АННОТАЦИЯ

Дисциплины Б1.О.08.10 Квантовая механика

Объем трудоемкости: 3 зачетных единиц (108 час., из них — 44 часа аудиторной нагрузки: лекционных 12 час., практических 32 час.; 22 час. самостоятельной работы; 6 часов KCP)

Цель дисциплины — ознакомление студентов со специфическими квантовыми свойствами и закономерностями микрообъектов, с применением законов квантовой механики для анализа физических явлений и процессов.

Задачи дисциплины

- формирование основных понятий и представлений квантовой механики;
- ознакомление студентов с основными методами и их использованием для решения ряда конкретных задач;
 - создание базы для изучения последующих разделов курса теоретической физики;
- обсуждение приложений квантовой механики, предсказанных на основе квантовых свойств и закономерностей микрообъектов;
- формирование у будущих учителей представления о квантовой теории как фундаменте современной физики и как важнейшей составной части общечеловеческой культуры.

Место дисциплины в структуре образовательной программы

Дисциплина «Квантовая механика» относится к Модулю "Основы предметных знаний по профилю «Физика»". Модуль относится к обязательной части и является базовым теоретическим и практическим основанием для подготовки бакалавров по профилю «Физика».

Квантовая механика является одним из главных достижений научной мысли XX века. Наряду с теорией относительности она составляет фундамент современной физики. Она опирается на значительно более сложный, по сравнению с классической механикой, математический аппарат. Программа курса предусматривает изучение трёх физически эквивалентных формулировок квантовой механики: волновой механики Шрёдингера, матричной механики Гейзенберга и векторной квантовой механики Дирака.

Изучение дисциплины «Квантовая механика» базируется на знаниях, умениях, навыках, сформированных в процессе изучения дисциплин «Механика», «Математические методы в физике» и школьном курсе физики.

Понятия, законы и методы, введенные в дисциплине «Квантовая механика», будут использоваться при изучении дисциплин «Электродинамика и теория относительности», «Термодинамика, статистическая физика и физическая кинетика», а также для последующего прохождения педагогической практики, подготовки к итоговой государственной аттестации.

Требования к уровню освоения дисциплины

Дисциплина «Квантовая механика» обеспечивает инструментарий формирования следующих профессиональных компетенций бакалавров

- ПК-1 Способен осваивать и использовать базовые научно-теоретические знания и практические умения по технологическому и физическому образованию в профессиональной деятельности;
- Π K-2 Способен конструировать содержание технологического и физического образования в соответствии с требованиями Φ ГОС основного и среднего образования, с уровнем развития современной науки и с учетом возрастных особенностей обучающихся;

Изучение данной учебной дисциплины направлено на формирование у обучающихся *профессиональных* компетенций (ПК)

обучающихся <i>профессиональных</i> компетенций (ПК)								
№	Индекс	Содержание	В результате изучения учебной дисциплины					
П.П.	компет	компетенции (или её	обучающиеся должны					
11.11.	енции	части)	знать	уметь	владеть			
1.	ПК-1	Способен осваивать	предмет, цель,	приобретать	навыками			
		и использовать	задачи и	новые научно-	применения			
		базовые научно-	методы	теоретические	физических			
		теоретические	физики, её	знания	теорий к			
		знания и	место в		анализу			
		практические	системе наук;		простейших			
		умения по	фундаментальн		теоретически			
		технологическому и	ые физические		хи			
		физическому	теории и		прикладных			
		образованию в	законы;		вопросов			
		профессиональной	понимать,					
		деятельности	анализировать					
			физическую					
			сущность					
			явлений и					
			процессов,					
			происходящих					
			в природе и					
			технике					
2.	ПК-2	Способен	методы и	применять	навыками			
		конструировать	приёмы	базовые знания	проведения			
		содержание	постановки	для решения	физических			
		технологического и	физического	теоретических и	наблюдений			
		физического	эксперимента,	практических	И			
		образования в	способы его	физических	эксперименто			
		соответствии с	математическо	задач, правильно	в, решения			
		требованиями ФГОС	й обработки;	организовывать	простейших			
		основного и	знать методы и	физические	теоретически			
		среднего общего	приёмы	наблюдения и	хи			
		образования, с	решения	эксперименты,	прикладных			
		уровнем развития	конкретных	анализировать	задач			
		современной науки и	физических	их результаты,				
		с учетом возрастных	задач,	осуществлять				
		особенностей	физические	построение				
		обучающихся	приложения	математических				
			математически	моделей				
			х понятий	физических				
				явлений и				
				процессов				

Основные разлелы лиспиплины:

основные разделы дисциплины.						
№ разде ла	Наименование разделов	Количество часов				
		Всего	Аудиторная			Самостоятельная
			работа			работа
			Л	П3	ЛР	
1	2	3	4	5	6	7

Ma		Количество часов				
№ разде	Наименование разделов	Всего	Аудиторная работа			Самостоятельная работа
ла			Л	ПЗ	ЛР	paoora
1.	Экспериментальные основы и математический аппарат квантовой механики	19	2	8	-	4
2.	Точно решаемые квантовомеханические задачи. Одномерное движение. Движение в поле центральных сил	20	4	8	-	6
3.	Приближенные методы квантовой механики. Теория возмущений	20	4	8	-	6
4.	Спин и системы тождественных частиц	18	2	8	-	6
	ИТОГО		12	32	-	22

Курсовые работы: не предусмотрены

Форма проведения аттестации по дисциплине: экзамен

Основная литература:

- 1. Байков, Ю.А. Квантовая механика: учебное пособие / Ю.А. Байков, В.М. Кузнецов. М.: Лаборатория знаний, 2015. 294 с. https://e.lanbook.com/book/70719.
- 2. Иродов, И.Е. Задачи по квантовой физике: учебное пособие / И.Е. Иродов. М.: Лаборатория знаний, 2015. 220 с. https://e.lanbook.com/book/84093.
- 3. Вайнберг, С. Квантовая теория поля. Т.1. Общая теория / С. Вайнберг; под ред. В.Ч. Жуковского; пер. с англ. В.Ч. Жуковского. М.: Физматлит, 2015. 648 с. https://e.lanbook.com/book/91164.
- 4. Соболев, С.В. Основы нерелятивистской квантовой механики: учебное пособие / С.В. Соболев. М.: Физматлит, 2016. 144 с. https://e.lanbook.com/book/105005.