Министерство науки и высшего образования российской федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Б1.В.ДВ.07.01 АЛГОРИТМЫ НА ОРИЕНТИРОВАННЫХ ГРАФАХ

Направление подготовки

02.03.01 Математика и компьютерные науки

Направленность (профиль) Вычислительные, программные,

информационные системы и компьютерные

технологии

Форма обучения

очная

Квалификация

(степень) выпускника

бакалавр

Краснодар 2019

Рабочая программа дисциплины Б1.В.ДВ.07.01 Алгоритмы на ориентированных графах в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.01 Математика и компьютерные науки

Программу составила: И.В. Сухан, старший преподаватель

Рабочая программа дисциплины утверждена на заседании кафедры вычислительной математики и информатики протокол № 13 «<u>18</u>» апреля 2019 г. Заведующий кафедрой (разработчика) Гайденко С.В.

Рабочая программа дисциплины утверждена на заседании кафедры вычислительной математики и информатики протокол № 13 «<u>18</u>» апреля 2019 г. Заведующий кафедрой (выпускающей) Гайденко С.В.

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук протокол № 2 « $\underline{24}$ » апреля 2019 г. Председатель УМК факультета Титов Г.Н.

Рецензенты:

Профессор кафедры прикладной математики Кубанского государственного университета кандидат физико-математических наук доцент Кармазин В.Н.

Доктор экономических наук, кандидат технических наук, профессор кафедры компьютерных технологий и систем КубГАУ Луценко Е.В.

1 Цели и задачи изучения дисциплины (модуля).

1.1 Цель освоения дисциплины.

Курс посвящен изучению классических алгоритмов решения оптимизационных задач на графах и сетях с применением различных приемов программирования; построению новых и модификации и комбинации известных алгоритмов для решения конкретных задач; оценке эффективности указанных алгоритмов.

1.2 Задачи дисциплины.

Задачи дисциплины — дать навыки постановки и решения задач оптимизации на графах; научить выбору адекватных алгоритмов для решения вышеуказанных задач; отработать умения по программной реализации алгоритмов на персональном компьютере.

В результате изучения данной дисциплины студенты должны овладеть навыками постановки и решения задач оптимизации на графах, предусматривающими знание адекватных алгоритмов. Кроме того, студенты должны уметь реализовать эти алгоритмы на персональном компьютере в виде программ.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Дисциплина «Алгоритмы на ориентированных графах» относится к части, формируемой участниками образовательных отношений, Блока 1 "Дисциплины (модули)" учебного плана.

Курс опирается на знания, полученные студентами в рамках дисциплин «Языки и технологии программирования», «Дискретная математика», «Комбинаторные алгоритмы».

Знания, полученные в этом курсе, используются в распознавании образов, лингвистических основах информатики, интеллектуальных системах и др.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся общекультурных/общепрофессиональных/профессиональных компетенций (УК/ОПК/ПК):

No	Код и наименование	Индикато	ры достижения комп	етенции	
п.п.	компетенции	компетенции знает		владеет	
1	ПК-1 Способен демон-	основные понятия	решать задачи	математическим	
	стрировать базовые	теории графов и	теоретического и	аппаратом комби-	
	знания математических	комбинаторных ал-	прикладного ха-	наторных алго-	
	и естественных наук,	горитмов, опреде-	рактера из раз-	ритмов	
	основ программирова-	ления и свойства	личных разделов		
	ния и информационных	математических	комбинаторных		
	технологий	объектов, исполь-	алгоритмов		
		зуемых в этой об-			
		ласти; постановки			
		оптимизационных			
		задач и методы их			
		решения; формули-			
		ровки основных			
		утверждений			
2	ПК-6 Способен исполь-	постановки опти-	строить модели на	навыками алго-	
	зовать методы матема-	мизационных задач	графах различ-	ритмизации ос-	
	тического и алгоритми-	и методы их реше-	ных объектов и	новных задач.	
	ческого моделирования	ния; возможные	процессов; выби-		
	при решении теорети-	сферы их приложе-	рать адекватные		
	ческих и прикладных	ний, основы по-	алгоритмы реше-		

No	Код и наименование	Индикаторы достижения компетенции		
п.п.	компетенции	знает	умеет	владеет
	задач	строения компью-	ния задач	
		терных моделей.		

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоемкость дисциплины составляет 2 зачетных единицы (72 часа), их распределение по видам работ представлено в таблице

Вид учебн	ой работы	Всего	Семестры
·	•	часов	(часы)
			8-й
Контактная работа, в т	Контактная работа, в том числе:		
Аудиторные занятия (всего):			48
Занятия лекционного ти	па	24	24
Занятия семинарского	гипа (семинары, практиче-		-
ские занятия)			
Лабораторные занятия		24	24
Иная контактная рабо	га:		
Контроль самостоятельн	юй работы (КСР)	2	2
Промежуточная аттеста	ция (ИКР)	0,2	0,2
Самостоятельная рабо	та, в том числе:	21,8	21,8
Проработка учебного (те	еоретического) материала	10	10
Выполнение индивидуа.	льных заданий (подготовка	5	5
сообщений, выполнение рас	четного задания)		
Подготовка к текущему	контролю	6,8	6,8
Контроль:			
Подготовка к экзамену			-
Общая трудоемкость час		72	72
	в том числе контактная работа	50,2	50,2
	зач. ед.	2	2

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины

No		Количество часов			
	Наименование разделов	Всего	Ауди на раб	я	Внеаудиторная работа
			Л	ЛР	CPC
1	2	3	4	5	6
1	Основные понятия, связанные с ориенти-	6	2	2	2
	рованными графами				
2	Достижимость и компоненты	6	2	2	2

3	Матрицы, ассоциированные с орграфами	6	2	2	2
4	Контуры в графах	6	2	2	2
5	База и ядро	6	2	2	2
6	Упорядочивание дуг и вершин орграфа	6	2	2	2
7	Экстремальные пути на графах	10	4	4	2
8	Потоки в сетях	10	4	4	2
9	Приложения задачи о максимальном по-	13,8	4	4	5,8
	токе				
	ИТОГО по разделам дисциплины	69,8	24	24	21,8
	Контроль самостоятельной работы (КСР)	2			
	Промежуточная аттестация (ИКР)	0,2			
	Подготовка к экзамену	-			
	Общая трудоемкость по дисциплине	72			

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов дисциплины.2.3.1 Занятия лекционного типа.

№ п/п	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
1	Основные понятия, связанные с ориентированными графами	Основные определения. Полустепени исхода и захода. Исток и сток.	Проверка до- машнего за- дания
2	Достижимость и компоненты	Маршруты, пути, цепи. Связность. Конденса- ция.	Проверка до- машнего за- дания
3	Матрицы, ассоциированные с орграфами	Матричное представление графов. Матрицы смежности, инцидентности, достижимости, контрдостижимости. Сильные компоненты в орграфе.	Проверка до- машнего за- дания
4	Контуры в графах	Эйлеровы и гамильтоновы контуры в орграфе.	Проверка до- машнего за- дания
5	База и ядро	Понятия базы и ядра в орграфе.	Проверка до- машнего за- дания
6	Упорядочивание дуг и вершин ор- графа	Упорядочивание элементов орграфов. Особенности алгоритмов теории графов	Проверка до- машнего за- дания
7	Экстремальные пути на графах	Выявление маршрутов с заданным количеством ребер. Определение экстремальных путей. Метод Шимбелла. Нахождение кратчайших путей. Алгоритм Дейкстры. Алгоритм Беллмана-Мура. Алгоритм нахождения максимального пути.	Проверка до- машнего за- дания
8	Потоки в сетях	Теорема Форда-Фалкерсона. Поток минимальной стоимости. Элементы сетевого планирования. Сетевые и линейные графики.	Проверка до- машнего за- дания
9	Приложения задачи	Транспортная задача по критерию времени. За-	Проверка до-

	О	максимальном	дача об оптимальном назначении.	машнего	за-
	пото	оке		дания	

2.3.2 Занятия семинарского типа.

Занятия семинарского типа не предусмотрены.

2.3.3 Лабораторные занятия.

	2.5.5 лаоораторные занятия.	T -
No	Наименование лабораторных работ	Форма текущего контроля
1	2	3
1.	Основные понятия, связанные с ориентированными графами	Отчет по лабораторной работе
2.	Достижимость и компоненты. Сильные компоненты в орграфе.	Отчет по лабораторной работе
3.	Матричное представление графов. Матрицы смежности, инци- центности, достижимости, контрдостижимости.	Отчет по лабораторной работе
4.	Эйлеровы и гамильтоновы контуры в орграфе. Понятия базы и ядра в орграфе.	Отчет по лабораторной работе
5.	Упорядочивание элементов орграфов. Выявление маршрутов с ваданным количеством ребер.	Отчет по лабораторной работе
6.	Определение экстремальных путей. Метод Шимбелла.	Отчет по лабораторной работе
7.	Нахождение кратчайших путей. Алгоритм Дейкстры.	Отчет по лабораторной работе
8.	Нахождение кратчайших путей. Алгоритм Беллмана-Мура.	Отчет по лабораторной работе
9.	Алгоритм нахождения максимального пути.	Отчет по лабораторной работе
10.	Потоки в сетях. Теорема Форда-Фалкерсона.	Отчет по лабораторной работе
11.	Поток минимальной стоимости.	Отчет по лабораторной работе
12.	Транспортная задача по критерию времени. Задача об оптимальном назначении.	Отчет по лабораторной работе

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГЗ), написание реферата (Р), эссе (Э), колло-квиум (К), тестирование (Т) и т.д.

2.3.4 Примерная тематика курсовых работ (проектов).

Курсовые работы не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю).

No	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
	Работа с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме	Методические рекомендации по организации самостоятельной работы студентов, утвержденные кафедрой вычислительной математики и информатики, протокол № 14 от 14.06.2017 г.
2	Изучение теоретиче- ского материала к лабо- раторным занятиям	Методические рекомендации по организации самостоятельной работы студентов, утвержденные кафедрой вычислительной математики и информатики, протокол № 14 от 14.06.2017 г.
3	Подготовка к заче- ту/экзамену	Методические рекомендации по организации самостоятельной работы студентов, утвержденные кафедрой вычислительной математики и информатики, протокол № 14 от 14.06.2017 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

– в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

Лекции, лабораторные занятия, контрольные работы, экзамен. В течение семестра студенты решают задачи, указанные преподавателем, к каждому лабораторному занятию.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные и методические материалы

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Алгоритмы на ориентированных графах».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме перечня вопросов для устного опроса, типовых заданий к контрольной работе, и **промежуточной аттестации** в форме вопросов и заданий к зачету/экзамену.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

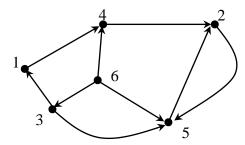
Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

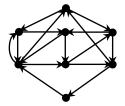
No	Контролируемые	Код контролируемой		нование го средства
п/п	разделы (темы) дис- циплины	компетенции (или ее части)	Текущий кон- троль	Промежуточная аттестация
1	Основные понятия, связанные с ориентированными графами	ПК-1 ПК-6	Самостоятельная работа по теме. Типовое задание № 1	Вопрос к экзамену № 1
2	Достижимость и компоненты	ПК-1 ПК-6	Самостоятельная работа по теме. Типовое задание № 2	Вопросы к экза- мену № 2–3
3	Матрицы, ассоциированные с орграфами	ПК-1 ПК-6	Самостоятельная работа по теме. Типовое задание №3	Вопросы к экза- мену № 4–5
4	Контуры в графах	ПК-1 ПК-6	Самостоятельная работа по теме. Типовое задание №4	Вопрос к экзамену № 6
5	База и ядро	ПК-1 ПК-6	Самостоятельная работа по теме. Типовое задание №5	Вопрос к экзамену № 7
6	Упорядочивание дуг	ПК-1	Самостоятельная	Вопрос к экзаме-

No	Контролируемые разделы (темы) дис-	Код контролируемой компетенции		нование го средства
п/п	циплины	(или ее части)	Текущий кон- троль	Промежуточная аттестация
	и вершин орграфа	ПК-6	работа по теме. Типовое задание №6–7	ну № 8
7	Экстремальные пу- ти на графах	ПК-1 ПК-6	Самостоятельная работа по теме. Типовое задание №8–11	Вопросы к экзамену № 9–13
8	Потоки в сетях	ПК-1 ПК-6	Самостоятельная работа по теме. Типовое задание №12	Вопросы к экза- мену № 14–15
9	Приложения задачи о максимальном потоке	ПК-1 ПК-6	Самостоятельная работа по теме. Типовое задание №13–14	Вопросы к экзамену № 16–17

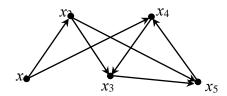
Показатели, критерии и шкала оценки сформированных компетенций

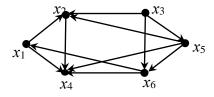

	v =	ей освоения компетенц	10	
	-	учения и критериям из		
Код и наименова-	пороговый	базовый Оценка	продвинутый	
ние компетенции				
	Удовлетворительно /зачтено	Хорошо/зачтено	Отлично/зачтено	
ПК-1: Способен демонстрировать базовые знания математических и естественных наук, основ программирования и информаци-	3: теоретическое содержание курса с незначительными пробелами; методы решения некоторых практических задач;	3: теоретическое содержание курса; методы и алгоритмы решения основных практических задач;	3: теоретическое содержание курса; методы и алгоритмы решения практических задач; основы построения графовых моделей;	
онных технологий	У: применять методы и алгоритмы теории орграфов при решении практических задач	У: сравнивать, оценивать. выбирать и применять методы и алгоритмы решения заданий,	У: сравнивать, оценивать, выбирать и применять методы решения заданий; оценивать сложность алгоритмов; работать целенаправленно, используя связанные между собой формы представления информации	
	В: навыками применения критериев и моделей описания и оценки эффективности решения задач на	В: навыками применения и разработки критериев и моделей описания и оценки эффективности ре-	В: методами обобщения и оценивания информации, полученной на основе исследования нестан-	

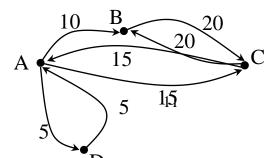
	rea hay	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TOWNY OV OVER 10 11 11 11
	графах	шения задач на графах	дартной ситуации; навыками использования сведений из различных источников, успешно соотнося их с предложенной ситуацией.
ПК-6: Способен использовать методы математического и алгоритмического моделирования при решении теоретических и прикладных задач	3: основные определения теории графов, основные алгоритмы на графах	3: основные определения и формулировки основных утверждений теории графов, основные алгоритмы на графах, возможные сферы их приложений,	3: основные определения и формулировки основных утверждений теории графов и их доказательства, основные алгоритмы на графах в различных модификациях
	У: рещать задачи прикладного характера репродуктивного уровня; воспроизводить доказательства стандартных результатов теории графов	У: решать задачи теоретического и репродуктивного и реконструктивного уровней, строить модели объектов и понятий, воспроизводить основную структуру доказательств теорем из курса	У: решать задачи теоретического и прикладного характера репродуктивного, реконструктивного уровней, строить модели объектов и понятий, оценивать строгость математических текстов; обосновывать и оценивать логические ходы в математических рассуждениях и конструкциях
	В: навыками решения некоторых практических задач теории графов; навыками воспроизведения освоенного учебного материала	В: навыками решения основных практических задач теории графов; навыками самостоятельного изучения отдельных разделов учебной литературы и обсуждения освоенного материала	В: навыками решения практических задач теории графов с видоизмененным условием; навыками критического анализа учебной информации


Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

Типовые задания для самостоятельных (контрольных) работ


- **1.** Опишите строение орграфа порядка n без параллельных дуг, удовлетворяющих для каждой вершины одному из следующих условий: a) $d^+(v) = 0$; б) $d^-(v) = 0$; в) $d^+(v) = n$; г) $d^-(v) = n$.
- 2. Покажите, что в любом бесконтурном орграфе есть и вершина с нулевой полустепенью захода, и вершина с нулевой полустепенью исхода.
- **3.** Орграф задан рисунком, представить граф матрицей смежности вершин, смежности дуг, инцидентности, матрицы достижимости, контрдостижимости. Найдите сильные компоненты графа


4. В орграфе, изображенном на рисунке, найдите контуры длиной 2, 3, 4, 5, 6; циклическую эйлерову цепь; гамильтонов контур.


- 5. Укажите орграф наименьшего порядка без петель, который не содержит ядра.
- 6. Найти матрицы сильных компонент и маршрутов длины три для графа

7. Упорядочьте, если это возможно, вершины и дуги орграфов графическим и матричным способом. Постройте наглядные изображения изоморфных графов

8. Найдите кратчайшие и максимальные пути длины 2 и 3 в графе G

9. По заданной матрице весов графа G найти величину минимального (а затем максимального) пути и сам путь от вершины x_1 до вершины x_6 или x_7 по алгоритму Дейкстры.

	x_1	x_2	<i>X</i> 3	χ_4	<i>X</i> 5	χ_6
x_1	_	4	5	10	11	∞
x_2	∞	_	11	3	5	8
<i>x</i> ₃	∞	8	_	6	7	8
<i>x</i> ₄	∞	8	8	_	6	8
x_5	∞	8	8	∞		8
x_6	∞	8	8	∞	8	_

10. По заданной матрице весов графа G найти величину минимального (а затем максимального) пути и сам путь от вершины x_1 до вершины x_6 или x_7 по алгоритму Беллмана — Мура.

	x_1	x_2	χ_3	χ_4	χ_5	x_6
x_1	_	7	5	8	9	8
x_2	∞	_	-8	4	8	8
<i>x</i> ₃	8	8	1	3	6	8
χ_4	8	8	8	_	8	8
χ_5	∞	8	8	-4	_	6
χ_6	∞	8	8	8	8	_

11. Граф задан матрицей весов. Найти длину максимального пути из вершины x_1 в x_6 и сам этот путь.

12. По данной матрице пропускных способностей дуг орграфа найти максимальный поток от вершины $s = x_1$ до $t = x_7$ и указать минимальный разрез, отделяющий s от t

	x_1	x_2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	χ_6	<i>X</i> 7
x_1	_	_	15	12	_	11	_
x_2	_	_	_	17	12	_	14
<i>x</i> ₃	_	_	_	_	17	15	21
<i>X</i> 4	_	_	_	_	16	25	_
<i>X</i> 5	_	_	_	_	_	13	_
x_6	_	13	_	_	_	_	10
<i>X</i> 7	_	_	_	_	_	_	_

13. В таблице указаны запасы a_i некоторого однородного груза, находящегося у поставщиков A_i . Этот груз необходимо доставить за минимальное время получателям B_j , потребности b_j которых известны. В таблице приведены и продолжительности t_{ij} доставки груза (независимо от объема поставки) каждым поставщиком A_i каждому потребителю B_j . Составьте реализуемый за минимальное время план перевозок, при котором спрос потребителей удовлетворяется полностью.

b_j	13	5	2
9	3	10	6
7	4	2	5
4	7	4	8

14. Найдите оптимальное распределение работ между исполнителями с учетом их возможностей, оцениваемых элементами данной матрицы, и исходя из указанного начального распределения

	\mathcal{U}_1	\mathcal{U}_2	И3	\mathcal{U}_4
P_1	1	0	1	0
P_2	0	1	1	1
P_3	1	0	0	1
P_4	1	0	0	1

Работы P_1 , P_2 , P_3 первоначально закреплены за исполнителями U_1 , U_2 , U_4 соответственно.

Перечень компетенций, проверяемых оценочным средством:

ПК-1, ПК-6

Зачетно-экзаменационные материалы для промежуточной аттестации (зачет/экзамен)

Вопросы для подготовки к зачету/экзамену

- 1. Основные определения. Полустепени исхода и захода. Исток и сток.
- 2. Маршруты, пути, цепи.
- 3. Связность. Конденсация.
- 4. Матричное представление графов. Матрицы смежности, инцидентности, достижимости, контрдостижимости.
 - 5. Сильные компоненты в орграфе.
 - 6. Эйлеровы и гамильтоновы контуры в орграфе.
 - 7. Понятия базы и ядра в орграфе.
 - 8. Упорядочивание элементов орграфов. Особенности алгоритмов теории графов
 - 9. Выявление маршрутов с заданным количеством ребер.
 - 10. Определение экстремальных путей. Метод Шимбелла.
 - 11. Нахождение кратчайших путей. Алгоритм Дейкстры.
 - 12. Алгоритм Беллмана-Мура.
 - 13. Алгоритм нахождения максимального пути.
 - 14. Теорема Форда-Фалкерсона. Поток минимальной стоимости.
 - 15. Элементы сетевого планирования. Сетевые и линейные графики.
 - 16. Транспортная задача по критерию времени.
 - 17. Задача об оптимальном назначении.

Перечень компетенций, проверяемых оценочным средством:

ПК-1, ПК-6

Билеты к экзамену

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №1

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Основные определения. Полустепени исхода и захода. Исток и сток.
- 2. Задача об оптимальном назначении.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В.

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №2

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Маршруты, пути, цепи.
- 2. Транспортная задача по критерию времени.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В.

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №3

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Связность. Конденсация.
- 2. Элементы сетевого планирования. Сетевые и линейные графики.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В.

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №4

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Матричное представление графов. Матрицы смежности, инцидентности, достижимости, контрдостижимости.
- 2. Теорема Форда-Фалкерсона. Поток минимальной стоимости.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В.

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №5

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Сильные компоненты в орграфе.
- 2. Алгоритм Беллмана-Мура.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В.

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №6

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Эйлеровы и гамильтоновы контуры в орграфе.
- 2. Нахождение кратчайших путей. Алгоритм Дейкстры.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В.

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №7

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Понятия базы и ядра в орграфе.
- 2. Определение экстремальных путей. Метод Шимбелла.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайленко С.В.

Кубанский государственный университет Факультет математики и компьютерных наук

БИЛЕТ №8

по дисциплине «Алгоритмы на ориентированных графах»

- 1. Упорядочивание элементов орграфов. Особенности алгоритмов теории графов
- 2. Выявление маршрутов с заданным количеством ребер.
- 3. Задача.

Заведующий кафедрой вычислительной математики и информатики

Гайденко С.В.

Образцы задач для экзамена

- **1.** Упорядочьте, если это возможно, вершины и дуги орграфов, заданных матрицами смежности вершин, графическим и матричным способом. Постройте наглядные изображения изоморфных графов
- **2.** По заданной матрице весов графа G найти величину минимального (а затем максимального) пути и сам путь от вершины x_1 до вершины x_6 или x_7 по алгоритму Дейкстры.
- **3.** По заданной матрице весов графа G найти величину минимального (а затем максимального) пути и сам путь от вершины x_1 до вершины x_6 или x_7 по алгоритму Беллмана Мура.

4. На сети с истоком I и стоком S построить поток максимальной мощности. Выписать ребра, образующие разрез минимальной пропускной способности. Для удобства на рисунке пропускные способности указаны в скобках в одну и другую сторону

Перечень компетенций, проверяемых оценочным средством:

ПК-1, ПК-6

4.2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Критерии оценивания результатов обучения в соответствии с уровнем освоения дисциплины.

Пороговый уровень (оценка удовлетворительно): знание и понимание теоретического содержания курса с незначительными пробелами; отсутствие некоторых практических умений при решении задач; недостаточное качество выполнения всех предусмотренных программой обучения учебных заданий; владение приемами решения почти всех типов практических заданий; знание формулировок основных определений и утверждений дисциплины, проявление способности к восприятию информации, постановке цели и выбору путей ее достижения в ходе решения практических заданий; владение и использование основной профессиональной логико-математической лексики.

Базовый уровень (оценка *хорошо*): достаточное знание и понимание теоретического содержания курса, без пробелов; недостаточная сформированность некоторых практических умений при применении знаний в конкретных ситуациях; достаточное качество выполнения всех предусмотренных программой обучения учебных заданий; владение приемами решения всех типовых практических заданий; знание формулировок всех определений и основных утверждений дисциплины, умение доказывать некоторые из них, применяя методы обобщения и анализа, проявление способности к восприятию информации, постановке цели и определению путей ее достижения; достаточное владение и использование профессиональной логико-математической лексики.

Продвинутый уровень (оценка *отпично*): полное знание и понимание теоретического содержания курса, без пробелов; полная сформированность необходимых практических умений при применении знаний в конкретных ситуациях; высокое качество выполнения всех предусмотренных программой обучения учебных заданий; свободное владение приемами решения всех типовых практических заданий; знание формулировок всех определений и утверждений курса, владение методами доказательств основных утверждений, в ходе которых проявляется способность к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения; владение и свободное использование профессиональной логико-математической лексики.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1. Основная литература:

- 1. Бабичева, И.В. Дискретная математика. Контролирующие материалы к тестированию: учеб. пособие Санкт-Петербург : Лань, 2013. 160 с. https://e.lanbook.com/book/30193
- 2. Микони, С.В. Дискретная математика для бакалавра: множества, отношения, функции, графы : учеб. пособие Санкт-Петербург : Лань, 2012. 192 с. —: https://e.lanbook.com/book/4316
- 3. Кирсанов, М.Н. Графы в Maple. Задачи, алгоритмы, программы: справ. Москва : Физматлит, 2006. 168 с. Режим доступа: https://e.lanbook.com/book/2738
- 4. Сухан, Ирина Владимировна (КубГУ). Графы: учебное пособие / И. В. Сухан, О. В. Иванисова, Г. Г. Кравченко; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Изд. 2-е, испр. и доп. Краснодар: 2015. 172 с.: ил. Библиогр.: с. 168. ISBN 978-5-8209-1125-5
- 5. Шевелев, Ю.П. Сборник задач по дискретной математике : учеб. пособие / Ю.П. Шевелев, Л.А. Писаренко, М.Ю. Шевелев.— Санкт-Петербург : Лань, 2013. 528 с. https://e.lanbook.com/book/5251

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Университетская библиотека ONLINE».

5.2 Дополнительная литература:

- 1. Акимов, Олег Евгеньевич. Дискретная математика : логика, группы, графы / О. Е. Акимов. Изд. 2-е, доп. М. : Лаборатория Базовых Знаний, 2001. 376 с. : ил. ISBN 5932080256
- 2. Редькин, Н.П. Дискретная математика: учебник / Н.П. Редькин. Москва : Физматлит, 2009. 264 с. https://e.lanbook.com/book/2293.
- 3. Иванов, Борис Николаевич. Дискретная математика : алгоритмы и программы : полный курс / Б. Н. Иванов. Москва : ФИЗМАТЛИТ, 2007. 405 с.
- 4. Макоха, А.Н. Дискретная математика : учеб. пособие / А.Н. Макоха, П.А. Сахнюк, Н.И.
- 5. Миков, А.И. Вычислимость и сложность алгоритмов: учебное пособие / А. И. Миков, О. Н. Лапина; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т, Каф. вы-

6. Методические указания для обучающихся по освоению дисциплины (модуля).

Текущая самостоятельная работа студента, направленная на углубление и закрепление знаний студента, развитие практических умений, осуществляется при проработке материалов лекций и соответствующей литературы, подготовке к промежуточному и итоговому контролям, подготовке к выполнению лабораторных работ и написанию отчетов.

Для улучшения качества и эффективности самостоятельной работы студентов предлагаются методические указания к лабораторным работам, списки основной и дополнительной литературы. Все методические материалы предоставляются как в печатном, так и в электронном видах.

Текущая и опережающая СРС заключается в:

- работе студентов с лекционным материалом, поиске и анализе литературы и электронных источников информации по заданной проблеме;
 - изучение теоретического материала к лабораторным занятиям;
 - подготовке к промежуточному контролю.

Оценка результатов самостоятельной работы организуется как единство двух форм: самоконтроль и контроль со стороны преподавателей.

Формы контроля со стороны преподавателя включают:

- проверочные работы по результатам изучения некоторых разделов курса;
- отчет по лабораторным занятиям;
- экзамен.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

Для подготовки к экзамену необходимо использовать указания и рекомендации, данные преподавателем в ходе занятий. Если студент испытывает какие-либо затруднения с пониманием материала, он всегда может получить консультацию преподавателя.

7. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

7.1 Перечень информационно-коммуникационных технологий.

Проверка домашних заданий и консультирование посредством электронной почты.

7.2 Перечень лицензионного и свободно распространяемого программного обеспечения

- 1. Microsoft Windows 10
- 2. Microsoft Office PowerPoint Professional Plus.

7.3 Перечень современных профессиональных баз данных и информационных справочных систем

1. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)/

- 2. Электронно-библиотечная система издательства «Лань» (http://e.lanbook.com).
- 3. Электронная библиотечная система «Университетская библиотека ONLINE» (www.biblioclub.ru)

8. Материально-техническое обеспечение по дисциплине (модулю)

No	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные занятия	Лекционная аудитория, специально оборудованная мультимедийными демонстрационными комплексами, учебной мебелью
2.	Лабораторные заня- тия	Помещение для проведения лабораторных занятий оснащенное учебной мебелью, доской маркером или мелом
3.	Групповые (индивидуальные) консультации	Помещение для проведения групповых (индивидуальных) консультаций, учебной мебелью, доской маркером или мелом
4.	Текущий контроль, промежуточная аттестация	Помещение для проведения текущей и промежуточной аттестации, оснащенное учебной мебелью.
5.	Самостоятельная ра- бота	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета

РЕЦЕНЗИЯ

на рабочую программу дисциплины (модуля)

Б1.В.ДВ.10.01 Алгоритмы на ориентированных графах

по направлению подготовки 02.03.01 Математика и компьютерные науки,

Профиль: Вычислительные, программные, информационные системы и компьютерные технологии, квалификация выпускника – бакалавр,

подготовленную старшим преподавателем кафедры вычислительной математики и информатики КубГУ Сухан И.В.

Рабочая программа по дисциплине «Алгоритмы на ориентированных графах» разработана в соответствии с установленным образовательным стандартом и охватывает специальные разделы теории графов, относящиеся к особому классу графов ориентированным графам.

Рабочая программа содержит следующие разделы: цели и задачи освоения дисциплины, место дисциплины в структуре ООП ВО, требования к результатам освоения дисциплины, структура и содержание дисциплины, распределение видов учебной работы и их трудоемкости по разделам дисциплины, содержание разделов дисциплины, содержание самостоятельной работы студентов, образовательные технологии, оценочные средства для контроля успеваемости, учебно-методическое и информационное обеспечение дисциплины.

Разработанная программа позволит студентам при изучении данной дисциплины освоить классические алгоритмы решения оптимизационных задач на графах и сетях с применением различных приемов программирования; приобрести опыт в познавательной деятельности, применять информационные ресурсы для самообразования.

Для осмысления разделов и тем предусмотрено выполнение практических работ, что позволяет не только закрепить теоретические знания, но и обеспечить возможность проведения промежуточного контроля знаний по теоретической и практической части дисциплины.

Преподавателем разработан список рекомендуемой основной и дополнительной литературы, который способствует более глубокому изучению дисциплины.

В целом, программа может быть использована при изучении вышеуказанной дисциплины.

Доктор экономических наук, кандидат технических наук, профессор кафедры компьютерных технологий и систем КубГАУ

Луценко Е.В.

РЕЦЕНЗИЯ

на рабочую программу дисциплины (модуля) Б1.В.ДВ.10.01 АЛГОРИТМЫ НА ОРИЕНТИРОВАННЫХ ГРАФАХ по направлению подготовки 02.03.01 «Математика и компьютерные науки», профиль: Вычислительные, программные, информационные системы и компьютерные технологии; (квалификация «бакалавр»), подготовленную старшим преподавателем кафедры вычислительной математики и информатики КубГУ Сухан И. В.

«АЛГОРИТМЫ HA Рабочая программа дисциплины ОРИЕНТИРОВАННЫХ ГРАФАХ» предназначена для студентов ФГБОУ ВО «КубГУ» по направлению подготовки 02.03.01 «Математика и компьютерные науки» (квалификация «бакалавр») и содержит следующие разделы: цели и задачи освоения дисциплины, место дисциплины в структуре ООП ВО, компетенции обучающихся, формируемые в результате освоения дисциплины, структуру и содержание дисциплины, образовательные технологии, оценочные средства для текущего контроля успеваемости и промежуточной аттестации, учебно-методическое И информационное обеспечение, программное обеспечение и материально-техническое обеспечение.

Дисциплина входит в профессиональный цикл дисциплин. Название и содержание рабочей программы дисциплины соответствует учебному плану по направлению подготовки 02.03.01 «Математика и компьютерные науки» (квалификация «бакалавр»), а также ФГОС ВО по этому направлению. Программа составлена в соответствии с установленным образовательным стандартом по дисциплине, отвечает потребностям подготовки современных бакалавров и позволит реализовать формирование соответствующих компетенций (согласно ФГОС и ООП).

Считаю, что рабочая программа соответствует государственным требованиям к минимуму содержания и уровню подготовки выпускников по направлению подготовки 02.03.01 «Математика и компьютерные науки» (квалификация «бакалавр») и может быть рекомендована для высших учебных заведений.

Профессор кафедры прикладной математики Кубанского государственного университета кандидат физико-математических наук доцент

Кармазин В.Н.