновационны	создавать
		прикладных задач	прикладных	е методы для	инновационны
		профессиональной	задач	решения задач	е методы
		деятельности в		в области	решения
		области		информацион	прикладных
		информатики и		ных	задач
		математического		технологий	профессионал
		моделирования			ьной
					деятельности в
					области
					информатики
					И
					математическо
					ГО
					моделировани
					Я

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины составляет 5 зач.ед. (180 часов), их распределение по видам работ представлено в таблице

Вид учебной работы				стры	
	часов		(ча	сы)	
		9			
Контактная работа, в том числе:					
Аудиторные занятия (всего):					
Занятия лекционного типа	36	36	_	_	_
Лабораторные занятия	36	36	_	_	_
Занятия семинарского типа (семинары,					
практические занятия)	_		_	_	_
	_	_	_	_	_
Иная контактная работа:					
Контроль самостоятельной работы (КСР)	-	_	_	_	_
Промежуточная аттестация (ИКР)	0,3	0,3	_	_	_
Самостоятельная работа, в том числе:	81	81			
Курсовая работа	_	_	_	_	_
Проработка учебного (теоретического) материала	41	41	_	_	_
Выполнение индивидуальных заданий (подготовка сообщений, презентаций)	40	40	_	_	_

Реферат		_	1	1	_	
Подготовка к текущему ко	-	-	_	_	_	
Контроль:						
Подготовка к экзамену	26,7	26,7	_	_	_	
Общая трудоёмкость	час.	180	180	_	_	_
	в том числе контактная работа	72,3	72,3	ı	ı	-
	зач. ед.	5	5	_	_	_

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 9 семестре *(очная форма)*

	Наименование разделов		Количество часов					
Nº				удитор работа	Внеауд иторная работа			
			Л	П3	ЛР	CPC		
1	2	3	4	5	6	7		
1.	Системы и моделирование	8	2			6		
2.	Математические модели системы		6		8	14		
3.	Основы имитационного моделирования	28	6		8	14		
4.	Процессы в предметных областях	30	8		8	14		
5.	Нормативные системы	27	6		6	12		
6.	Моделирование ограничений ИС		6		6	13		
7.	Проблемы для исследования		2			8		
	Контроль:	27						
	Итого по дисциплине:	180	36		36	81		

Примечание: Π — лекции, Π 3 — практические занятия / семинары, Π 9 — лабораторные занятия, Π 9 — семинары студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

No	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
1	Системы и моделирование	Система как предмет исследования. Система, элемент, подсистема. Простые, сложные и большие системы. Модель, принципы построения моделей. Классификация моделей. Цели создания моделей систем. Принципы системного подхода в моделировании. Стадии разработки моделей. Понятия компонентного и объектноориентированного моделирования.	ЛР

		Современные программные инструментальные средства моделирования систем. Перспективы развития теории моделирования и ее приложений.	
2	Математические модели системы	Понятие информационной системы (ИС). Цели создания и функционирования ИС. Типовые математические модели. Математические модели непрерывных систем. Математические модели дискретных систем. Модели систем массового обслуживания. Планирование экспериментов с моделями систем. Обработка и анализ результатов моделирования. Использование гиперграфов для представления адаптивных моделей различных объектов с выраженной сетевой структурой.	ЛР, РГЗ
3	Основы имитационного моделирования	Методология имитационного моделирования. Этапы процесса имитации. Системы и средства имитационного моделирования на ЭВМ. Обработка и анализ результатов имитационного моделирования.	ЛР, РГЗ
4	Процессы в предметных областях	События и процессы в предметной области. Организационная предметная область. Предметные области и организационные системы. Системы документов.	ЛР, РГЗ
5	Целеустремленные системы	Формирование целей. Классические математические модели целей и оценок. Мультиагентные системы.	ЛР, РГЗ
6	Нормативные системы	Нормативные документы в предметной области. Формализация норм. Деонтическая логика. Модель нормативной системы.	ЛР, РГЗ
7	Моделирование ограничений ИС	Виды ограничений ИС. Нормативные ограничения. Моделирование ограничений. Использование деонтической логики для моделирования нагруженных гиперграфов.	ЛР, РГЗ
8.	Проблемы для исследования.	Образ сущностей, образ понятий Проблемы построения образов сущностей, понятий.	ЛР

2.3.2 Занятия семинарского типа.

Занятия семинарского типа – не предусмотрены.

2.3.3 Лабораторные занятия.

		Форма
№	Наименование лабораторных работ	текущего
		контроля
1	3	4
1.	Дискретно-событийная структура Pascal (Simulation)	Отчет по ЛР
2.	Моделирование одноканальной системы массового обслуживания.	РГЗ
3.	Моделирование многоканальных устройств	РГЗ
4.	Моделирование многоканальных устройств с перераспределением	ЬL3
	потока заявок.	
5.	Исследование имитационной модели как объекта управления.	РГЗ
6.	Проверка адекватности имитационной модели.	РГЗ
7.	Проверка адекватности имитационной модели.	РГЗ
8.	Основы языка моделирования Triad.	Отчет по ЛР
9.	Моделирование процессов с помощью языка Triad.	Отчет по ЛР
10.	Формирование целей предметных областей.	Отчет по ЛР
11.	Модели целеустремленных систем.	РГЗ
12.	Основы деонтической логики.	РГЗ
13.	Формализация норм с помощью деонтической логики	РГЗ
14.	Модели гиперграфов. Использование деонтической логики для	Отчет по ЛР
	моделирования нагруженных гиперграфов.	
15.	Моделирование систем массового обслуживания со случайными	РГЗ
	потоками документов.	
16.	Моделирование систем массового обслуживания с произвольными	РГЗ
	функциями распределения вероятностей времени поступления	
	документов	
17.	Моделирование ограничений информационных систем	РГЗ
18.	Моделирование ограничения связности информационных систем	РГ3

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы – не предусмотрены.

2.3.5 Расчетно-графические задания

По дисциплине студентом выполняется одно индивидуальное расчетно-графическое задание — разработка, построение и анализ математической модели информационной системы. Темы заданий для каждого студента различны. Задача РГЗ состоит в проверке умений студента и проверки эффективности его самостоятельной работы. Общая тематика заданий соответствует тематике лабораторных работ.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Проработка учебного	Учебное пособие:
	материала, выполнение	Информационные процессы и нормативные системы в IT:
	индивидуальных	математические модели, проблемы проектирования, новые
	заданий.	подходы/ А. И. Миков М. : URSS : [Книжный дом

"ЛИБРОКОМ"], 2013. - 254 c.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

Используемые интерактивные образовательные технологии:

- Компьютерные презентации и обсуждение.
- Разбор конкретных ситуаций (задач), тренинги по решению задач, компьютерные симуляции (программирование алгоритмов).

Технология адаптивного обучения (индивидуализированное обучение).

Семестр	Вид занятия	Используемые интерактивные	Количество часов
	$(\Pi, \Pi P, \Pi P)$	образовательные технологии	
	Л	Компьютерные презентации и обсуждение	32
3	ЛР	Разбор конкретных ситуаций (задач), тренинги по решению задач, компьютерные симуляции (программирование алгоритмов)	32
Итого:			64

4. Оценочные и методические материалы.

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной успеваемости студентов.

Фонд оценочных средств дисциплины состоит из средств текущего контроля выполнения индивидуальных расчетно-графических заданий, лабораторных работ, средств итоговой аттестации (экзамена).

Образец РГЗ – задания на разработку модели информационной системы

Разработать: Математическую модель информационной системы:

Задание 1. Информационно-поисковая библиографическая система построена на базе двух ЭВМ и имеет один терминал для ввода и вывода информации. Первая ЭВМ обеспечивает поиск литературы по научно-техническим проблемам (вероятность обращения к ней -), а вторая — по медицинским (вероятность обращения к ней -). Пользователи обращаются

к услугам системы каждые мин. Поиск информации на первой ЭВМ продолжается мин., а на второй мин. Смоделировать процесс работы системы за Т часов. Определить среднюю и максимальную длину очереди к терминалу. Как изменятся параметры очереди, если будет установлен еще один терминал.

В состав описания должны входить описание модели, анализ модели. Отчет по выполнению РГЗ должен содержать:

- постановку задачи;
- краткое описание разработанной модели;
- анализ модели;
- список использованной литературы.

Зачетно-экзаменационные материалы для промежуточной аттестации.

Оценка успеваемости магистра осуществляется по результатам:

- выполнения лабораторных работ;
- оценки, выставляемой при сдаче индивидуальных расчетно-графических заданий разработка, реализация и оценка сложности алгоритма;
- ответа на экзамене (для выявления знания и понимания теоретического материала дисциплины).

Перечень вопросов, которые выносятся на экзамен

- 1. Система как предмет исследования. Система, элемент, подсистема. Простые, сложные и большие системы. Определение ИС.
- 2. Цели, функции и структура информационных систем. Типы информационных систем.
- 3. Жизненный цикл информационной системы. Стандарты жизненного цикла ИС.
- 4. Модель, принципы построения моделей. Классификация моделей. Моделирование систем.
- 5. Модели информационных систем. Модели данных и модели информации.
- 6. Жизненный цикл модели ИС.
- 7. Цели и задачи моделирования ИС.
- 8. Типовые математические модели информационных систем и процессов.
- 9. Математические модели непрерывных систем.
- 10. Математические модели дискретных систем.
- 11. Модели систем массового обслуживания.
- 12. Методология имитационного моделирования. Этапы процесса имитации.
- 13. Обработка и анализ результатов имитационного моделирования.
- 14. Модель элементарной организации.
- 15. Язык моделирования Triad, моделирование информационных систем и процессов.
- 16. Организационная предметная область. Предметные области и ИС.
- 17. Целеустремленные системы. Классические математические модели целей и оценок.
- 18. Деонтическая логика. Моделирование ИС средствами деонтической логики.
- 19. Нормативные системы. Модель нормативной системы.
- 20. Моделирование ограничений ИС. Виды ограничений ИС.
- 21. Моделирование ИС, проблемы моделирования.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

- 1. Миков А.И. Информационные процессы и нормативные системы в IT: Математические модели. Проблемы проектирования. Новые подходы. М.: Книжный дом «Либроком», 2013, 256 с.
- 2. Советов Б.Я., Яковлев С.А. Моделирование систем: Учебник для вузов.- М.: Высшая школа, 2012, 343 с.
- 3. Советов Б.Я., Яковлев С.А. Моделирование систем. Практикум: Учебное пособие для вузов.- М.: Высшая школа, 2012, 295 с.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература:

- 1. Прицкер А. Введение в имитационное моделирование и язык СЛАМ II. М.: Мир, 1987.
- 2. Бусленко Н.П. Моделирование сложных систем. М.: Наука, 1978. 399 с.
- 3. Колесов Ю.Б. Сениченков Ю.Б. Моделирование систем: динамические и гибридные системы. СПб. : БХВ-Петербург , 2006,224 с.
- 4. Избачков С.Ю., Петров В.Н. Информационные системы. СПб.: Питер, 2008, 655 с

6. Методические указания для обучающихся по освоению дисциплины (модуля).

Лабораторные работы выполняются, как правило, в компьютерном классе. Отдельные работы могут выполняться в аудитории при наличии у магистрантов портативных компьютеров.

На лабораторных работах изучаются математические модели информационных систем и процессов. Магистрант должен правильно создать необходимую модель, используя инструментальные средства моделирования. По отдельным темам магистрантам поручается подготовить презентации и выступить с докладами на занятиях.

Расчетно-графическое задание по дисциплине состоит в проектировании, разработке и создании математической модели информационной системы.

Задания являются индивидуальными, т.е. формулируются для каждого магистранта отдельно и не повторяются в следующем учебном году.

В выдаваемом задании преподавателем формулируется постановка задачи, которую должна решать разрабатываемая программа; условия программной реализации (операционная система, языки программирования); требования к форме представления входных данных; требования к выходным данным; специфические характеристики качества реализованной программы (например, время обработки запроса, расходуемая память и т.п.).

Магистрант должен:

- провести анализ требований;
- изучить литературу по соответствующей предметной области для обеспечения полного и точного понимания постановки задачи;
- провести анализ существующего программного обеспечения, решающего полобные залачи:
 - выбрать средства реализации из множества предложенных преподавателем;
 - разработать алгоритм решения задачи;
 - написать программу, реализующую алгоритм;
 - провести необходимые действия по отладке и тестированию;
 - выбрать исходные данные для контрольных примеров;
 - выполнить программу для контрольных примеров.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

7.1 Перечень информационных технологий.

- Проверка домашних заданий и консультирование посредством электронной почты.
 - Использование электронных презентаций при проведении практических занятий.

7.2 Перечень необходимого программного обеспечения.

- Среда для разработки программ на языках программирования C++, C# («Microsoft Visual Studio»).
 - Среда для моделирования Matlab, Simulink

– Программы для демонстрации и создания презентаций («Microsoft Power Point»).

7.3 Перечень информационных справочных систем:

1. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)/

8. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

No॒	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные занятия	Лекционная аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО)
2.	Лабораторные занятия	Лаборатория, укомплектованная специализированной мебелью и техническими средствами обучения, компьютерами
3.	Групповые (индивидуальные) консультации	Аудитория с учебной мебелью (доски, столы, стулья)
4.	Текущий контроль, промежуточная аттестация	Аудитория с учебной мебелью
5.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета.