Аннотация по дисциплине

Б1.О.25 «УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ»

3 курс 01.03.02, семестры 5,6, количество з.е. 7

Цель дисциплины: изучение фундаментальных основ теории уравнений математической физики в объеме, необходимом для общего развития и освоения смежных дисциплин физикоматематического цикла, овладение аппаратом математической физики и подготовку к сознательному восприятию процедур прикладного анализа, освоение методов построения математических моделей на основе уравнений математической физики.

Задачи дисциплины:

- усвоение основных идей, понятий и фактов уравнений математической физики, необходимых для решения теоретических и прикладных задач применения дисциплины;
- формирование навыков формулировать и решать задачи математической физики, создавать и использовать математические модели процессов и объектов;
- расширение и углубление теоретических знаний и развитие логического мышления; подъем общего уровня математической культуры; формирование творческого подхода к изучению физических процессов.

Место дисциплины в структуре ООП ВО:

Курсы обязательные для предварительного изучения: математический анализ, функциональный анализ, алгебра и аналитическая геометрия, дифференциальные уравнения.

Дисциплины, в которых используется материал данной дисциплины: численные методы, вариационное исчисление и ОУ.

Результаты обучения (владение знаниями, умениями, опытом, компетенциями):

Код компетенции	Формулировка компетенции			
ОПК-1	Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности			
Знать	 основные задачи, уравнения и методы математической физики; физический смысл основных понятий и фактов математической физики и сферы их применения 			
Уметь	- корректно поставить задачу и определить краевые условия; аналитически и численно решать основные задачи математической физики и корректно интерпретировать полученные результаты.			
Владеть	 основной терминологией и понятийным аппаратом математической физики; основными аналитическими и численными методами решения уравнений в частных производных 			
ОПК-3	Способен применять и модифицировать математические модели для решения задач в области профессиональной деятельности			
Знать	 математические формулировки основных понятий и утверждений математические модели основных приложений теории дифференциальных уравнений основные методы решения задач математической физики основные прикладные пакеты, используемые для решения уравнений в частных производных. 			
Уметь	 строить простейшие математические модели стандартных физических процессов перевести задачу на язык дифференциальных уравнений с частными производными; находить решения: общие для основных типов дифференциальных уравнений с частными производными второго порядка; выбирать методы решения поставленной задачи; содержательно интерпретировать результаты; использовать электронные тематические ресурсы для углубления знаний по изучаемой дисциплине 			
Владеть	 навыками решения задачи и интерпретации результатов в терминах прикладной области; научно-методическим аппаратом теории дифференциальных уравнений навыками доказательства основных утверждений; навыками построения простейших математических моделей физических процессов; методами исследования моделей физических процессов навыками использования пакетов прикладных программ для решения задач математической физики 			

ПК-2	Способен активно участвовать в исследовании новых математических моделей в естественных науках						
Знать	 методы численного анализа, иметь четкое представление о видах математических моделей, основанных на численных методах, о способах их построений, о численных методах реализации математических моделей. методы и способы поиска необходимой информации, математические ресурсы библиотек и сети Интернет по методам математической физики. 						
Уметь	 разрабатывать алгоритм применяемого метода решения; применять на практике методы численного анализа; реализовать численный алгоритм программно с помощью инструментальных средств и прикладных программ; анализировать полученные результаты. пользоваться справочной математической литературой по математической физике и соответствующими ресурсами сети Интернет 						
Владеть	 самостоятельно осуществлять выбор методики решения и построения алгоритма той или иной задачи; давать полный анализ результатов решения и оценивать границы применимости выбранного метода основной терминологией и понятийным аппаратом математической физики; основными аналитическими и численными методами решения уравнений в частных производных. методами и приемами получения и систематизации знаний в области математической физики 						

Содержание и структура дисциплины

5 семестр

	Наименование разделов	Количество часов				
№		Всего	Аудиторная работа		Внеаудиторная работа	
			Л	П3	CPC	
1	Постановка и классификация задач математической физики	32	10	14	8	
2	Уравнения гиперболического типа. Основные задачи и методы их решения	50	18	16	14	
3	Вариационные методы в математической физике	18	4	4	12	
4	4 Обзор пройденного материала и прием зачета		2	_	1,8	
K	Контроль самостоятельной работы (КСР)		_	_	-	
Промежуточная аттестация (ИКР)		0,2	_	_	_	
Итого:		108	34	34	35,8	

6 семестр

№ раздела	Наименование разделов	Количество часов					
		Всего	Аудиторная работа		Внеаудиторная работа		
			Л	ПЗ	CPC	контроль	
1	Уравнения параболического типа. Основные задачи и методы их решения	44	16	16	-	12	
2	Уравнения эллиптического типа. Основные задачи. Теория потенциала	58	22	24	-	12	
3	Применение интегральных преобразований к решению задач математической физики	26	10	6	-	10	
4	Обзор пройденного материала и прием зачета	13,5	-	2	9,8	1,7	
Контроль самостоятельной работы (КСР)		2	_	_		_	
Промежуточная аттестация (ИКР)		0,5	_	_		_	
Итого:		144	48	48	9,8	35,7	

Курсовые проекты или работы: не предусмотрены

Интерактивные образовательные технологии, используемые в аудиторных занятиях: интерактивная подача материала с мультимедийной системой.

Вид аттестации: 5 семестр – зачет, 6 семестр – зачет, экзамен

Основная литература

- 1. Алтунин К.К. Методы математической физики. М.: Директ-Медиа, 2014. 123 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=240552.
- 2. Карчевский М.М. Лекции по уравнениям математической физики. СПб.: Лань, 2016. 164 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/72982.
- 3. Кудряшов С.Н. Основные методы решения практических задач в курсе «Уравнения математической физики» / С.Н. Кудряшов, Т.Н. Радченко. Ростов н/Д: Изд-во ЮФУ, 2011. 308 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=241103.
- 4. Олейник О.А. Лекции об уравнениях с частными производными. М.: Изд-во "Лаборатория знаний", 2015. 263 с. [Электронный ресурс]. Режим доступа: https://e.lanbook.com/book/70703.

Авторы: профессор кафедры математического моделирования КубГУ, д.ф.-м.н. Павлова А.В.