МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Факультет математики и компьютерных наук

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования – первый

проректор

Xarypo

31 » uco

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.О.20 ФИЗИКА

Направление подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки)

Направленность (профиль) Математика, Информатика

Форма обучения очная

Квалификация бакалавр

Краснодар 2019

Рабочая программа дисциплины Б1.О.20 Физика составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки)

Программу составил(и): С.А. Онищук, доцент кафедры теоретической физики и компьютерных технологий,

к. ф.-м. наук, доцент

Рабочая программа дисциплины Б1.О.20 Физика утверждена на заседании кафедры физики и информационных систем протокол № $\frac{20}{20}$ « $\frac{21}{20}$ » $\frac{0.5}{20}$ — 2019 г.

Заведующий кафедрой (разработчика) Н.М. Богатов

богать подпись

Рабочая программа обсуждена на заседании кафедры информационных образовательных технологий

протокол № 12 от 23.04.2019

Заведующий кафедрой (выпускающей) С.П. Грушевский

подпись

Утверждена на заседании учебно-методической комиссии физикотехнического факультета

протокол № 11 «21» мая 2019г. Председатель УМК факультета

Богатов Н.М.

Рецензенты: Шапошникова Т. Л., зав. кафедрой физики ФГБОУ ВО КубГТУ Григорьян Л. Р., генеральный директор ООО НПФ «Мезон»

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Цель — формирование навыков использования основных законов физики к решению задач, связанных с профессиональной деятельностью, формированию устойчивого физического мировоззрения, умению анализировать и находить методы решения проблем, возникающих в области информатики и компьютерных систем.

1.2 Задачи дисциплины

- а) создание у студентов основ достаточно широкой теоретической подготовки в области физики, позволяющей студентам ориентироваться в потоке научной и технической информации;
- б) формирование у студентов компетенций научного мышления, правильного понимания границ применимости различных физических понятий, законов, теорий и умения оценивать степень достоверности результатов, полученных с помощью экспериментальных или математических методов исследования;
- в) усвоение основных физических явлений и законов классической и современной физики, методом физического исследования;
- г) ознакомление студентов с современной научной литературой и выработка у студентов начальных навыков проведения экспериментальных научных исследований различных физических явлений и оценки погрешности измерения;
- д) выработка у студентов приемов и навыков решения конкретных задач из разных областей физики, помогающим студентам в дальнейшем решать инженерные задачи.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Физика» относится к обязательной части Блока 1 "Дисциплины (модули)" учебного плана, ориентирована при подготовке бакалавров на усвоение студентами основных физических явлений и законов классической и современной физики, методом физического исследования, выработку у студентов приемов и навыков решения конкретных задач из разных областей физики, помогающим студентам в дальнейшем решать инженерные задачи.

Приступая к изучению дисциплины «Физика», студент должен знать физику и математику в пределах программы средней школы.

Для успешного освоения курса необходимы знания, полученные при изучении математики (разделы и темы: геометрия, тригонометрия, операции с векторами, производная сложной функции одного аргумента, анализ функции на экстремум, дифференцирование в частных производных, интегрирование, элементы теории поля (градиент, дивергенция, ротор)).

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся общепрофессиональных компетенций (ОПК)

No	Код и наименование	Индикатор	Индикаторы достижения комп	
п.п.	компетенции	знает	умеет	владеет
1.	УК-1 Способен осуществлять	методы	получать	исследование
	поиск, критический анализ и	критического	новые знания	м проблем
	синтез информации,	анализа и	на основе	профессионал
	применять системный подход	оценки	анализа,	ьной

No	Код и наименование	Индикаторы достижения компетенции				
п.п.	компетенции	знает	умеет	владеет		
	для решения поставленных	современных	синтеза и	деятельности с		
	задач	научных	других	применением		
		достижений;	методов;	анализа,		
		основные	собирать	синтеза и		
		принципы	данные по	других		
		критического	сложным	методов		
		анализа.	научным	интеллектуаль		
		Анализирует	проблемам,	ной		
		задачу,	относящимся	деятельности;		
		выделяя этапы	К	выявлением		
		ее решения,	профессионал	научных		
		действия по	ьной области;	проблем и		
		решению	осуществлять	использование		
		задачи	поиск	м адекватных		
		, ,	информации и	методов для		
			решений на	их решения;		
			основе	демонстриров		
			экспериментал	анием		
			ьных действий	оценочных		
			, .	суждений в		
				решении		
				проблемных		
				профессионал		
				ьных		
				ситуаций.		
				Рассматривает		
				различные		
				варианты		
				решения		
				задачи,		
				оценивает их		
				преимущества		
				и риски		
2.	УК-8 Способен создавать и	научно	создавать и	навыками по		
	поддерживать безопасные	обоснованные	поддерживать	предотвращен		
	условия жизнедеятельности, в	способы	безопасные	ИЮ		
	том числе при возникновении	поддерживать	условия	возникновения		
	чрезвычайных ситуаций	безопасные	жизнедеятельн	опасных		
		условия	ости;	ситуаций;		
		жизнедеятельн	различить	приемами		
		ости, в том	факторы,	первой		
		числе при	влекущие	медицинской		
		возникновени	возникновение	помощи;		
		И	опасных	базовыми		
		чрезвычайных	ситуаций;	медицинскими		
		ситуаций;	предотвратить	знаниями;		
		виды опасных	возникновение	способами		
		ситуаций;	опасных	поддержания		
		способы	ситуаций, в	гражданской		
		преодоления	том числе на	обороны и		

No	Код и наименование	Индикаторы достижения компетенции			
п.п.	компетенции	знает	умеет	владеет	
		опасных	основе	условий по	
		ситуаций;	приемов по	минимизации	
		приемы	оказанию	последствий	
		первой	первой	ОТ	
		медицинской	медицинской	чрезвычайных	
		помощи;	помощи и	ситуаций	
		основы	базовых	,	
		медицинских	медицинских		
		знаний	знаний		

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зач. ед. (108 часа), их распределение по видам работ представлено в таблице

(для студентов ОФО)

(оля стуоентов ОФ	<i>(</i> 0)	•				
Вид учебн	ой работы	Всего		Семе	естры	
			(часы)			
			5			
Контактная работа, в то	Контактная работа, в том числе:					
Аудиторные занятия (все	его):					
Занятия лекционного типа		18	18			
Лабораторные занятия		34	34			
Занятия семинарского тип	а (семинары,					
практические занятия)						
Иная контактная работа:						
Контроль самостоятельной	Контроль самостоятельной работы (КСР)					
Промежуточная аттестация (ИКР)			0,2			
Самостоятельная работа, в том числе:		49,8	49,8			
Проработка учебного (теор	ретического) материала	19,8	19,8			
Подготовка к текущему ко	онтролю	15	15			
Подготовка к текущему ко	онтролю	15	15			
Контроль:						
Подготовка к экзамену						
Общая трудоемкость	час.	108				
	в том числе контактная работа	58,2				
	зач. ед	3				

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 5 семестре (очная форма)

	№ Наименование разделов (тем)		Количество часов				
№			Α	Аудиторн работа	ная	Внеаудит орная работа	
			Л	ПЗ	ЛР	CPC	
1	2	3	4	5	6	7	
1.	<u>Раздел 1.</u> Кинематика поступательного и вращательного движения.	7	1	-	2	4	
2.	Раздел 2. Динамика поступательного движения.	7	1	-	2	4	

3.	Раздел 3. Законы сохранения в механике	7	1	-	2	4
4.	Раздел 4. Динамика вращательного движения.	7	1	ı	2	4
5.	<u>Раздел 5.</u> Механические колебания.	7	1	1	2	4
6.	Раздел 6. Элементы механики сплошных сред.	7	1	ı	2	4
7.	Раздел 7. Релятивистская механика.	8	2	ı	2	4
8.	<u>Раздел 8.</u> Молекулярно-кинетическая теория газов.	10	2	ı	4	4
9.	<u>Раздел 9.</u> Основы термодинамики.	10	2	ı	4	4
10.	<u>Раздел 10.</u> Реальныегазы, жидкости и твердые тела.	10	2	-	4	4
11.	Раздел 11. Электростатика. Электроемкость.	10,2	2	-	4	4,2
12.	<u>Раздел 12.</u> Постоянный электрический ток.	11	2	1	4	5
	ИТОГО по разделам дисциплины		18	1	34	49,2
	Контроль самостоятельной работы (КСР)					
	Промежуточная аттестация (ИКР)	0,2				
	Общая трудоемкость по дисциплине	108				

2.3 Содержание разделов дисциплины 2.3.1 Занятия лекционного типа

No	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
1.	Кинематика	Положение точки в пространстве, тело	Контрольная
	поступательного и	отсчета, радиус-вектор, координатная	работа
	вращательного	плоскость. Проекция вектора на ось. Способы	-
	движения.	описания движения. Траектория. Тело	
		отсчета. Перемещение. Сложение скоростей.	
		Мгновенная скорость. Закон сложения	
		скоростей. Средняя скорость. Равномерное	
		движение. скорость прямолинейного	
		равномерного движения. Уравнение	
		прямолинейного равномерного движения.	
		Ускорение тела. Единицы измерения	
		ускорения тела. Скорость при движении с	
		постоянным ускорением. Движение с	
		постоянным ускорением. Скорость при	
		движении по окружности.	
	T T	Центростремительное ускорение.	TC
2.	Динамика	, i	Контрольная
	поступательного	Материальная точка. Первый закон Ньютона.	работа
	движения.	Второй закон Ньютона. Связь между	
		ускорением и силой. Масса. Третий закон Ньютона. Силы всемирного тяготения. Закон	
		всемирного тяготения. Первая космическая	
		скорость. Сила тяжести и вес. Невесомость.	
		Силы упругости. Силы трения. Свободное	
		падение. Ускорение свободного падения.	
		Движение с ускорением свободного падения.	
		движение с ускорением свооодного падения	

		вверх и вниз Движение по окружности с	
3.	Законы сохранения в механике	постоянной скоростью Работа силы. Работа силы тяжести. Мощность. Энергия. Работа сил. Закон сохранения энергии Импульс материальной точки. Импульс силы. Закон сохранения	Контрольная работа
4.	Динамика вращательногодвижения.	импульса. Равновесие тел. Первое условие равновесия твердого тел. Второе условие равновесия твердого тела. Момент сил.	Контрольная работа
5.	Механические колебания.		Контрольная работа
6.	Элементы механики сплошных сред		Контрольная работа
7.	Релятивистская механика.	Принцип относительности в механике и электродинамике. Постулаты теории относительности Относительность одновременности. Одновременность пространственно разделенный событий. Относительность расстояний. Относительность промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Связь между массой и энергией.	Контрольная работа
8.	Молекулярно- кинетическая теория газов.	Основные положения молекулярно- кинетической теории. Основное уравнение молекулярно-кинетической теории. Уравнение Менделеева-Клайперона. Изопроцессы.	Контрольная работа
9.	Основы термодинамики.	Внутренняя энергия. Количество теплоты. Первое начало термодинамики. Тепловые машины. Цикл Карно. Второе начало термодинамики.	Контрольная работа
10.	Реальные газы, жидкости и твердые тела.	Реальные газы. Молекулярные силы. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса и экспериментальные изотермы реальных газов. Внутренняя энергия реального газа. Эффект Джоуля-Томсона. Фазы и фазовые превращения. Условия равновесия фаз. Фазовые диаграммы. Уравнение Кла-пейрона-Клаузиуса. Метастабильные состояния. Критическая точка. Тройная точка. Фазовые переходы 1-го и 2-го рода.	Контрольная работа
11.	Электростатика. Электроемкость.	Электрический заряд. Элементарные частицы. Заряженные тела. Электризация тел. Закон	_

		Ţ	
		сохранения электрического заряда. Закон	
		Кулона. Электрическое поле. Напряженность	
		электрического поля. Принцип суперпозиции	
		полей. Силовые линии. Напряженность поля	
		заряженного шара. Проводники в	
		электростатическом поле. Диэлектрики.	
		Поляризация диэлектриков. Потенциал	
		электрического поля. Разность потенциалов	
		Связь между напряженностью	
		электростатического поля и разностью	
		потенциалов. Единица напряженности	
		электрического поля. Эквипотенциальные	
		поверхности Электроемкость. Единицы	
		электроемкости. Конденсаторы. Применение	
		конденсаторов. Энергия заряженного	
		конденсатора	
12.	Постоянный	Электрический ток. Действие тока. Сила тока. Контр	ольная
	электрический ток.		бота
		движения частиц. Условия необходимые для	
		существования электрического тока Закон Ома	
		для участка цепи. Сопротивление. Удельное	
		сопротивление. Значение закона Ома. Элементы	
		электрической цепи. Последовательное и	
		параллельное соединение проводников. Узел.	
		Распределение токов при различных	
		соединениях. Последовательное соединение	
		проводников. Элементы электрической цепи.	
		Последовательное и параллельное соединение	
		проводников. Работа тока. Закон Джоуля-	
		Ленца. Мощность тока. Сторонние силы.	
1		Природа внешних сил. Электродвижущая сила.	
		Закон Ома для замкнутой цепи.	l

2.3.2 Занятия семинарского типа

Не предусмотрены

2.3.3 Лабораторные занятия

		Форма
$N_{\underline{0}}$	Наименование лабораторных работ	текущего
		контроля
1	3	4
1.	Определение ускорения свободного падения на машине Атвуда	Отчет по
		лабораторной
		работе
2.	Экспериментальная проверка закона сохранения импульса	Отчет по
		лабораторной
		работе
3.	Определение момента инерции твердого тела с помощью крутильных	Отчет по
	колебаний	лабораторной
		работе

Измения обмения основной примения пред чето тем, чето чето	Отугат по
	Отчет по
маятника Максвелла	лабораторной
	работе
Эквипотенциальные поверхности	Отчет по
	лабораторной
	работе
Измерение сопротивлений мостовым методом	Отчет по
	лабораторной
	работе
Мощность в цепи переменного тока	Отчет по
	лабораторной
	работе
Определение горизонтальной составляющей магнитного поля Земли	Отчет по
	лабораторной
	работе
Определение показателя преломления твердых оптических сред.	Отчет по
	лабораторной
	работе
Определение радиуса кривизны линзы с помощью колец Ньютона	Отчет по
	лабораторной
	работе
Изучение явления дифракции.	Отчет по
	лабораторной
	работе
Изучение законов фотоэффекта.	Отчет по
	лабораторной
	работе
	Измерение сопротивлений мостовым методом Мощность в цепи переменного тока Определение горизонтальной составляющей магнитного поля Земли Определение показателя преломления твердых оптических сред. Определение радиуса кривизны линзы с помощью колец Ньютона Изучение явления дифракции.

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) и т.д.

2.3.4 Примерная тематика курсовых работ (проектов)

Не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
	(теоретического) материала	Методические указания по выполнению самостоятельной работы, утвержденные на заседании Совета физикотехнического факультета ФГБОУ ВО «КубГУ», протокол № 6 от $04.05.2017$ г.
3	Подготовка к текущему контролю	Методические указания по выполнению самостоятельной работы, утвержденные на заседании Совета физикотехнического факультета ФГБОУ ВО «КубГУ», протокол № 6 от $04.05.2017$ г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

В соответствии с требованиями ФГОС ВО по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки), реализация компетентностного подхода должна предусматривать широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков студентов.

Получение углубленных знаний по изучаемой дисциплине достигается за счет дополнительных часов к аудиторной работе – самостоятельной работы студентов.

Кроме того, новые технологии образования должны базироваться на продуктивности, креативности, мобильности и опираться на научное мышление, формирование которого у обучающихся становится основной задачей образовательного процесса. В учебном процессе используются активные и интерактивные формы проведения занятий: беседа, дискуссия, разбор конкретных ситуаций, творческие задания, мозговой штурм.

Большая часть лекций и практические занятия проводятся с использованием доски и справочных материалов. Для проведения меньшей части лекционных занятий используются мультимедийные средства воспроизведения активного содержимого, позволяющего слушателю воспринимать особенности изучаемой профессии, зачастую играющие решающую роль в понимании и восприятии, а так же формировании профессиональных компетенций.

13. Оценочные и методические материалы

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «название дисциплины».

Фонд оценочных средств включает контрольные материалы для проведения **текущего контроля** в форме заданий для контрольных работ, тем лабораторных работ и примеров задач для семинарских занятий и **промежуточной аттестации** в форме вопросов к экзамену.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

 при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;

- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Структура оценочных средств для текущей и промежуточной аттестации

	Контролируем (а	Код	Наиме	енование
$N_{\underline{0}}$	Контролируемые разделы (темы)	контролируемой оценочного средства		го средства
п/п	разделы (темы <i>)</i> дисциплины*	компетенции (или	Текущий	Промежуточная
	дисциплины	ее части)	контроль	аттестация
1	Раздел 1. Кинематика	УК-1 (знать)	Контрольная	Вопросы на
	поступательного и		работа №1 по	экзамене 1-27
	вращательного		разделу	
	движения.			
	<u>Раздел 2.</u> Динамика	УК-8 (уметь)	Контрольная	Вопросы на
	поступательного		работа №1 по	экзамене 27-35
	движения.		разделу, ЛР	
		УК-8 (владеть)	Контрольная	Вопросы на
	<u>Раздел 3.</u> Законы		работа №1 по	экзамене 37-41
	сохранения в механике		разделу, ЛР	
	Раздел 4. Динамика	УК-1 (знать)	Контрольная	Вопросы на
	вращательного		работа №1 по	экзамене 22-25, 36
	движения.		разделу, ЛР	
	дыжения.			
	<u>Раздел 5.</u>	УК-8 (уметь)	Контрольная	Вопросы на
	Механические		работа №1 по	экзамене 22-25,
	колебания.		разделу, ЛР	113-116, 119, 121-
	None Cultural.			122
	Раздел 6. Элементы	УК-1 (владеть)	Контрольная	Вопросы на
	механики сплошных		работа №1 по	экзамене 85-88
	сред.		разделу	
	·γ··			

	<u>Раздел 7.</u>	УК-1 (знать)	Контрольная	Вопросы	на
	Релятивистская		работа №1 по	экзамене 7-9	
	механика.		разделу		
2	Раздел 1. Молекулярно-	УК-1 (уметь)	Контрольная	Вопросы	на
	кинетическая теория		работа №2 по	экзамене 42-51	
	газов.		разделу		
	<u>Раздел 2.</u> Основы	УК-8 (владеть)	Контрольная	Вопросы	на
	термодинамики.		работа №2 по	экзамене 52-53	
			разделу		
	<u>Раздел</u>	УК-8 (знать)	Контрольная	Вопрос	на
	<u>3.</u> Реальныегазы,		работа №2 по	экзамене 54	
	жидкости и твердые		разделу		
	тела.				
3	Раздел	УК-1 (уметь)	Контрольная	Вопросы	на
	<u>1.</u> Электростатика.		работа №3 по	экзамене 55-70.	
	Электроемкость.		разделу, ЛР		
	Роздан 2 Постояхууч №	УК-8 (владеть)	Контрольная	Вопросы	на
	<u>Раздел 2.</u> Постоянный		работа №3 по	экзамене 71-84.	
	электрический ток.		разделу, ЛР		

Показатели, критерии и шкала оценки сформированных компетенций

Код и наименование компетенций	Соответствие уровней освоения компетенции планируемым результатам обучения и критериям их оценивания		
No.moremann	пороговый	базовый	продвинутый
	- P	Оценка	F-77
	Удовлетворительно /зачтено	Хорошо/зачтено	Отлично /зачтено
	Слабо знает методы	Знает методы	Отлично знает методы
	критического	критического	критического анализа
	анализа и оценки	анализа и оценки	и оценки современных
	современных	современных	научных достижений;
	научных	научных	основные принципы
	достижений;	достижений;	критического анализа.
VIV 1 Crossfer	основные принципы	основные принципы	Анализирует задачу,
УК-1 Способен	критического	критического	выделяя этапы ее
осуществлять	анализа.	анализа.	решения, действия по
поиск, критический	Анализирует задачу,	Анализирует задачу,	решению задачи
анализ и синтез	выделяя этапы ее	выделяя этапы ее	
информации,	решения, действия	решения, действия	
применять системный подход	по решению задачи	по решению задачи	
1	Слабо умеет	Умеет получать	Отлично умеет
для решения поставленных задач	получать новые	новые знания на	получать новые
поставленных задач	знания на основе	основе анализа,	знания на основе
	анализа, синтеза и	синтеза и других	анализа, синтеза и
	других методов;	методов; собирать	других методов;
	собирать данные по	данные по сложным	собирать данные по
	сложным научным	научным	сложным научным
	проблемам,	проблемам,	проблемам,
	относящимся к	относящимся к	относящимся к
	профессиональной	профессиональной	профессиональной

	области;	области;	области; осуществлять
	осуществлять поиск	осуществлять поиск	поиск информации и
	информации и	информации и	решений на основе
	решений на основе	решений на основе	экспериментальных
	-		действий
	экспериментальных	экспериментальных	деиствии
	действий	действий	0
	Слабо владеет	Владеет навыками	Отлично владеет
	навыками	исследования	навыками
	исследования	проблем	исследования проблем
	проблем	профессиональной	профессиональной
	профессиональной	деятельности с	деятельности с
	деятельности с	применением	применением анализа,
	применением	анализа, синтеза и	синтеза и других
	анализа, синтеза и	других	методов
	других	методов	интеллектуальной
	методов	интеллектуальной	деятельности;
	интеллектуальной	деятельности;	выявления научных
	деятельности;	выявления научных	проблем и
	выявления научных	проблем и	использованием
	проблем и	использованием	адекватных методов
	использованием		для их решения;
		адекватных методов	*
	адекватных методов	для их решения;	демонстрирования
	для их решения;	демонстрирования	оценочных суждений
	демонстрирования	оценочных	в решении
	оценочных	суждений в	проблемных
	суждений в	решении	профессиональных
	решении	проблемных	ситуаций.
	проблемных	профессиональных	Рассматривает
	профессиональных	ситуаций.	различные варианты
	ситуаций.	Рассматривает	решения задачи,
	Рассматривает	различные варианты	оценивает их
	различные варианты	решения задачи,	преимущества и риски
	решения задачи,	оценивает их	
	оценивает их		
		преимущества и	
	•	риски	
VIV 9 Crassfer	риски	2	0
УК-8 Способен	Слабо знает научно	Знает методы	Отлично знает научно
создавать и	обоснованные	научно	обоснованные
поддерживать	способы	обоснованные	способы
безопасные условия	поддерживать	способы	поддерживать
жизнедеятельности,	безопасные условия	поддерживать	безопасные условия
в том числе при	жизнедеятельности,	безопасные условия	жизнедеятельности, в
возникновении	в том числе при	жизнедеятельности,	том числе при
чрезвычайных	возникновении	в том числе при	возникновении
ситуаций	чрезвычайных	возникновении	чрезвычайных
	ситуаций; виды	чрезвычайных	ситуаций; виды
	опасных ситуаций;	ситуаций; виды	опасных ситуаций;
	способы	опасных ситуаций;	способы преодоления
	преодоления	способы	опасных ситуаций;
	опасных ситуаций;	преодоления	приемы первой
	приемы первой	опасных ситуаций;	медицинской помощи;
	медицинской	приемы первой	основы медицинских
	модиципскои	присмы первои	основы медицинских

Т,	помощи; основы	медицинской	знаний
	медицинских	помощи; основы	знании
	медицинских знаний	медицинских	
	311(111111	знаний	
	Слабо умеет		Отлично умеет
	J	Умеет создавать и	•
	создавать и	поддерживать	создавать и
	поддерживать	безопасные условия	поддерживать
	безопасные условия	жизнедеятельности;	безопасные условия
	жизнедеятельности;	различить факторы,	жизнедеятельности;
1	различить факторы,	влекущие	различить факторы,
I	влекущие	возникновение	влекущие
I	возникновение	опасных ситуаций;	возникновение
	опасных ситуаций;	предотвратить	опасных ситуаций;
I	предотвратить	возникновение	предотвратить
I	возникновение	опасных ситуаций, в	возникновение
	опасных ситуаций, в	том числе на основе	опасных ситуаций, в
	гом числе на основе	приемов по	том числе на основе
	приемов по	оказанию первой	приемов по оказанию
	оказанию первой	медицинской	первой медицинской
	медицинской	помощи и базовых	помощи и базовых
	помощи и базовых	медицинских	медицинских знаний
	медицинских	знаний	
	знаний		
	Слабо владеет	Владеет навыками	Отлично владеет
	навыками	предотвращения	навыками
	предотвращения	возникновения	предотвращения
	возникновения	опасных ситуаций;	возникновения
	опасных ситуаций;	приемами первой	опасных ситуаций;
	приемами первой	медицинской	приемами первой
	медицинской	помощи; базовыми	медицинской помощи;
	помощи; базовыми	медицинскими	базовыми
	медицинскими		медицинскими
		знаниями; способами	знаниями; способами
	знаниями; способами	поддержания	поддержания
		-	гражданской обороны
	поддержания	гражданской	
	гражданской	обороны и условий	и условий по минимизации
	обороны и условий	по минимизации	·
	по минимизации	последствий от	последствий от
	последствий от	чрезвычайных	чрезвычайных
	чрезвычайных	ситуаций	ситуаций
	ситуаций		

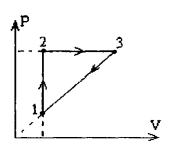
Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы Примеры задач для контрольной работы:

1. Камень, брошенный со скоростью 12 м/c под углом 45° к горизонту, упал на землю на расстоянии L от места бросания. С какой высоты надо бросить камень в горизонтальном направлении, чтобы при той же начальной скорости он упал на то же место?

- 2. Грузик висит на нити длиной 1 м. Какую минимальную начальную скорость в горизонтальном направлении следует ему сообщить, чтобы он описал окружность в вертикальной плоскости, не сходя с круговой траектории?
- 3. Под действием постоянной силы 10 H тело движется прямолинейно так, что зависимость пройденного телом расстояния от времени задается уравнением: $S=5-2t+t^2$. Найти массу тела.
- 4. Автомобиль весит $9.8 \cdot 10^3$ Н. Во время движения на автомобиль действует сила трения, равная 0.1 его веса. Чему должна быть равна сила тяги, развиваемой двигателем автомобиля, чтобы он двигался равномерно; с ускорением 2 m/c^2 ?
- 5. Пуля, летящая горизонтально, попадает в шар, подвешенный на жестком стержне массой 0,1 кг, и застревает в нем. Масса пули 5 г, масса шара 0,5 кг. Скорость пули 500 м/с. При какой предельной длине стержня шар от удара пули сделает полный оборот вокруг оси вращения? Размерами шар пренебречь.
- 6. На носу лодки, масса которой 200 кг, стоит человек массой 75 кг. Человек переходит с носа на корму лодки, пройдя по ней 5,5 м. На какое расстояние сместится лодка по воде? Сопротивлением воды движению лодки пренебречь.
- 7. Тело свободно падает с высоты 80 метров. Каково его перемещение в последнюю секунду падения?
- 8. Снаряд, вылетевший из орудия под углом к горизонту, находился в полете 12 секунд. Какой наибольшей высоты достиг снаряд?
- 9. Шар массой 10 кг и радиусом 20 см вращается вокруг оси, проходящей через его центр. Уравнение вращения шара имеет вид: ϕ =5+4t²-t³. По какому закону меняется момент сил, действующих на шар?
- 10. Шар массой 5 кг движется со скоростью 2 м/с и сталкивается с покоящимся шаром массой 3 кг. Вычислить работу, совершенную при деформации шаров при прямом центральном ударе. Шары считать неупругими.
- 11. Точечный заряд +q создает электростатическое поле. Как направлена сила, действующая на пробный заряд +q₀, помещенный в точку A?
- 12. Какая из формул выражает теорему Гаусса для электростатического поля в вакууме?
- 13. Два шарика, расположенные на расстоянии 10 см друг от друга, имеют одинаковые отрицательные заряды и взаимодействуют в вакууме с силой 0,23 мН. Найти число избыточных электронов на каждом шарике.
- 14. На сферическом проводнике радиуса 2 см распределен заряд, равный 3,2 нКл. Чему равна напряженность поля на расстоянии 4 см от центра проводника?
- 15. Какой скоростью сближения должны обладать протоны, находясь на расстоянии 5 см, чтобы они могли сблизиться друг с другом до расстояния 8×10⁻¹⁰ м?
- 16. Два заряда величиной 4 нКл каждый, находятся на расстоянии 30 см друг от друга. Какую работу нужно совершить, чтобы сблизить их до расстояния 3 см?
- 17. Конденсатор какой емкости следует подключить последовательно к конденсатору емкостью 0,8 нФ, чтобы емкость батареи была равна 0,16 нФ?
- 18. Шарик массой 0,1 г, заряд которого равен q=10 нКл, подвешен на нити длиной 3 см. Над точкой подвеса на расстоянии 4 см от нее помещен заряд $q_0=20$ нКл. Шарик отклоняют от положения равновесия на угол 60° и отпускают. Найти скорость шарика при прохождении положения равновесия.
- 19. Тонкая нить длиной 20 см равномерно заряжена с линейной плотностью 10 нКл/м. На расстоянии 10 см от нити, против ее середины, находится точечный заряд 1 нКл. Чему равна сила, действующая на этот заряд со стороны заряженной нити?
- 20. Насколько изменится энергия плоского воздушного конденсатора, если параллельно его обкладкам ввести металлическую пластину толщиной 1 мм? Площадь обкладки конденсатора и пластины 150 см², расстояние между обкладками 6 мм. Конденсатор заряжен до 400 В и отключен от батареи.

- 21. Как изменится период обращения заряженной частицы по окружности в однородном магнитном поле при увеличении скорости частицы в два раза?
- 22. Прямой проводник длиной 0,2 м и массой 5 г подвешен горизонтально на двух невесомых нитях в однородном магнитном поле. Вектор магнитной индукции перпендикулярен проводнику и равен по модулю 49 мТл. Какой ток надо пропустить через проводник, чтобы одна из нитей разорвалась, если нить разрывается при нагрузке, равной или превышающей 39,2 мН?
- 23. По четырем длинным прямым параллельным проводникам, проходящим через вершины квадрата, со стороной 30 см, перпендикулярно его плоскости, проходят одинаковые токи по 10 А, причем по трем проводникам проходят токи в одном направлении, а по четвертому в противоположном. Определите индукцию магнитного поля в центре квадрата.
- 24. Протон влетает в однородное магнитное поле со скоростью 1000 м/с под углом 600 к линиям магнитной индукции. Определите радиус и шаг винтовой линии, по которой будет двигаться протон, если магнитная индукция поля равна 10 мТл.
- 25. Соленоид длиной 40 см и диаметром 4 см, содержит 2000 витков проволоки сопротивлением 150 Ом. Определите индукцию магнитного поля внутри катушки, если к ней подведено напряжение 6 В.
- 26. Луч света падает на плоскопараллельную стеклянную пластинку толщиной 3 см под углом 70°. Определите смещение луча внутри пластин-ки (смещение считать по перпендикуляру к направлению падающего луча).
- 27. Луч света падает под углом і на тело с показателем преломления п. Как должны быть связаны между собой і и п , чтобы отраженный луч был перпендикулярен к преломленному?
- 28. На вогнутое зеркало радиусом 40 см падают лучи от точки S, расположенной на оптической оси на расстоянии a_1 =30 см от вершины зеркала. На каком расстоянии от вогнутого зеркала следует расположить плоское зеркало, чтобы лучи после отражения от зеркал снова вернулись в точку S?
- 29. Цилиндрический пучок лучей, параллельных главной оптической оси рассеивающей линзы, имеет диаметр $d_1 = 5$ см. Пройдя линзу, пучок дает на экране пятно диаметром $d_2 = 7$ см. Каким будет диаметр d_3 пятна, если рассеивающую линзу заменить собирающей с тем же фокусным расстоянием?
- 30. Определите расстояние между когерентными источниками в опыте Юнга, если на экране на протяжении 10,8 мм лежит шесть интерференционных полос. Расстояние от источников до экрана 3 м. Длина волны монохроматического света 6000 Å.
- 31. На щель шириной 2.10^{-3} см падает нормально параллельный пучок монохроматического света с длиной волны 5.10^{-5} см. Найти ширину изображения щели на экране, удаленном от щели на расстояние 1 м. Шириной изображения считать расстояние между первыми дифракционными минимумами, расположенными по обе стороны от главного максимума освещенности.
- 12. Изучение законов фотоэффекта.

Примеры задач для семинарского занятия.


- №1. Оценить количество молекул воздуха в атмосфере Земли.
- <u>№2.</u> Средняя плотность межзвездного газа одна частица на 1 . Какую массу воды необходимо испарить, чтобы заменить частицы межзвездного газа молекулами воды в сфере радиусом равным радиусу орбиты Луны км?
- <u>№3.</u> На пути молекулярного пучка стоит «зеркальная» стенка. Найти давление, испытываемое этой стенкой, если скорость молекул в пучке /с, концентрация
 - , масса . Рассмотреть три случая: 1) стенка

расположена перпендикулярно скорости пучка и неподвижна; 2) пучок движется по направлению, составляющему со стенкой угол ; 3) стенка движется навстречу молекулам со скоростью /с.

№4. Шар объемом , сделанный из тонкой бумаги, наполняют горячим воздухом, имеющим температуру К.

Температура окружающего воздуха К. Давление воздуха внутри шара и атмосферное давление одинаковы и равны 100 кПа. При каком значении массы бумажной оболочки шар будет подниматься?

№5. Концы стального стержня, находящегося при температуре

№5. Концы стального стержня, находящегося при температуре , прочно закреплены. С какой силой стержень будет действовать на опоры, если его нагреть до ? Площадь поперечного сечения стержня , модуль Юнга стали

, коэффициент линейного расширения

№6. В цилиндре, площадь основания которого равна , находится воздух при температуре . Атмосферное давление . На высоте от основания цилиндра расположен поршень. На сколько сантиметров опустится поршень, если на него поставить гирю массой кг, а воздух в цилиндре при этом нагреть до .? Трение поршня о стенки цилиндра и вес самого поршня не учитывать.

№7. Одноатомный идеальный газ расширяется в процессе линейной зависимости его давления от объёма. В итоге этого процесса к газу было подведено количество теплоты в 3,6 раза меньшее его внутренней энергии в начальном состоянии. Во сколько раз увеличился объем газа, если в конечном состоянии величина его внутренней энергии оказалась равной первоначальному значению?

<u>№8.</u> Моль идеального одноатомного газа из начального состояния 1 расширяется сначала изобарически, а затем в процессе с линейной зависимостью давления от объёма. Известно,

что — —, . Найти отношение — если количество теплоты, подведенное к газу на участке 1-2, в два раза больше величины работы, совершенной газом на участке 2-3.

№9. В сосуде объёмом л находится смесь гелия и водорода. При изохорическом нагреве смеси к ней подвели количество теплоты Дж. При этом давление в сосуде возросло на атм. Найти отношение числа молей водорода к числу молей гелия в сосуде.

№10. На рисунке 1 представлен замкнутый процесс, проведённый с идеальным газом. Температуры в точках 1 и 3 были равны и . Какая температура была в точке 2? Масса газа постоянна.

<u>№11.</u> Идеальный газ массой m=20 г и молярной массой M=28 г/моль совершает замкнутый процесс (рисунок 2). Температура в точках 1 и 2 равна: ,

. Найти работу газа за цикл.

<u>№12.</u> Один моль идеального газа совершает процесс 1-2-3 (рисунок 3). Известны: давление и объём . Найти поглощенное газом в этом процессе количество

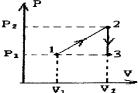


Рис. 3

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен)

Список вопросов к экзамену:

- 1. Что изучает физика?
- 2. Что такое физический закон и как он устанавливается?
- 3. Какие методы исследования применяются в физике?
- 4. Что такое физическая модель? Назовите известные вам физические моде-ли.
- 5. Какие виды физических законов вы знаете?
- 6. Как образуется физическая теория и что она включает в себя?
- 7. Какие требования предъявляются к физическим теориям? Назовите виды физических теорий.
 - 8. Как подразделяется материальный мир по масштабам?
 - 9. На какие разделы делится классическая механика?
 - 10. Что представляет собой тело отсчета?
- 11. Что называется траекторией движения? От чего зависит геометрическая форма траектории?
 - 12. Что включает в себя понятие «форма отсчета»?
 - 13. Что такое радиус вектор движущейся точки?
 - 14. Что называется перемещением?
 - 15. Как связаны законы движения в координатной и векторной форме?
- 16. Равномерное движение. Как выглядит уравнения движение с постоянной скоростью в координатной и векторной форме?
- 17. Как определяется мгновенная скорость? Как она связана со средней путевой скоростью?
 - 18. Как находится вектор результирующей скорости? Сложение скоростей.
 - 19. Что такое относительная скорость и как она находится?
 - 20. Что называется в механике «твердым телом»?
 - 21. Какие движения называют поступательным?
 - 22. Что называется периодическим движением?
 - 23. Какие виды периодического движения вы знает?
 - 24. Как связаны линейная и угловая скорость?
 - 25. Как связаны вращательное и колебательное движения?
 - 26. Какие виды ускорения вы знаете?
 - 27. Определение пути по графику движение с постоянным ускорением?
 - 28. Что называется инерциальной системой отсчета?
 - 29. Сформулируйте 2 и 3 законы Ньютона?
 - 30. Какие виды фундаментальных взаимодействий вы знаете?
 - 31. Как определяется 1 космическая скорость?
 - 32. Упругое и пластическое деформация. Закон Гука.
 - 33. Силы трения и их взаимосвязь.
 - 34. Какие силы называют внутренними (внешними)?
 - 35. Что понимается под замкнутой (изолированной) системой?
 - 36. Как определяется равновесия тела имеющего ось вращения?
- 37. Нахождение работы совершенной телом по графику зависимости силы от перемещение.
 - 38. Что такое мощность и как ее можно повысить?

- 39. Какие виды механической энергии вы знаете?
- 40. Как формулируется закон сохранения полной механической энергии в закнутой системе?
 - 41. Какие силы называют консервативными?
 - 42. Назовите основные положения молекулярно кинетической теории.
- 43. Какие явления подтверждают основные положения молекулярно-кинетической теории?
 - 44. Что такое диффузия от чего она зависит?
 - 45. Агрегатные состояния вещества и от чего они зависят?
 - 46. Назовите известные вам микрокосмические параметры?
 - 47. Как определяется количества вещества? Молярная масса?
 - 48. Модель идеального газа. Кем она предложена?
- 49. Сформулируйте основное уравнения молекулярно-кинетической теории идеального газа.
 - 50. Какие температурные шкалы вы знаете? Как они взаимосвязаны?
 - 51. Назовите виды изопроцессов.
 - 52. Как находится работы в термодинамике? І начало термодинамики.
 - 53. Что такое круговой процесс? Как формулируется ІІ начало термодинамики?
 - 54. Объясните признак работы теплового двигателя? Как находится его КПД.
- 55. Назовите основные свойства электрического заряда. Единица измерения электрического заряда.
 - 56. Как формулируется закон сохранения электрического заряда?
 - 57. Электризация тел трением. Определения закона заряда при электризации тел.
 - 58. Закон Кулона в вакууме и среде. Диэлектрическая проницаемость.
- 59. Как находится напряженность электростатического поля, и в каких единицах она измеряется?
- 60. Графическое изображение поля. Однородное и неоднородное поле. Электрическое поле заряженной плоскости точечного заряда (заряженного шара).
- 61. Что такое электрический диполь? Как находится его поле и в чем его особенность?
 - 62. Как находится работа при перемещении заряда электростатическом поле?
- 63. Потенциал энергетическая характеристика электростатического поля. Единицы измерения потенциала.
 - 64. Электроемкость уединенного проводника и заряженной плоскости.
- 65. Конденсатор. Нахождение общей емкости системы конденсаторов при последовательном и параллельном соединении.
 - 66. Какая система проводников называется конденсатором?
- 67. Как зависит электроемкость плоского конденсатора от его геометрических размеров?
- 68. Почему электроемкость конденсатора не зависит от внешних электростатических полей?
- 69. Почему схлопываются пластины плоского конденсатора предоставленные сами себе?
- 70. От каких величин зависит энергия электростатического поля, запасенная конденсатором?
 - 71. Что называется электрическим током? Что называют силой тока?
 - 72. Какое направление тока считается за положительное?
 - 73. Какова скорость переносчиков заряда в проводнике?

- 74. Что такое удельное сопротивление проводника, и в каких единицах оно измеряется?
 - 75. Как зависит сопротивление проводника от температуры?
 - 76. Какими факторами обусловлено сопротивления проводников?
 - 77. Из чего складывается полное сопротивление цепи?
 - 78. Какую величину называют электродвижущей силой?
 - 79. Сформулируйте закон Ома для участка цепи и для замкнутой цепи?
 - 80. Чему равна сила тока при коротком замыкании?
- 81. По какому закону находится общая сила тока в замкнутой цепи и как находится падения напряжения?
 - 82. Что называют работой тока?
 - 83. Что такое мощность тока?
- 84. Чему равна полная мощность тока в замкнутой цепи? Как находится полезная мошность?

Перечень компетенций (части компетенции), проверяемых оценочным средством

- УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач.
- УК-8 Способен создавать и поддерживать безопасные условия жизнедеятельности, в том числе при возникновении чрезвычайных ситуаций.

4.2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Экзамен – вид итогового контроля усвоения содержания учебной дисциплины.

- В зависимости от познавательной активности и степени подготовки студентов, преподаватель предлагает в комплексе различные формы итоговой аттестации. Экзамен может проводиться в следующих формах:
- 1. Устная форма предусматривает ответы на вопросы билетов к экзамену (представлены в фондах оценочных средств). Студент должен продемонстрировать знание содержания изучаемых понятий и теоретических основ воспитания, понимание способов проектирования воспитательного процесса.
 - 2. Письменная форма.

Студент во время письменного экзамена должен:

- знать содержание лекционного и семинарского курса;
- полностью изложить свои знания в письменном ответе на вопросы экзаменационного билета;
- свободно владеть содержанием основных философских теорий; знать определения ключевых понятий;
 - владеть источниками, вынесенными на семинарские занятия и экзамен;
- проявлять самостоятельность мышления, уметь применять содержание курса для решения основных философских проблем;
- ясно и отчетливо излагать свои мысли, соблюдая нормы литературного русского языка; писать ясно и разборчиво.

Для получения положительной оценки по экзамену студент сдаёт устный экзамен. На экзамене студент выбирает из разложенных (вопросы и задания скрыты) перед ним билет, который включает два вопроса, если не сданы лабораторные работы то плюс одно практическое задание. Студент, согласно «положения о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся в КубГУ» имеет право выбрать билет повторно, но со снижением полученной в последствии оценкой на один бал.

Сначала студенту дается возможность подготовиться, заготовив себе на чистом маркированном листе план и подсказки к ответу, записать решение задачи, в течение полутора часов после получения билета, при этом запрещено пользоваться студенту ни какими литературными, электронными и другими источниками информации, кроме собственных знаний. После подготовки, студент отвечает на вопросы по билету, а так же на дополнительные вопросы экзаменатора, показывает решенную задачу.

Если студент не сдал лабораторные работы, то после ответа на теоретические вопросы студенту даётся отдых не более двух часов, после которого он преступает к выполнению практической части задания по билету. На выполнение практической части задания студенту отводится два часа. По прошествии этих двух часов проверяется выполнение практического задания.

Решение об оценке принимается исходя из того, что студент должен был освоить теорию гораздо шире, нежели контролируют эти вопросы тестов, а так же конфигурирование сети, а экзаменатор руководствуется «положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся в КубГУ».

Экзамен оценивается, исходя из следующих критериев:

«Отлично» — содержание ответа исчерпывает содержание билета. Студент демонстрирует как знание, так и понимание вопросов билета, а также знание основной и дополнительной литературы.

«Хорошо» – содержание ответа в основных чертах отражает содержание вопросов билета, но имеются некоторые пробелы и недочеты. Студент демонстрирует знание только основной литературы.

«Удовлетворительно» — содержание ответа в основных чертах отражает содержание билета, но имеются ошибки. Не все положения вопросов билета раскрыты полностью. Имеются фактические пробелы и не полное владение литературой. Нарушаются нормы философского языка; имеется нечеткость и двусмысленность письменной речи.

«Неудовлетворительно» — содержание ответа не отражает содержание билета. Имеются грубые ошибки, а также незнание ключевых определений и литературы. Письменные ответы на вопросы не написаны полностью; ответ не носит развернутого изложения билета.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

1. Савельев, И.В. Курс общей физики. В 5-и тт. [Электронный ресурс] : учеб. пособие — Электрон. дан. — Санкт-Петербург : Лань, 2011.

- 2. Иродов, И.Е. Задачи по общей физике: учебное пособие для вузов [Электронный ресурс]: учеб. пособие Электрон. дан. Москва: Издательство "Лаборатория знаний", 2017. 434 с. Режим доступа: https://e.lanbook.com/book/94101.
- 3.Калашников, Н. П. Основы физики [Электронный ресурс] : учебник : в 2 т. Т. 2 / Н. П. Калашников, М. А. Смондырев. Москва : Лаборатория знаний, 2017. 609 с. https://e.lanbook.com/book/97411

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература:

- 1. Рогачев, Н.М. Курс физики [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2010. 448 с. Режим доступа: https://e.lanbook.com/book/633.
- 2. Физика. Элементы молекулярной физики и термодинамики : учебное пособие / сост. И.М. Дзю, С.В. Викулов, П.М. Плетнев, В.Я. Чечуев. Новосибирск : Новосибирский государственный аграрный университет, 2013. 141 с. ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=230539.
- 3. Курбачев, Ю.Ф. Физика : учебное пособие / Ю.Ф. Курбачев. Москва : Евразийский открытый институт, 2011. 216 с. ISBN 978-5-374-00523-3 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=90773.
- 4. Никеров, В.А. Физика для вузов: механика и молекулярная физика: учебник / В.А. Никеров. Москва: Издательско-торговая корпорация «Дашков и К°», 2017. 136 с.: табл., граф., схем. ISBN 978-5-394-00691-3; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=450772.
- 5. Кудасова, С.В. Курс лекций по общей физике: учебное пособие для бакалавров / С.В. Кудасова, М.В. Солодихина. Москва; Берлин: Директ-Медиа, 2016. Ч. 1. Механика. Молекулярная физика и термодинамика. 174 с.: ил., табл. Библиогр. в кн. ISBN 978-5-4475-6909-9; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=436995.
- 6. Наумчик, В.Н. Физика и техника в демонстрационном эксперименте: очерки истории: пособие / В.Н. Наумчик, Т.А. Ярошенко. Минск: РИПО, 2017. 280 с.: ил. Библиогр.: с. 257. ISBN 978-985-503-654-9; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=463648.

5.3. Периодические издания:

- 1. Вестник МГУ.Серия: Математика. Механика
- 2. Вестник МГУ. Серия: Физика. Астрономия
- 3. Вестник СПбГУ. Серия: Физика. Химия
- 4. Журнал экспериментальной и теоретической физики

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Основными формами контактной работы по дисциплине «Физика» для очной формы обучения являются лекции, семинарские занятия, лабораторные работы и контролируемая самостоятельная работа.

Лекции по дисциплине «Физика» следует проводить в классах кафедры теоретической физики и компьютерных технологий с использованием средств мультимедиа.

Лабораторные работы и семинарские занятия по дисциплине «Физика» следует проводить в компьютерных классах кафедры теоретической физики и компьютерных

технологий. Выполнение лабораторных работ и семинарских занятий сочетает различные виды практических заданий и упражнений.

Контролируемую самостоятельную работу студентов по дисциплине «Физика» следует проводить в компьютерных классах кафедры теоретической физики и компьютерных технологий. Проведение занятий предусматривает постановку проблемных вопросов, анализ возможных алгоритмов действий и поиск оптимального решения.

Структура дисциплины «Физика» для очной формы обучения определяет следующие виды самостоятельной работы: самостоятельная работа студента (СРС) и контроль (К).

Самостоятельная работа студента является основным видом самостоятельной работы. Она проводится в целях закрепления знаний, полученных на всех видах учебных занятий, а также расширения и углубления знаний, т.е. активного приобретения студентами новых знаний.

СРС включает проработку и повторение лекционного материала. Для этого студенту рекомендуется прочитать текст лекции, пересказать его вслух, воспроизвести самостоятельно имеющиеся в тексте структурно-логические схемы, диаграммы, математические выкладки формул, доказательства теорем и т.п. Проработку лекционного материала следует проводить сначала последовательно, по каждому учебному вопросу, а затем повторно, по всему тексту лекции.

СРС также включает изучение материала по рекомендованным учебникам и учебным пособиям. Так как существует огромное количество учебной литературы, то для этого вида подготовки необходимо предварительное указание преподавателя. Преподаватель должен выступать здесь в роли опытного «путеводителя», определяя последовательность знакомства с литературными источниками и «глубину погружения» в каждый из них.

Одним из видов СРС является подготовка к лабораторным работам и семинарским занятиям. Преподаватель накануне очередного занятия обозначает для студентов круг теоретического материала, необходимого для выполнения лабораторной работы, решения задач на семинарских занятиях. Студенты прорабатывают его. Затем, уже в аудитории, перед выполнением заданий, преподаватель производит контрольный опрос студентов. Это позволяет определить степень готовности группы по данной теме и скорректировать ход занятия.

Видом самостоятельной работы является контроль. Такой вид работы включает проведение расчетов, выполнение упражнений, компьютерного моделирования и реализации других видов практических задач, поставленных преподавателем как задания для самостоятельного выполнения. Данный вид работы может реализовываться в компьютерных классах кафедры теоретической физики и компьютерных технологий в часы, отведенные для самостоятельной работы.

Преподаватель должен прогнозировать затруднения, которые могут возникнуть у студентов при самостоятельном изучении и усвоении учебного материала и предусмотреть оперативную консультацию по любому вопросу. Если возникают затруднения по одному и тому же материалу (вопросу) у многих студентов, то желательно провести групповую консультацию. Консультации должны быть краткими: групповая - 2-3 мин., индивидуальная - 1-2 мин. Глубину и качество усвоения учебного материала необходимо непрерывно отслеживать при проведении текущего контроля знаний.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта

между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю)

7.1 Перечень информационно-коммуникационных технологий Не предусмотрены.

7.2 Перечень лицензионного и свободно распространяемого программного обеспечения

Программное обеспечение - не предусмотрено.

7.3 Перечень современных профессиональных баз данных и информационных справочных систем

- 1. Электронная библиотечная система "Университетская библиотека ONLINE" [Электронный ресурс] Режим доступа: http://biblioclub.ru/
- 2. Электронная библиотечная система издательства "Лань" [Электронный ресурс] Режим доступа: http://e.lanbook.com/
- 3. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)

8. Материально-техническое обеспечение по дисциплине (модулю)

№	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные занятия	Лекционная аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО) для воспроизведения файлов формата jpg и avi, достаточным количеством посадочных мест. ауд. 320H.
2.	Лабораторные занятия	Лаборатория, укомплектованная специализированной мебелью и техническими средствами обучения. ауд. 320H.
3.	Курсовое проектирование	Не предусмотрено
4.	Групповые (индивидуальные) консультации	Аудитория для проведения групповых (индивидуальных) занятий, оснащенная доской и комплектом учебной мебели. ауд. 320Н.
5.	Текущий контроль, промежуточная аттестация	Аудитория для текущего контроля и промежуточной аттестации студентов, оснащенная компьютерной техникой с возможностью подключения к сети "Интернет", с соответствующим программным обеспечением в режиме подключения к терминальному серверу, с программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета. ауд. 320H.