Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» (ФГБОУ ВО «КубГУ»)

Физико-технический факультет

УТВЕРЖДАЮ:

Проректор по научной работе и инновациям, ирофессор

М.Г. Барышев

i II me elas

2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.ДВ.2.1 ЛАЗЕРЫ. ТЕОРИЯ И ПРАКТИКА

Направление подготовки 03.06.01 Физика и астрономия

Направленность 01.04.07 Физика конденсированного состояния

Программа подготовки академическая

Форма обучения очная

Квалификация выпускника Исследователь. Преподаватель-Исследователь

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 03.06.01 Физика и астрономия, утвержденными 30 июля 2014 г. № 867, зарегистрированный в Министерстве юстиции Российской Федерации 25.08.2014 г. № 33836

Автор: В.А. Исаев, д-р физ.-мат. наук, доцент, заведующий кафедрой теоретической физики и компьютерных технологий физико-технического факультета ФГБОУ ВО «КубГУ»

Программа одобрена на заседании кафедры теоретической физики и компьютерных технологий от «ДР» меся 2019 года, протокол № $\mathcal G$

Зав. кафедрой

fleares

В.А. Исаев

Одобрено на заседании учебно-методической комиссии физико-технического факультета «ℳ» сесей 2019 года, протокол № //

Председатель УМС факультета, д. ф.-м. наук, профессор

teo navit

Н.М. Богатов

Зав. отделом аспирантуры и докторантуры

CON -

Е.В. Строганова

1 Цели и задачи изучения дисциплины (модуля).

1.1 Цель освоения дисциплины.

Целью дисциплины «Лазеры. Теория и практика» является ознакомление с физическим принципами создания оптических квантовых генераторов и с возможностями практического использования оптических квантовых генераторов (лазеров).

1.2 Задачи дисциплины.

Основные задачи дисциплины:

- формирование систематических знаний по основным разделам теории лазеров, необходимых для выполнения самостоятельных научных исследований и лабораторного практикума в рамках учебного курса;
- ознакомление с многочисленными направлениями практического применения лазеров;
- выработка у аспирантов навыков самостоятельной учебной деятельности, развитие у них познавательных потребностей.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Дисциплина «Лазеры. Теория и практика» относится к вариативной части Блока 1 "Дисциплины (модули)" учебного плана 03.06.01 Физика и астрономия профиля 01.04.07 Физика конденсированного состояния.

Для успешного освоения дисциплины необходимы знания, полученные при изучении дисциплин направления 03.04.02 Физика профиля Физика конденсированного состояния вещества: Б1.В.02 «Теория конденсированного состояния», Б1.В.05 «Экспериментальные методы исследований в физике конденсированного состояния», Б1.В.ДВ.01.01 «Технологии материалов твердотельной электроники», Б1.В.ДВ.02.01 «Спектроскопия конденсированных сред», Б1.В.ДВ.04.01 «Теория и применение лазеров».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций

No	Индекс	Содержание ком-	В результате изуч	нения учебной ди	сциплины обу-
П.П.	компе-	петенции (или её	ча	ющиеся должны	
11.11.	тенции	части)	знать	уметь	владеть
1.	ОПК-1	способностью са-	основные зако-	применять по-	четкими пред-
		мостоятельно	ны, идеи и прин-	лученные тео-	ставлениями о
		осуществлять	ципы спектро-	ретические	современных
		научно-	скопии конден-	знания для	научных кон-
		исследователь-	сированных сред,	решения при-	цепциях спек-
		скую деятель-	их становление и	кладных задач	троскопии
		ность в соответ-	развитие в исто-		конденсиро-
		ствующей про-	рической после-		ванных сред
		фессиональной	довательности,		
		области с исполь-	их математиче-		
		зованием совре-	ское описание,		
		менных методов	их эксперимен-		
		исследования и	тальное исследо-		
		информационно-	вание и практи-		
		коммуникацион-	ческое использо-		
		ных технологий	вание		
2.	ПК-2	владетнием тео-	терминологию и	выбирать,	компьютер-
		ретическими и	определения фи-	осваивать и	ными метода-
		эксперименталь-	зических вели-	совершен-	ми расчета па-

№	Индекс	Содержание ком-	В результате изуч	нения учебной ди	сциплины обу-
	компе-	петенции (или её	ча	ющиеся должны	-
П.П.	тенции	части)	знать	уметь	владеть
		ными методами	чин, характери-	ствовать ме-	раметров, ха-
		исследования	зующих спек-	тоды экспери-	рактеризую-
		природы кристал-	тральные свой-	ментального и	щих спек-
		лических и	ства кристаллов	теоретическо-	тральные
		аморфных ве-		го исследова-	свойства кри-
		ществ в твердом и		ния кристал-	сталлов
		жидком состояни-		ЛОВ	
		ях и изменения их			
		свойств при раз-			
		личных внешних			
		воздействиях			
3.	УК-1	способностью к	классификацию	выбирать,	методами
		критическому	кристаллических	осваивать и	компьютерно-
		анализу и оценке	соединений и	совершен-	го моделиро-
		современных	особенности их	ствовать ме-	вания спек-
		научных дости-	спектральных	тоды экспери-	тральных
		жений, генериро-	свойства	ментального и	свойств кри-
		ванию новых идей		теоретическо-	сталлов
		при решении ис-		го исследова-	
		следовательских и		ния кристал-	
		практических за-		ЛОВ	
		дач, в том числе в			
		междисциплинар-			
		ных областях			

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ. Общая трудоёмкость дисциплины составляет 3 зач.ед. (108 часов), их распределение по видам работ представлено в таблице

Вид учеб	Вид учебной работы		
		часов	(часы)
			3
Аудиторные занятия (в	сего):	44	44
Занятия лекционного тип	a	8	8
Лабораторные занятия		18	18
Занятия семинарского ти	па (семинары, практиче-	10	10
ские занятия)		18	18
Самостоятельная работ	а, в том числе:	32	32
Самостоятельное изучени	ие разделов	22	22
Самоподготовка		10	10
Контроль:		32	32
Подготовка к экзамену		32	32
Общая трудоемкость	час.	108	108
	зач. ед.	3	3

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые на 3 курсе

	Наименование разделов		Количество часов				
No			Аудиторная			Внеаудиторная	
212	паименование разделов	Всего	работа			работа	
			Л	П3	ЛР	CP	
1	2	3	4	5	6	7	
1.	Необходимые сведения из теории излучения	7	1	2	ı	4	
2.	Принцип действия квантовых генераторов	11	1	2	4	4	
3.	Различные типы лазеров		1	2	4	2	
4.	Голография и нелинейная оптика	8	1	3	ı	4	
5.	Нелинейная оптика	17	1	3	5	8	
6.	Применение лазеров в промышленности		1	2	5	6	
7.	Измерительные лазерные системы	5	1	2	ı	2	
8.	Применение лазеров науке и технике	5	1	2	-	2	
	Итого по дисциплине:		8	18	18	32	

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СР – самостоятельная работа

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

$N_{\underline{0}}$	Наименование	Содержание раздела	Форма
разде-	раздела		текущего
ла	-		контроля
1	2	3	4
1	Необходимые сведе-	Распределение атомов по стационар-	Коллоквиум
	ния из теории излуче-	ным состояниям при тепловом равно-	-
	ния	весии. Спонтанное излучение и по-	
		глощение света. Индуцированные пе-	
		реходы в атомах. Коэффициенты	
		Эйнштейна.	
2	Принцип действия	Усиление света при прохождении че-	Коллоквиум
	квантовых генерато-	рез вещество. Молекулярный генера-	
	ров	тор электромагнитного излучения (ма-	
		зер). Квантовые системы с тремя энер-	
		гетическими уровнями. Принцип дей-	
		ствия и условия самовозбуждения	
		ОКГ. Резонаторы. Гауссовы пучки	
		света. Свойства излучения оптическо-	
		го квантового генератора. Степень мо-	
		нохроматичности. Общая классифика-	
		ция оптических квантовых генерато-	
		ров.	
3	Различные типы лазе-	Схема и характерные данные. Управ-	Коллоквиум
	ров	ление излучением рубинового лазера.	
		Газовый лазер. Полупроводниковый	
		лазер. Электроны проводимости и	
		дырки. Состояние с отрицательной	
		температурой в полупроводниках. По-	
		лупроводниковый лазер. Лазер с ядер-	
		ной накачкой. Лазеры на красителях.	
		Другие типы лазеров.	

4	Голография и нели-	Основные физические принципы голо-	Коллоквиум
	нейная оптика	графической записи и считывания ин-	
		формации. Различные голографиче-	
		ские схемы. Запись голограмм на тол-	
		стослойные эмульсии по методу Дени-	
		сюка. Возможность создания гологра-	
		фической памяти для ЭВМ.	
5	Нелинейная оптика	Зависимость свойств среды от интен-	Коллоквиум
		сивности падающего излучения. От-	
		клик нелинейной среды на внешнее	
		воздействие. Изменение прозрачности	
		среды под действием света. Самофо-	
		кусировка лазерного излучения. Мно-	
		гофотонный фотоэффект.	
6	Применение лазеров в	Сварочные установки Лазерные тех-	Коллоквиум
	промышленности	нологии в микроэлектронике. Лазер-	
		ная закалка.	
7	Измерительные ла-	Доплеровский анемометр. Лазерные	Коллоквиум
	зерные системы	измерители. Интерферометры. Лазер-	
		ные дальномеры	
8	Применение лазеров	Применение лазеров в исследовании	Коллоквиум
	науке и технике	окружающей среды. Лазерный управ-	
		ляемый термоядерный синтез. Приме-	
		нение лазеров в оптической связи. Во-	
		локонная оптика. Лазеры в вычисли-	
		тельной технике. Термомагнитная за-	
		пись и считывание информации. Лазе-	
		ры в военном деле. Нелинейная оптика	
		в лазерной технике. Лазеры в меди-	
		цине. Лазерный скальпель	

2.3.2 Занятия семинарского типа.

№	Наименование раздела	Тематика практических занятий (семинаров)	Форма текуще- го контроля
1	2	3	4
1.	Необходимые све-	Распределение атомов по стационарным состоя-	Решение задач
	дения из теории из-	ниям при тепловом равновесии. Спонтанное из-	
	лучения	лучение и поглощение света. Индуцированные	
		переходы в атомах. Коэффициенты Эйнштейна.	
2.	Принцип действия	Усиление света при прохождении через веще-	Решение задач
	квантовых генера-	ство. Молекулярный генератор электромагнит-	
	торов	ного излучения (мазер). Квантовые системы с	
		тремя энергетическими уровнями. Принцип дей-	
		ствия и условия самовозбуждения ОКГ. Резона-	
		торы. Гауссовы пучки света. Свойства излучения	
		оптического квантового генератора. Степень мо-	
		нохроматичности. Общая классификация опти-	
		ческих квантовых генераторов.	
3.	Различные типы	Схема и характерные данные. Управление излу-	Решение задач
	лазеров	чением рубинового лазера. Газовый лазер. Полу-	
		проводниковый лазер. Электроны проводимости	
		и дырки. Состояние с отрицательной температу-	
		рой в полупроводниках. Полупроводниковый	

		лазер. Лазер с ядерной накачкой. Лазеры на кра-	
		сителях. Другие типы лазеров.	
4.	Голография и нели-	Основные физические принципы голографиче-	Решение задач
	нейная оптика	ской записи и считывания информации. Различ-	
		ные голографические схемы. Запись голограмм	
		на толстослойные эмульсии по методу Денисю-	
		ка. Возможность создания голографической па-	
		мяти для ЭВМ.	
5.	Нелинейная оптика	Зависимость свойств среды от интенсивности	Решение задач
		падающего излучения. Отклик нелинейной сре-	
		ды на внешнее воздействие. Изменение прозрач-	
		ности среды под действием света. Самофокуси-	
		ровка лазерного излучения. Многофотонный фо-	
		тоэффект.	
6.	Применение лазе-	Сварочные установки Лазерные технологии в	Решение задач
	ров в промышлен-	микроэлектронике. Лазерная закалка.	
	ности		
7.	Измерительные ла-	r · · · · · · · · · · · · · · · · · · ·	Решение задач
	зерные системы	Интерферометры. Лазерные дальномеры	
8.	Применение лазе-	Применение лазеров в исследовании окружаю-	Решение задач
	ров науке и технике	щей среды. Лазерный управляемый термоядер-	
		ный синтез. Применение лазеров в оптической	
		связи. Волоконная оптика. Лазеры в вычисли-	
		тельной технике. Термомагнитная запись и счи-	
		тывание информации. Лазеры в военном деле.	
		Нелинейная оптика в лазерной технике. Лазеры в	
		медицине. Лазерный скальпель	

2.3.3 Лабораторные занятия.

No	Наименование лабораторных работ	Форма текуще-
110	паименование лаоораторных раоот	го контроля
1	3	4
1.	Принцип действия квантовых генераторов	Защита ЛР
2.	Различные типы лазеров	Защита ЛР
3.	Нелинейная оптика	Защита ЛР
4.	Измерительные лазерные системы	Защита ЛР

2.3.4 Примерная тематика рефератов Не предусмотрено учебным планом.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Самостоятельное изу-	Методические указания по организации аудиторной и внеа-
	чение разделов	удиторной самостоятельной работы, утвержденные кафед-
2	Самоподготовка	рой теоретической физики и компьютерных технологий,
		протокол № 9 от «14» марта 2017г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом.
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

При реализации учебной работы по освоению курса «Лазеры. Теория и практика» используются современные образовательные технологии:

- информационно-коммуникационные технологии;
- исследовательские методы в обучении;
- проблемное обучение.

Успешное освоение материала курса предполагает большую самостоятельную работу аспирантов и руководство этой работой со стороны преподавателей.

Интерактивные технологии, используемые при изучении дисциплины

Семестр	Вид занятия (Л,	Используемые интерактивные образова-	Количество
	ПР, ЛР)	тельные технологии	часов
1	Л	Проблемное обучение	4
	ПР	Не предусмотрены	
	ЛР	Исследовательские методы в обучении,	10
		проблемное обучение	
Итого:			14

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

4.1 Фонд оценочных средств для проведения текущего контроля.

Вопросы для подготовки к коллоквиуму:

- 1. Распределение атомов по стационарным состояниям при тепловом равновесии.
- 2. Спонтанные и вынужденные переходы.
- 3. Квантовые системы с тремя энергетическими уровнями. Принцип действия и условия самовозбуждения ОКГ.
- 4. Резонаторы: классификация, характеристики, методы расчета.
- 5. Свойства излучения оптического квантового генератора. Когерентность, длина и время когерентности.
- 6. Классификация лазеров по виду активных сред.
- 7. Основные характеристики твердотельных лазеров на электронных и электронно-колебательных переходах.
- 8. Классификация и характеристики газовых лазеров.
- 9. Лазеры на парах металлов: их характеристики и применение.
- 10. Лазеры на красителях.
- 11. Методы управления лазерным излучением.

- 12. Методы создания сверхкоротких лазерных импульсов.
- 13. Описание работы трехуровневого лазера с помощью кинетических уравнений.
- 14. Описание работы четырехуровневого лазера с помощью кинетических уравнений.

4.2 Фонд оценочных средств для проведения промежуточной аттестации. Перечень вопросов, выносимых на экзамен

- 1. Распределение атомов по стационарным состояниям при тепловом равновесии. Спонтанное излучение и поглощение света.
- 2. Индуцированные переходы в атомах. Коэффициенты Эйнштейна.
- 3. Усиление света при прохождении через вещество. Молекулярный генератор электромагнитного излучения (мазер).
- 4. Квантовые системы с тремя энергетическими уровнями. Принцип действия и условия самовозбуждения ОКГ. Резонаторы.
- 5. Свойства излучения оптического квантового генератора. Степень монохроматичности.
- 6. Общая классификация оптических квантовых генераторов.
- 7. Схема и характерные данные твердотельного лазера. Управление излучением рубинового лазера.
- 8. Газовый лазер. Состояние с отрицательной температурой в полупроводниках. Полупроводниковый лазер.
- 9. Лазер с ядерной накачкой. Лазеры на красителях. Другие типы лазеров.
- 10. Основные физические принципы голографической записи и считывания информации.
- 11. Различные голографические схемы. Запись голограмм на толстослойные эмульсии по методу Денисюка.
- 12. Зависимость свойств среды от интенсивности падающего излучения. Отклик нелинейной среды на внешнее воздействие.
- 13. Изменение прозрачности среды под действием света.
- 14. Самофокусировка лазерного излучения. Многофотонный фотоэффект.
- 15. Применение лазеров в промышленности. Сварочные установки Лазерные технологии в микроэлектронике. Лазерная закалка.
- 16. Доплеровский анемометр. Лазерные измерители. Интерферометры. Лазерные дальномеры.
- 17. Применение лазеров в исследовании окружающей среды.
- 18. Лазерный управляемый термоядерный синтез.
- 19. Применение лазеров в оптической связи. Волоконная оптика.
- 20. Лазеры в вычислительной технике. Термомагнитная запись и считывание информации.
- 21. Лазеры в военном деле.
- 22. Нелинейная оптика в лазерной технике.
- 23. Лазеры в медицине.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на заете;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,

- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

- 1. Лазеры: применения и приложения [Электронный ресурс] : учеб. пособие / А.С. Борейшо [и др.]. Электрон. дан. Санкт-Петербург : Лань, 2016. 520 с. Режим доступа: https://e.lanbook.com/book/87570.
- 2. Борейшо, А.С. Лазеры: устройство и действие [Электронный ресурс]: учеб. пособие / А.С. Борейшо, С.В. Ивакин. Электрон. дан. Санкт-Петербург: Лань, 2017. 304 с. Режим доступа: https://e.lanbook.com/book/93585.
- 3. Иванов, И.Г. Основы квантовой электроники : учебное пособие / И.Г. Иванов ; Министерство образования и науки Российской Федерации, Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Южный федеральный университет", Физический факультет. Ростов-н/Д : Издательство Южного федерального университета, 2011. 174 с. библиогр. с: С. 168-169. ISBN 978-5-9275-0873-0 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page= book&id=241055.

5.2 Дополнительная литература:

- 1. Шандаров, С.М. Введение в нелинейную оптику: учебное пособие / С.М. Шандаров; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР), Кафедра электронных приборов. Томск: ТУСУР, 2012. 41 с.: ил.,табл., схем. Библиогр. в кн.; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page= book&id= 480458.
- 2. Тумаев, Е.Н. Процессы переноса энергии электронного возбуждения в конденсированных средах [Текст] : монография / Е. Н. Тумаев ; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар : [Кубанский государственный университет], 2013. 226 с. : ил. Библиогр.: с. 207-223.
- 3. Квантовые и оптические процессы в твердых телах: теория и практика: учебное пособие / Н.Н. Безрядин, А.В. Линник, Ю.В. Сыноров и др. Воронеж: Воронежский государственный университет инженерных технологий, 2015. 153 с. [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=336036.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Университетская библиотека ONLINE».

5.3. Периодические издания:

- 1. Успехи физических наук;
- 2. Журнал экспериментальной и теоретической физики;
- 3. Журнал физической химии;
- 4. Физика твердого тела.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля).

№ п/п	Ссылка	Пояснение
1.	http://www.book.ru	ВООК.ru – электронная библиотечная система (ЭБС) современной учебной и научной литературы. Библиотека ВООК.ru содержит актуальную литературу по всем отраслям знаний, коллекция пополняется электронными книгами раньше издания печатной версии.
2.	http://www.ibooks.ru	Айбукс.ру — электронная библиотечная система учебной и научной литературы. В электронную коллекцию включены современные учебники и пособия ведущих издательств России.
3.	http://www.sciencedirect.com	Платформа ScienceDirect обеспечивает всесторонний охват литературы из всех областей науки, предоставляя доступ к более чем 2500 наименований журналов и более 11000 книг из коллекции издательства «Эльзевир», а также огромному числу журналов, опубликованных престижными научными сообществами. Полнотекстовая база данных ScienceDirect является непревзойденным Интернет-ресурсом научно-технической и медицинской информации и содержит 25% мирового рынка научных публикаций.
4.	http://www.scopus.com	База данных Scopus индексирует более 18 тыс. наименований журналов от 5 тыс. международных издательств, включая более 300 российских журналов. Непревзойденная поддержка в поиске научных публикаций и предоставлении ссылок на все вышедшие рефераты из обширного объема доступных статей. Возможность получения информации о том, сколько раз ссылались другие авторы на интересующую Вас статью, предоставляется список этих статей. Отслеживание своих публикаций с помощью авторских профилей, а так же работы своих соавторов и соперников.
5.	http://www.elibrary.ru	Научная электронная библиотека (НЭБ) содержит полнотекстовые версии научных изданий ведущих зарубежных и отечественных издательств.
6.	http://diss.rsl.ru	«Электронная библиотека диссертаций» Российской Государственной Библиотеки (РГБ) в настоящее время содержит более 400 000 полных текстов наиболее часто запрашиваемых читателями диссертаций. Ежегодное оцифровывание от 25000 до 30000 диссертаций.

7. Методические указания для обучающихся по освоению дисциплины (модуля).

Основной учебной работой аспиранта является самостоятельная работа в течение всего срока обучения. Начинать изучение дисциплины необходимо с ознакомления с целями и задачами дисциплины и знаниями и умениями, приобретаемыми в процессе изучения. Далее следует проработать конспекты лекций, рассмотрев отдельные вопросы по предложенным источникам литературы. Все неясные вопросы по дисциплине аспирант может разрешить на консультациях, проводимых по расписанию. При подготовке к практическим занятиям аспирант в обязательном порядке изучает теоретический материал.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

8.1 Перечень информационных технологий.

Не предусмотрено.

8.2 Перечень необходимого программного обеспечения.

Программный продукт	Договор/лицензия
Операционная система MS Windows 8, 10	№73-АЭФ/223-Ф3/2018 Соглашение
	Microsoft ESS 72569510 от 06.11.2018
Интегрированное офисное приложение MS	№73-АЭФ/223-Ф3/2018 Соглашение
Office Professional Plus	Microsoft ESS 72569510 от 06.11.2018

8.3 Перечень информационных справочных систем:

- 1. Электронная библиотечная система "Университетская библиотека ONLINE" [Электронный ресурс] Режим доступа: http://biblioclub.ru.
- 2. Электронная библиотечная система издательства "Лань" [Электронный ресурс] Режим доступа: http://e.lanbook.com.
 - 3. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru).

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

Ma	Dava makan	Материально-техническое обеспечение дисциплины
№	Вид работ	и оснащенность
1.	Лекционные занятия	Учебная аудитория для проведения занятий лекционного
		и семинарского типа; оснащенность: комплект учебной
		мебели; доска учебная магнитно-маркерная; комплект
		плакатов «Теория групп», «Физические свойства кри-
		сталлов»; компьютерное оснащение ПЭВМ – 4 шт.
		350040 г. Краснодар, ул. Ставропольская, 149, №320С
2.	Лабораторные занятия	Учебная аудитория для проведения занятий лаборатор-
		ного типа «Лаборатория структурного анализа»; осна-
		щение: лазерная система на базе Nd:YAG лазера и па-
		раметрического генератора света для спектральной об-
		ласти 680-2500 нм, в том числе:
		Импульсный Nd:YAG лазер модели LO29-100;
		Параметрический генератор света модели LP 604;
		Генератор 2-ой гармоники модели LP 101;
		Стенд оптический.
		350040 г. Краснодар, ул. Ставропольская, 149, №123С
3.	Групповые (индивиду-	Аудитории для проведения групповых и
	альные) консультации	индивидуальных консультаций; оснащенность: комплект
		учебной мебели с учебными ПЭВМ; 1 ПЭВМ
		администратора (преподавательский); доска учебная
		магнитно-маркерная
		350040 г. Краснодар, ул. Ставропольская, 149, № 212С,
		207C
4.	Текущий контроль,	Аудитория для текущего контроля и промежуточной

	промежуточная атте-	аттестации; оснащенность: комплект учебной мебели,
	стация	доска учебная магнитно-маркерная
		350040 г. Краснодар, ул. Ставропольская, 149, №320С
5.	Самостоятельная рабо-	Помещение для самостоятельной работы; оснащенность:
	та	комплект учебной мебели, компьютерное оснащение
		ПЭВМ с возможностью подключения к сети «Интер-
		нет», программой экранного увеличения и доступом в
		электронную информационно-образовательную среду
		университета
		350040 г. Краснодар, ул. Ставропольская, 149, № 208С