МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» (ФГБОУ ВО «КубГУ»)

ГЕОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра геофизических методов поисков и разведки

«УТВЕРЖДАЮ»
Проректор по учебной работе,
качеству образования — первый
проректор;
д.и.н. профессор

А.Т. Иванов

« » 2016 г.

Рабочая учебная программа по дисциплине: **Б1.В.ДВ.08.01 ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ**

Направление 05.03.01 Геология

Направленность (профиль) – Геофизика

Программа подготовки: академическая

Квалификация (степень) выпускника – Бакалавр

Форма обучения: очная

Рабочая программа дисциплины "Цифровая обработка сигналов" составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 05.03.01 "Геология" профиль "Геофизика", утвержденным приказом Министерства образования и науки Российской Федерации №954 от 7 августа 2014 г.

Рецензенты:

Автор (составитель):

Шкирман Н.П., советник управляющего директора АО "Росгеология" управляющей организации ОАО "Краснодарнефтегеофизика" по геофизике, к.г.-м.н.

Курочкин А.Г., к.г.-м.н., доцент кафедры геофизических методов поиска и разведки КубГУ

Гуленко Владимир Иванович, д.т.н., профессор кафедры

Рабочая программа рассмотрена и утверждена на заседании кафедры геофизических методов поисков и разведки

« ೨ № 06 2016 г. протокол № 14

Заведующий кафедрой геофизических методов поисков и разведки, Гуленко В.И.

Рабочая учебная программа дисциплины согласована с Учебнометодической комиссией (УМК) Геологического факультета КубГУ

Председатель УМК, д-р геол.-минерал. наук, проф.

« 23 » 06 2016 г.

Н.А. Бондаренко

протокол № _//_

СОДЕРЖАНИЕ

	Стр
1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ	5
1.1. Цели изучения дисциплины	5
1.2. Задачи изучения дисциплины	5
1.3. Место дисциплины (модуля) в структуре образовательной	
программы	5
1.4. Перечень планируемых результатов обучения по	
дисциплине (модулю), соотнесенных с планируемыми	
результатами освоения образовательной программы	6
2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	8
2.1. Распределение трудоёмкости дисциплины по видам работ	8
2.2. Структура дисциплины	9
2.3. Содержание разделов (тем) дисциплины	11
2.3.1. Занятия лекционного типа	11
2.3.2. Занятия семинарского типа	13
2.3.3. Лабораторные занятия	13
2.3.4. Примерная тематика курсовых работ (проектов)	14
2.4. Перечень учебно-методического обеспечения для	
самостоятельной работы обучающихся по дисциплине (модулю)	14
3. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ	14
4. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ	
УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ	17
4.1. Фонд оценочных средств для проведения текущей	
аттестации	17
4.2. Фонд оценочных средств для проведения промежуточной	
аттестации	25
5. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ	
литературы, необходимой для освоения	
ДИСЦИПЛИНЫ (МОДУЛЯ)	29
5.1. Основная литература	29
5.2. Дополнительная литература	30
5.3. Периодические издания	30
6. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-	
ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ",	
НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)	31
7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО	
ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)	32

8. ПЕРЕЧЕНЬ	ИНФОРМАЦИОНН	БЫХ ТЕ	хнологий,	
ИСПОЛЬЗУЕМЫХ	ПРИ	ОСУЩІ	ЕСТВЛЕНИИ	
ОБРАЗОВАТЕЛЬНОІ	ГО ПРОЦЕССА	ПО ДИ	ІСЦИПЛИНЕ	
(МОДУЛЮ)	••••		• • • • • • • • • • • • • • • • • • • •	33
8.1. Перечень необх	ходимого программно	ого обеспеч	ения	33
8.2. Перечень не	еобходимых информ	мационных	справочных	
систем			• • • • • • • • • • • • • • • • • • • •	33
9. МАТЕРИАЛЬНО-	ТЕХНИЧЕСКАЯ Б	A3A, HEO	БХОДИМАЯ	
для осуществлі	ЕНИЯ ОБРАЗОВАТ	ЕЛЬНОГО	ПРОЦЕССА	
ПО ДИСЦИПЛИНЕ (МОДУЛЮ)			34
9.1. Технические и	электронные средств	а обучения	• • • • • • • • • • • • • • • • • • • •	34
9.2. Специализиров	ванные аудитории, ка	бинеты, лаб	оратории	34
РЕЦЕНЗИЯ				36
РЕЦЕНЗИЯ				37

1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

1.1. Цели изучения дисциплины

Дисциплина "Цифровая обработка сигналов" представляет собой односеместровый курс, в котором излагаются основы теории сигналов применительно к задачам разведочной геофизики. В курсе изложены основы теории линейных как аналоговых, так и дискретных сигналов и систем, рассмотрены методы одно- и многомерного спектрального анализа и синтеза аналоговых и дискретных фильтров во временной и частотной областях.

Цель изучения дисциплины "Цифровая обработка сигналов" — получение фундаментальных знаний по физическим и математическим основам анализа линейных сигналов и линейных систем, применяемых для регистрации и автоматической обработки геофизических данных, а также получение практических навыков разработки алгоритмов для первичной обработки данных и решения различных задач по теории сигналов с применением системы компьютерной математики МАТНСАD.

1.2. Задачи изучения дисциплины

Задачи освоения дисциплины "Цифровая обработка сигналов":

- изучение физических и математических основ спектрального и корреляционного анализа линейных систем и сигналов;
- изучение теории фильтрации аналоговых и дискретных сигналов во временной и частотной областях;
 - изучение основных алгоритмов обработки геофизических данных;
- практическое применение изученных алгоритмов для анализа линейных геофизических сигналов и систем и обработки геофизических сигналов различных видов.

Объектами профессиональной деятельности выпускников, освоивших программу бакалавриата, являются:

- Земля, земная кора, литосфера, горные породы, подземные воды, минералы, кристаллы;
- минеральные ресурсы, природные и техногенные геологические процессы;
- геохимические и геофизические поля, экологические функции литосферы.

1.3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина "Цифровая обработка сигналов" введена в учебные планы подготовки бакалавров по направлению подготовки 05.03.01 "Геология" направленности (профилю) "Геофизика", согласно ФГОС ВО, утвержденного приказом Министерства образования и науки Российской Федерации от №954 от 7 августа 2014 г., блока Б1, вариативная часть (Б1.В), дисциплина по выбору, индекс дисциплины согласно ФГОС — Б1.В.ДВ.08.01, читается в восьмом семестре.

Предшествующие смежные дисциплины циклов Б1 логически и содержательно взаимосвязанные с изучением данной дисциплины: Б1.Б.05 "Математика", Б1.Б.06 "Информатика в геологии", Б1.В.12 "Сейсморазведка", Б1.В.06 "Уравнения математической физики в геофизике".

Дисциплина предусмотрена основной образовательной программой (ООП) КубГУ в объёме 2 зачетные единицы (72 часа, итоговый контроль — зачет).

1.4. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины "Цифровая обработка сигналов" направлен на формирование элементов следующих компетенций:

- способность использовать в профессиональной деятельности базовые знания математики и естественных наук (ОПК-3);
- способность в составе научно-исследовательского коллектива участвовать в интерпретации геологической информации, составлении отчетов, рефератов, библиографий по тематике научных исследований, в подготовке публикаций (ПК-3).

Изучение дисциплины "Цифровая обработка сигналов" направлено на формирование у обучающихся общепрофессиональных и профессиональных компетенций, что отражено в таблице 1.

Таблица 1.

№	Индекс компетенции	Содержание компетенции		ге изучения учебной добучающиеся должн	
п.п.	или её части)		знать	уметь	владеть
1	ОПК-3	деятельности оазовые знания математики и естественных наук	основные понятия теории сигналов, методы и алгоритмы цифровой обработки информации во временной и частотной областях, преобразования Фурье, Лапласа, гпреобразование; алгоритмы вычисления спектральных и корреляционных характеристик аналоговых и цифровых сигналов; алгоритмы различных видов фильтрации: полосовой, Винеровской формирующей, оптимальной, веерной, гомоморфной и др.	применять методы цифровой обработки информации, получаемой при геофизических исследованиях с помощью специализированных программных комплексов и систем компьютерной математики; вычислять амплитудные и фазовые спектры сигналов; вычислять их корреляционные характеристики: автокорреляционная функция, двумерная автокорреляционная функция; применять различные виды фильтрации для обработки геофизических данных	методами и алгоритмами цифровой обработки информации во временной и частотной областях; навыками расчётов спектральных характеристик: одномерный спектр, двумерный спектр, расчёт энергии и мгновенной мощности, а также корреляционных характеристик: АКФ, ФВК и др.; методами фильтрации сигналов во временной и частотной областях с использованием специализированных программных средств и систем компьютерной математики
2	ПК-3		теории сигналов и спектрального анализа; основные	рассчитывать локальные и интегральные характеристики сигналов и их амплитудных и фазовых спектров; производить одномерную и двумерную фильтрации во временной и частотной областях; применять на практике методы статистического, спектрального и корреляционного анализа и цифровой обработки геофизических сигналов; применять	локальных и интегральных характеристик сигналов и их амплитудных и фазовых спектров;

№ п.п.	Индекс компетенции	Содержание компетенции	В результате изучения учебной дисциплины обучающиеся должны				
11.11.	КОМП	(или её части)	знать	уметь	владеть		
				методы цифровой обработки информации, получаемой при геофизических исследованиях с помощью специализированных программных комплексов и систем компьютерной математики	использованием специализированных программных средств и систем компьютерной математики; цифровой обработкой информации и интерпретацией материалов геофизических исследований с помощью программных средств спектрального и корреляционного анализа и систем компьютерной математики, приемами работы в системе компьютерной математики МАТНСАD		

2. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1. Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины "Цифровая обработка сигналов" приведена в таблице 2. Общая трудоёмкость учебной дисциплины составляет 2 зачётные единицы.

Таблица 2.

Вид учебной работы	Всего часов	Трудоемкость, часов (в том числе часов в интерактивной форме) 8 семестр	
Контактная работа, в том числе:			
Аудиторные занятия (всего):	48 / 28	48 / 28	
Занятия лекционного типа	12 / 10	12 / 10	
Лабораторные занятия	36 / 18	36 / 18	
Занятия семинарского типа (семинары, практические	_	_	

занятия)			
Иная контактная работа			
Контроль самостоятельной	й работы (КСР)	2	2
Промежуточная аттестаци	я (ИКР)	0,2	0,2
Самостоятельная работа	, в том числе:		
Курсовая работа			
Проработка учебного (теор	ретического) материала	6	6
Выполнение индивидуали сообщений, презентаций)	ьных заданий (подготовка	7	7
Реферат		_	
Подготовка к текущему ко	нтролю	8,8	8,8
Контроль:			
Подготовка к экзамену		_	_
	час.	72	72
Общая трудоемкость	в том числе контактная работа	50,2	50,2
	зач. ед	2	2

2.2. Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам (темам) дисциплины "Цифровая обработка сигналов" приведено в таблице 3. Таблица 3.

2.5		Количество часов				
№ раздела	Наименование разделов (тем)	всего	аудиторная работа		внеаудиторная работа	
			Л	ПР	ЛР	CPC
1	2	3	4	5	6	8
1	Виды сигналов и их характеристики	8	1	_	4	3
2	Корреляционный анализ аналоговых и дискретных сигналов	8	1	_	4	3
3	Спектральный анализ аналоговых и дискретных сигналов	9	2	_	4	3
4	Спектральный и корреляционный анализ детерминированных и случайных сигналов	11	2	_	6	3

5	Различные виды фильтрации аналоговых и дискретных сигналов во временной и частотной областях как вид линейной обработки	11	2	_	6	3
6	Сигналы и шумы. Выделение сигналов на фоне помех	11	2	_	6	3
7	Геологическая среда и сейсморегистрирующий канал как линейные системы передачи геофизической информации	12	2	_	6	4

2.3. Содержание разделов (тем) дисциплины

2.3.1. Занятия лекционного типа

Принцип построения программы — модульный, базирующийся на выделении крупных разделов программы — модулей, имеющих внутреннюю взаимосвязь и направленных на достижение основной цели преподавания дисциплины. В соответствии с принципом построения программы и целями преподавания дисциплины курс "Цифровая обработка сигналов" содержит 7 модулей, охватывающих основные разделы (темы).

Содержание разделов (тем) дисциплины приведено в таблице 4. Таблица 4.

№ раздела	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего контроля
1	2	3	4
1	Виды сигналов и их характеристики	Понятие сигнала. Разделение сигналов на полезные, помехи и шумы. Информационная структура сигналов, определение количества информации. Сигналы, задаваемые функцией времени. Двух-, трех-, четырехмерные сигналы, задаваемые функциями координат пространства и времени. Локальные и интегральные характеристики сигналов. Энергия, мощность, экстремальные значения амплитуды, длительность, скорость изменения во времени и пространстве (градиенты), осцилляции, форма. Динамический диапазон сигналов. Понятие отношения сигнал/помеха и различные	УО, РГЗ

№ раздела	Наименование раздела (темы)	Содержание раздела (темы)	Форма текущего
Pusherin	pusatin (191121)	способы задания этой величины	контроля
2	Корреляционный анализ аналоговых и дискретных сигналов	Специфика сигналов, используемых в различных методах геофизики. Пассивные и активные методы. Постоянные во времени и изменяющиеся во времени сигналы. Детерминированные и случайные сигналы. Основные характеристики случайных процессов. Плотность распределения вероятности, среднее значение, мощность, автокорреляционная и взаимнокорреляционная функции. Коэффициент корреляции и коэффициент когерентности.	УО, РГЗ
3	Спектральный анализ аналоговых и дискретных сигналов	Физически осуществимые (причинные) и физически неосуществимые сигналы. Физическая реализуемость сигналов в системах реальных измерений (ограниченность времени и пространства). Идея разложения сигналов произвольной формы в базисе ортогональных функций. Метод Фурье. Условия Дирихле. Интеграл и ряд Фурье. Прямое и обратное преобразования Фурье. Основные теоремы о преобразовании сигналов и спектров. Теорема о линейности спектрального преобразования. Теоремы о смещении сигнала и спектра. Теоремы о дифференцировании сигнала и спектра. Теоремы об интегрировании сигнала и спектра. Теоремы об изменении масштабов сигнала и спектра. Теоремы о перемножении и свертывании сигналов и спектров. Спектр сигнала в обратном времени. Равенство Парсеваля. Многомерный анализ Фурье	УО, РГЗ, Т
4	Спектральный и корреляционный анализ детерминированных и случайных сигналов	Свойства спектров физически реализуемых сигналов. Радио- и видеоимпульсы. Сигналы большой длительности. Характер спектра в зависимости от свойств сигнала. Сигналы с ограниченным спектром. Теорема отсчетов. Дискретные преобразования Фурье (ДПФ). Эффект зеркальных наложений и способы его устранения. Быстрое преобразование Фурье (БПФ) как разновидность ДПФ. Дельтафункция Дирака и функция единичного скачка (функция Хевисайда). Передача сигналов через линейные системы. Передаточная функция, переходная и импульсная характеристики, интеграл свертки (Дюамеля) и применение их для	УО, РГЗ

No	Наименование		Форма
раздела	раздела (темы)	Содержание раздела (темы)	текущего
	<u> </u>	анализа свойств линейных систем	контроля
5	Различные виды фильтрации аналоговых и дискретных сигналов во временной и частотной областях как вид линейной обработки	фильтрация как общий вид линейной обработки. Виды фильтрации. Фильтрация во временной и в частотной областях. Вейвлетанализ и его применение в теории сигналов. Фильтр Винера: формирующая фильтрация, сглаживание, предсказание. Синхронное накопление. Гомоморфная фильтрация. Многоканальная фильтрация. Веерная фильтрация, суммирование по направлениям. Преобразование Лапласа, z-преобразование. Нерекурсивные и рекурсивные фильтры	УО, РГЗ
6	Сигналы и шумы. Выделение сигналов на фоне помех	Выделение сигналов на фоне помех. Критерии различения сигналов. Выделение сигнала на фоне помех при известных параметрах сигнала. Согласованный фильтр (фильтр коррелятор). Полосовая фильтрация. ЛЧМ-сигналы и их применение в сейсморазведке. Выделение случайных сигналов на фоне помех. Фильтрация по способу минимума среднеквадратичного уклонения	УО, РГЗ
7	Геологическая среда и сейсморегистрирующий канал как линейные системы передачи геофизической информации	Геологическая среда как система передачи геофизической информации. Спектральная и импульсная характеристики геологической среды. Описание свойств источника сигнала, канала приема и устройства регистрации с позиций спектрального подхода. Метод импульсных и переходных характеристик при анализе свойств источника, приемника и регистратора сигналов. Приемные и излучающие интерференционные системы в сейсморазведке. Обобщенная комплексная характеристика интерференционной системы. Частотные, фазовые характеристики, характеристики направленности интерференционных систем	УО, РГЗ, ДРГЗ

Форма текущего контроля — устный опрос (УО), расчетнографическое задание (РГЗ), домашнее расчетно-графическое задание (ДРГЗ), задание тестового контроля знаний (Т).

2.3.2. Занятия семинарского типа

Занятия семинарского типа по дисциплине "Цифровая обработка сигналов" не предусмотрены.

2.3.3. Лабораторные занятия

Перечень лабораторных занятий по дисциплине "Цифровая обработка сигналов" приведен в таблице 5.

Таблица 5.

№ раздела	Наименование раздела (темы)	Тематика лабораторных занятий	Форма текущего контроля
1	2	3	4
1	Виды сигналов и их характеристики	Расчет локальных и интегральных характеристик аналитически заданных сигналов Аппроксимация периодических функций рядами Фурье	РГЗ-1 РГЗ-2, УО-1
2	Корреляционный анализ	Расчет функций автокорреляции сигналов разными способами	РГЗ-3
2	аналоговых и дискретных сигналов	Расчет автокорреляционной функции (АКФ) сигнала	ДРГ3-1, УО-2
3	Спектральный анализ аналоговых и дискретных	Вычисление спектров аналитически заданных сигналов и изучение связи между формой сигнала и формой его спектра	РГ3-4
	сигналов	Двумерное преобразование Фурье сейсмической записи	РГ3-5, УО-3, Т
,	Спектральный и корреляционный анализ	Применение спектральных теорем в расчетах характеристик приемных и излучающих интерференционных систем	РГ3-6
4	детерминированных и случайных сигналов	Расчет спектра сигнала методом ДПФ	РГЗ-7
		Расчет спектра сигнала методом БПФ	РГ3-8, УО-4
	Различные виды фильтрации аналоговых и	Разработка алгоритмов и программ полосовой фильтрации во временной и частотной областях	РГЗ-9
5	дискретных сигналов во временной и частотной	Построение веерного фильтра в частотно-волночисловой области	РГ3-10
	областях как вид линейной обработки	Вейвлет-преобразование сигналов	РГ3-11
		Режекторный рекурсивный фильтр	РГЗ-12, УО-5

№ раздела	Наименование раздела (темы)	Тематика лабораторных занятий	Форма текущего контроля
	Сигналы и шумы. Выделение сигналов на фоне помех	Виды шумов. Разработка алгоритмов генерации шумов с заданными спектральными характеристиками	РГ3-13
6		Полосовая фильтрация сигнала в частотной области	РГ3-14
6		Полосовая фильтрация сигнала во временной области	РГЗ-15
		Матричное представление свертки и ее применение при полосовой фильтрации во временной области	РГ3-16, УО-6
7	Геологическая среда и сейсморегистрирующий канал как линейные системы передачи геофизической информации	Практические расчеты частотных характеристик и характеристик направленности приемных и излучающих систем	РГ3-17
		Расчет спектральных и энергетических характеристик сигналов морских сейсмических источников с использованием различных алгоритмов ДПФ	РГЗ-18
		Расчет локальных и интегральных характеристик реальных сигналов	ДРГЗ-2, УО-7

Форма текущего контроля — устный опрос (УО-1 — УО-7), расчетнографические задания (РГЗ-1 — РГЗ-18), домашние расчетно-графические задания (ДРГЗ-1 — ДРГЗ-2), задание тестового контроля знаний (Т).

2.3.4. Примерная тематика курсовых работ (проектов)

Курсовые работы (проекты) по дисциплине "Цифровая обработка сигналов" не предусмотрены.

2.4. Перечень учебно-методического обеспечения для самостоятельной работы, обучающихся по дисциплине (модулю)

Перечень учебно-методического обеспечения для самостоятельной работы, обучающихся по дисциплине (модулю) приведен в таблице 6. Таблица 6.

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	CPC	Методические указания по организации самостоятельной работы по дисциплине "Цифровая обработка сигналов", утвержденные кафедрой геофизических методов поисков и разведки, протокол №14 от 14.06.2017 г.
2	Расчетно-графические задания	Методические рекомендации по выполнению расчетно-графических заданий, утвержденные кафедрой геофизических методов поисков и разведки, протокол №14 от 14.06.2017 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Общим вектором изменения технологий обучения должны стать активизация студента, повышение уровня его мотивации и ответственности за качество освоения образовательной программы.

При реализации различных видов учебной работы по дисциплине "Цифровая обработка сигналов" используются следующие образовательные технологии, приемы, методы и активные формы обучения:

- 1) разработка и использование активных форм лекций (в том числе и с применением мультимедийных средств):
 - а) проблемная лекция;
 - б) лекция-визуализация;
 - в) лекция с разбором конкретной ситуации.
 - 2) разработка и использование активных форм лабораторных работ:
 - а) лабораторное занятие с разбором конкретной ситуации;
 - б) бинарное занятие.

В сочетании с внеаудиторной работой в активной форме выполняется также обсуждение контролируемых самостоятельных работ (КСР).

В процессе проведения лекционных занятий и лабораторных работ практикуется широкое использование современных технических средств (проекторы, интерактивные доски, Интернет). С использованием Интернета осуществляется доступ к базам данных, информационным справочным и поисковым системам.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Удельный вес занятий, проводимых в интерактивных формах, приведён в таблице 7.

Таблина 7.

Семестр	Вид занятия	Используемые интерактивные	Количество
Семестр	(Л, ЛР)	образовательные технологии	часов
		Проблемная лекция,	
	Л	лекция-визуализация, лекция с	10
8		разбором конкретной ситуации	
	ЛР	Лабораторное занятие с разбором конкретной ситуации, бинарное занятие	18
Итого			28

4. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

4.1. Фонд оценочных средств для проведения текущей аттестации

К формам письменного контроля относится *расчетно-графическое* задание, которое является одной из сложных форм проверки; оно может применяться для оценки знаний по базовым и вариативным дисциплинам

всех циклов. Расчетно-графическое задание состоит из заданий, требующих поиска обоснованного ответа.

Во время проверки и оценки расчетно-графических заданий проводится анализ результатов выполнения, выявляются типичные ошибки, а также причины их появления.

Расчетно-графическое задание может занимать часть или полное учебное занятие с разбором правильных решений на следующем занятии.

Перечень расчетно-графических заданий приведен ниже.

Расчетно-графическое задание 1. Расчет локальных и интегральных характеристик аналитически заданных сигналов.

Расчетно-графическое задание 2. Аппроксимация периодических функций рядами Фурье.

Расчетно-графическое задание 3. Расчет функций автокорреляции сигналов разными способами.

Расчетно-графическое задание 4. Вычисление спектров аналитически заданных сигналов и изучение связи между формой сигнала и формой его спектра.

Расчетно-графическое задание 5. Двумерное преобразование Фурье сейсмической записи.

Расчетно-графическое задание 6. Применение спектральных теорем в расчетах характеристик приемных и излучающих интерференционных систем.

Расчетно-графическое задание 7. Расчет спектра сигнала методом ДПФ.

 $\it Pacчетно-графическое\ заданиe\ 8.$ Расчет спектра сигнала методом БПФ.

Расчетно-графическое задание 9. Разработка алгоритмов и программ полосовой фильтрации во временной и частотной областях.

Расчетно-графическое задание 10. Построение веерного фильтра в частотно-волночисловой области.

Расчетно-графическое задание 11. Вейвлет-преобразование сигналов.

Расчетно-графическое задание 12. Режекторный рекурсивный фильтр.

Расчетно-графическое задание 13. Виды шумов. Разработка алгоритмов генерации шумов с заданными спектральными характеристиками.

Расчетно-графическое задание 14. Полосовая фильтрация сигнала в частотной области.

Расчетно-графическое задание 15. Полосовая фильтрация сигнала во временной области.

Расчетно-графическое задание 16. Матричное представление свертки и ее применение при полосовой фильтрации во временной области.

Расчетно-графическое задание 17. Практические расчеты частотных характеристик и характеристик направленности приемных и излучающих систем.

Расчетно-графическое задание 18. Расчет спектральных и энергетических характеристик сигналов морских сейсмических источников с использованием различных алгоритмов ДПФ.

Критерии оценки расчетно-графических заданий (РГЗ):

- оценка "зачтено" выставляется студенту, если он правильно применяет теоретические положения курса при решении практических вопросов и задач расчетно-графических заданий, владеет необходимыми навыками и приемами их выполнения;
- оценка "не зачтено" выставляется студенту, если он не знает значительной части программного материала, в расчетной части РГЗ допускает существенные ошибки, затрудняется объяснить расчетную часть, обосновать возможность ее реализации или представить алгоритм ее реализации, а также неуверенно, с большими затруднениями выполняет задания или не справляется с ними самостоятельно.

Домашнее расчетно-графическое задание — одна из форм контроля уровня знаний студента и ориентирования его в вопросах, ограниченных объемом учебной тематики.

Цели домашнего расчетно-графического задания:

- углубить, систематизировать и закрепить теоретические знания студентов;
 - проверить степень усвоения одной темы или вопроса;
- выработать у студента умения и навыки самостоятельной обработки материала.

Перечень домашних расчетно-графических заданий приведен ниже.

Домашнее расчетно-графическое задание 1. Расчет автокорреляционной функции (АКФ) сигнала.

Домашнее расчетно-графическое задание 2. Расчет локальных и интегральных характеристик реальных сигналов.

Критерии оценки домашнего расчетно-графического задания (ДРГЗ):

- оценка "зачтено" выставляется студенту, если он правильно применяет теоретические положения курса при решении практических вопросов и задач расчетно-графических заданий, владеет необходимыми навыками и приемами их выполнения;
- оценка "не зачтено" выставляется студенту, если он не знает значительной части программного материала, в расчетной части РГЗ допускает существенные ошибки, затрудняется объяснить расчетную часть,

обосновать возможность ее реализации или представить алгоритм ее реализации, а также неуверенно, с большими затруднениями выполняет задания или не справляется с ними самостоятельно.

Устиный опрос — наиболее распространенный метод контроля знаний студентов. При устном опросе устанавливается непосредственный контакт между преподавателем и учащимся, в процессе которого преподаватель получает широкие возможности для изучения индивидуальных особенностей усвоения учащимися учебного материала.

Цель устного опроса: проверка знаний; проверка умений студентов публично излагать материал; формирование умений публичных выступлений.

Вопросы для проведения устного опроса приведены ниже.

Вопросы устного опроса по разделу №1 "Виды сигналов".

- 1. Понятие сигнала. Разделение сигналов на полезные, помехи и шумы.
- 2. Информационная структура сигналов, определение количества информации.
 - 3. Сигналы, задаваемые функцией времени.
- 4. Двух-, трех-, четырехмерные сигналы, задаваемые функциями координат пространства и времени.
 - 5. Локальные и интегральные характеристики сигналов.
- 6. Что определяет теорема Котельникова и какое ее значение для выбора параметров цифровой записи сигналов?
- 7. Из каких соображений выбирают шаг дискретизации при цифровой записи сейсмических колебаний?

Вопросы устного опроса по разделу №2 "Корреляционный анализ аналоговых и дискретных сигналов".

- 1. Специфика сигналов, используемых в различных методах геофизики.
 - 2. Постоянные во времени и изменяющиеся во времени сигналы.
 - 3. Детерминированные и случайные сигналы.
 - 4. Основные характеристики случайных процессов.
 - 5. Коэффициент корреляции.
 - 6. Коэффициент когерентности.

Вопросы устного опроса по разделу №3 "Спектральный анализ аналоговых и дискретных сигналов".

- 1. Физически осуществимые (причинные) и физически неосуществимые сигналы.
- 2. Физическая реализуемость сигналов в системах реальных измерений (ограниченность времени и пространства).
 - 3. Каковы свойства спектров Фурье дискретных функций?

- 4. Каковы свойства спектров Фурье периодических функций?
- 5. В чем состоит равенство Парсеваля?
- 6. Синк-функция и ее свойства.
- 7. Двумерное преобразование Фурье. Веерная фильтрация.
- 8. Что такое быстрое преобразование Фурье?
- 9. Какова связь между АКФ и спектральной характеристикой сигнала?
 - 10. Что такое частотная, импульсная и переходная характеристики?
- 11. Передача сигналов через линейные системы. В чем состоит спектральный метод?
 - 12. Спектральная теорема о сдвиге
 - 13. Спектральные теоремы о дифференцировании и интегрировании.
 - 14. Спектральная теорема о свертке двух функций.

Вопросы устного опроса по разделу №4 "Спектральный и корреляционный анализ детерминированных и случайных сигналов".

- 1. Свойства спектров физически реализуемых сигналов.
- 2. Радио- и видеоимпульсы.
- 3. Сигналы большой длительности.
- 4. Характер спектра в зависимости от свойств сигнала.
- 5. Сигналы с ограниченным спектром.
- 6. Дискретное преобразование Фурье.
- 7. Эффект зеркальных наложений и способы его устранения.
- 8. Каковы свойства дельта-функции Дирака?
- 9. Каковы свойства функции Хевисайда?
- 10. Многомерные ряды и преобразования Фурье.
- 11. Передаточная функция, переходная и импульсная характеристики и связь между ними.

Вопросы устного опроса по разделу N = 5 "Различные виды фильтрации аналоговых и дискретных сигналов во временной и частотной областях как вид линейной обработки".

- 1. Виды фильтрации.
- 2. Фильтрация во временной и в частотной областях.
- 3. Вейвлет-анализ и его применение в теории сигналов.
- 4. Гомоморфная фильтрация.
- 5. Многоканальная фильтрация.
- 6. Веерная фильтрация, суммирование по направлениям.
- 7. Какими процедурами реализуется линейная фильтрация во временной и в частотной областях?
- 8. Почему оптимальные фильтры обнаружения называют согласованными?
 - 9. Что такое Винеровский фильтр?

- 10. Что такое вейвлет-преобразование и каковы его свойства?
- 11. Что такое дискретное преобразование Лапласа?
- 12. Что такое z-преобразование?
- 13. Рекурсивные и нерекурсивные фильтры.

Вопросы устного опроса по разделу N_26 "Сигналы и шумы. Выделение сигналов на фоне помех".

- 1. Выделение сигналов на фоне помех.
- 2. Критерии различения сигналов.
- 3. Выделение сигнала на фоне помех при известных параметрах сигнала.
 - 4. ЛЧМ-сигналы и их применение в сейсморазведке.
 - 5. Что такое белый шум и каковы его свойства?
- 6. Объясните происхождение помех, называемых зеркальными частотами, и как обеспечивается их подавление при записи сигналов.

Вопросы устного опроса по разделу №7 "Геологическая среда и сейсморегистрирующий канал как линейные системы передачи геофизической информации".

- 1. Геологическая среда как система передачи геофизической информации.
- 2. Спектральная и импульсная характеристики геологической среды.
- 3. Метод импульсных и переходных характеристик при анализе свойств источника, приемника и регистратора сигналов.
- 4. Приемные и излучающие интерференционные системы в сейсморазведке.
- 5. Частотные, фазовые характеристики, характеристики направленности интерференционных систем.

Критерии оценки защиты устного опроса:

- оценка "зачтено" ставится, если студент достаточно полно отвечает на вопрос, развернуто аргументирует выдвигаемые положения, приводит убедительные примеры, обнаруживает последовательность анализа, демонстрирует знание специальной литературы и дополнительных источников информации;
- оценка "не зачтено" ставится, если ответ недостаточно логически выстроен, студент обнаруживает слабость в развернутом раскрытии профессиональных понятий.

К формам письменного контроля относится *тестирование*. Использование тестов направлено на проверку владения терминологическим аппаратом, современными информационными технологиями и конкретными знаниями в области фундаментальных и прикладных дисциплин.

Ниже приведены задания тестового контроля по теме "Спектральный анализ аналоговых и дискретных сигналов".

Тест по разделу №3

"Спектральный анализ аналоговых и дискретных сигналов"

- 1. Спектры Фурье дискретных функций:
 - 1) являются дискретными функциями;
 - 2) являются периодическими функциями;
 - 3) являются аналитическими функциями;
 - 4) являются непрерывными функциями.
- 2. Спектры Фурье периодических функций:
 - 1) являются дискретными функциями;
 - 2) являются периодическими функциями;
 - 3) являются аналитическими функциями;
 - 4) являются непрерывными функциями.
- 3. Отношение комплексных спектров выходного сигнала и входного сигнала:
 - 1) импульсная характеристика системы;
 - 2) переходная характеристика системы;
 - 3) частотная характеристика системы;
 - 4) интегральная характеристика системы.
- 4. При сжатии сигнала в п раз по оси времен его спектр:
 - 1) сжимается в п раз по оси частот, его амплитуда увеличивается;
 - 2) расширяется в п раз по оси частот, его амплитуда в в п раз уменьшается;
 - 3) сжимается в п раз по оси частот, его амплитуда в в п раз уменьшается;
 - 4) расширяется в n раз по оси частот, его амплитуда в в n раз увеличивается.
- 5. Что представляет собой АКФ "белого шума"?
 - 1) синк-функцию;
 - 2) дельта-функцию Дирака;
 - 3) функцию Хевисайда;
 - 4) гармоническую функцию.

Критерии оценок тестового контроля знаний:

- оценка "зачтено" выставляется студенту, набравшему 71 100 % правильных ответов тестирования;
- оценка "не зачтено" выставляется студенту, набравшему 70 % и менее правильных ответов тестирования.

4.2. Фонд оценочных средств для проведения промежуточной аттестации

К формам контроля относится зачет — это форма промежуточной аттестации студента, определяемая учебным планом подготовки по

направлению ВО. Зачет служит формой проверки успешного выполнения студентами лабораторных работ и усвоения учебного материала лекционных занятий.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Вопросы для подготовки к зачету:

- 1. Понятие сигнала. Виды сигналов.
- 2. Информационная структура сигналов.
- 3. Локальные и интегральные характеристики сигналов.
- 4. Разложение сигналов произвольной формы в базисе ортогональных функций.
 - 5. Корреляционный анализ детерминированных сигналов.
 - 6. Корреляционный анализ случайного процесса.
 - 7. Связь между АКФ и спектральной характеристикой сигнала.

- 8. Основные соотношения корреляционного анализа для дискретных функций.
- 9. Расчет спектра функции $\Pi(t-t_o)+\Pi(t+t_o)$ два прямоугольных импульса, расположенных симметрично относительно оси ординат.
 - 10. Расчет спектра прямоугольной функции.
 - 11. Расчет спектра треугольной функции.
 - 12. Расчет спектра функции Лапласа exp(-a|t|).
 - 13. Расчет спектра функции Гаусса exp(-at).
 - 14. Равенство Парсеваля.
- 15. Соотношение между длительностью сигнала и шириной его спектра.
 - 16. Условия Дирихле.
 - 17. Ряд и интеграл Фурье.
- 18. Быстрое преобразование Фурье. Реализация БПФ в пакете MATHCAD.
- 19. Аппроксимация простых периодических функций (меандр, "пила") рядами Фурье.
 - 20. Многомерные ряды и преобразования Фурье.
- 21. Дискретизация непрерывного сигнала. Теорема Котельникова. Спектры дискретизированных сигналов.
 - 22. Дискретное преобразование Фурье.
- 23. Свойства преобразования Фурье: сдвиг сигнала во времени, изменение масштаба времени, дифференцирование и интегрирование сигнала.
- 24. Свойства преобразования Фурье: сложение сигналов, произведение двух функций, взаимная обратимость частоты и времени в преобразованиях Фурье.
 - 25. Гармонический анализ периодических сигналов.
 - 26. Гармонический анализ непериодических сигналов.
 - 27. Эффект зеркальных наложений и способы его устранения.
 - 28. Функция единичного скачка (функция Хевисайда).
 - 29. Спектр функции Хевисайда.
- 30. Передаточная функция, переходная и импульсная характеристики и связь между ними.
 - 31. Спектральный анализ случайного процесса.
- 32. Передача сигналов через линейные системы. Спектральный метод. Метод интеграла наложения (Дюамеля). Импульсная и переходная характеристики.
- 33. Дискретное преобразование Фурье. Эффект зеркальных наложений и способы его устранения.

- 34. Дельта-функция (импульс Дирака) и ее свойства. Спектр дельтафункции.
 - 35. Дискретное преобразование Лапласа.
 - 36. Прямое и обратное z-преобразование.
 - 37. Свойства z-преобразования временных последовательностей.
 - 38. Рекурсивная фильтрация.
 - 39. Гомоморфная фильтрация и ее применение.
 - 40. Теорема Винера-Хинчина.
 - 41. Винеровский фильтр и его применение.
 - 42. Двумерное преобразование Фурье. Веерная фильтрация.
 - 43. Случайные сигналы и шумы.
- 44. Полосовая фильтрация сигналов во временной и частотной областях.
- 45. Оптимальная (согласованная) фильтрация сигнала при "белом" шуме.
 - 46. Генерация "белого" шума численными методами.
 - 47. Оптимальная фильтрация известного сигнала при небелом шуме.
- 48. Выделение сигналов на фоне случайных помех с помощью фильтрации по способу минимума среднеквадратического уклонения.
 - 49. Уравнение Винера-Колмогорова.
 - 50. "Белый" шум и его свойства.
 - 51. Генерация "белого" шума численными методами.
 - 52. ЛЧМ-сигналы и их применение в сейсморазведке.
- 53. Геологическая среда как система передачи геофизической информации.
- 54. Спектральная и импульсная характеристики геологической среды.
- 55. Частотные, фазовые характеристики, характеристики направленности интерференционных систем.
- 56. Обобщенная комплексная характеристика интерференционной системы.

Критерии получения студентами зачетов:

— оценка "зачтено" ставится, если студент строит свой ответ в соответствии с планом. В ответе представлены различные подходы к проблеме. Устанавливает содержательные межпредметные связи. Развернуто аргументирует выдвигаемые положения, приводит убедительные примеры, обнаруживает последовательность анализа. Выводы правильны. Речь грамотна, используется профессиональная лексика. Демонстрирует знание специальной литературы в рамках учебного методического комплекса и дополнительных источников информации.

— оценка "не зачтено" ставится, если ответ недостаточно логически выстроен, план ответа соблюдается непоследовательно. Студент обнаруживает слабость В развернутом раскрытии профессиональных Выдвигаемые положения декларируются, НО недостаточно аргументируются. Ответ носит преимущественно теоретический характер, примеры отсутствуют.

5. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Основная литература

- 1. Сергиенко А.Б. Цифровая обработка сигналов: учебное пособие для студентов ВУЗов. 2-е изд. СПб.: Питер, 2007. 750 с. (25)
- 2. Воробьев С.Н. Цифровая обработка сигналов: учебник для студентов ВУЗов. М.: Академия, 2013. 318 с. (14)
- 3. Федосов В.П., Нестеренко А.К. Цифровая обработка сигналов в LabView: учебное пособие. М.: ДМК Пресс, 2009. 471 с. [Электронный ресурс]: учебное пособие. Электрон. дан. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=1090.

*Примечание: в скобках указано количество экземпляров в библиотеке КубГУ.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах "Лань" и "Юрайт".

5.2. Дополнительная литература

- 1. Оппенгейм А., Шафер Р. Цифровая обработка сигналов: учебник / пер. с англ. Кулешова С.А.; под ред. Ненашева А.С. М.: Техносфера, 2006. 855 с. (5)
- 2. Бондарев В.И., Крылатков С.М. Сейсморазведка: учебник. В 2 т. Т.2. Обработка, анализ и интерпретация данных. Изд. 2-е, испр. и доп. Екатеринбург: УГГУ, 2011. 432 с. (17)

- 3. Солонина А.И., Улахович Д.А., Арбузов С.М., Соловьева Е.Б., Гук И.И. Основы цифровой обработки сигналов: курс лекций. СПб.: БХВ-Петербург, 2012. 608 с.
- 4. Бат М. Спектральный анализ в геофизике / пер. с англ. М.: Недра, 1980. 535 с.
- 5. Кондратьев И.К. Линейные обрабатывающие системы в сейсморазведке. М.: Недра, 1976. 178 с.
- 6. Гоноровский И.С. Радиотехнические цепи и сигналы. Учебник для ВУЗов. М.: Советское радио, 1971. 672 с.
- 7. Зиновьев А.Л., Филиппов Л.И. Введение в теорию сигналов и цепей. Учебное пособие для ВУЗов. М.: Высшая школа, 1975. 264 с.
- 8. Карташов В.Г. Основы теории дискретных сигналов и цифровых фильтров. Учебное пособие для ВУЗов. М.: Высшая школа, 1982. 109 с.
- 9. Ахмед Н., Рао К.Р. Ортогональные преобразования при обработке цифровых сигналов / пер. с англ. / под ред. Фоменко И.Б. М.: Связь, 1980. 248 с.
- 10. Хаттон Л., Уэрдингтон М., Мейкин Дж. Обработка сейсмических данных. Теория и практика / пер. с англ. М.: Мир, 1989. 216 с.
- 11. Гуленко В.И. Практикум по МАТНСАD: учебное пособие для студентов геофизиков. Краснодар: КубГУ, 2013. 125 с.
- 12. Федосов В.П. Цифровая обработка звуковых и вибросигналов в LabView. Справочник функций системы NI Sound and Vibration LabView. М.: ДМК Пресс, 2010. 1291 с. [Электронный ресурс]: справочник. Электрон. дан. Режим доступа: http://e.lanbook.com/books/element.php? pl1_id=1099.

5.3. Периодические издания

- 1. Новые технологии в образовании: научно-методический журнал. ISSN 1815-6835.
 - 2. Геология и геофизика: научный журнал СО РАН. ISSN 0016-7886.
 - 3. Физика Земли: Научный журнал РАН. ISSN 0002-3337.
 - 4. Геофизический вестник. Информационный бюллетень ЕАГО.
 - 5. Геофизика. Научно-технический журнал ЕАГО.
 - 6. Каротажник. Научно-технический вестник АИС.
- 7. Геология, геофизика, разработка нефтяных месторождений. Научно-технический журнал. ISSN 0234-1581.
- 8. Вычислительные методы и программирование. Научный журнал. ISSN 1726-3522.

- 9. Физика в ВУЗе: общественный научный и методический интернетжурнал. ISSN 1819-6616.
- 10. Новые технологии в образовании: научно-методический журнал. ISSN 1815-6835.

6. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ "ИНТЕРНЕТ", В ТОМ ЧИСЛЕ СОВРЕМЕННЫЕ ПРОФЕССИОНАЛЬНЫЕ БАЗЫ ДАННЫХ И ИНФОРМАЦИОННЫЕ СПРАВОЧНЫЕ СИСТЕМЫ, НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1. http://moodle.kubsu.ru/ среда модульного динамического обучения КубГУ
 - 2. www.eearth.ru
 - 3. www.sciencedirect.com
 - 4. www.geobase.ca
 - 5. www.krelib.com
 - 6. www.exponenta.ru образовательный математический сайт
- 7. www.math.ru/lib библиотека, содержащая книги по математике, физике и истории науки
- 8. www.mccme.ru/free-books свободно распространяемые книги издательства МЦНМО
- 9. База данных Всероссийского института научной и технической информации (ВИНИТИ) РАН (www.2viniti.ru)
- 10. Базы данных в сфере интеллектуальной собственности, включая патентные базы данных (www.rusnano.com)
- 11. Базы данных и аналитические публикации "Университетская информационная система Россия" (www.uisrussia.msu.ru).
 - 12. Мировой Центр данных по физике твердой Земли (www.wdcb.ru).
- 13. База данных о сильных землетрясениях мира (www.zeus.wdcb.ru/wdcb/sep/hp/seismology.ru).
 - 14. База данных по сильным движениям (SMDB) (www.wdcb.ru).

7. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Теоретические знания по основным разделам курса "Цифровая обработка сигналов" студенты приобретают на лекциях и лабораторных занятиях, закрепляют и расширяют во время самостоятельной работы.

Лекции по курсу "Цифровая обработка сигналов" представляются в виде обзоров с демонстрацией презентаций по отдельным основным темам программы.

Для углубления и закрепления теоретических знаний студентам рекомендуется выполнение определенного объема самостоятельной работы. Общий объем часов, выделенных для внеаудиторных занятий, составляет 21,8 часов.

Внеаудиторная работа по дисциплине "Цифровая обработка сигналов" заключается в следующем:

- повторение лекционного материала и проработка учебного (теоретического) материала;
 - подготовка к лабораторным занятиям;
- выполнение индивидуальных заданий (подготовка сообщений, презентаций);
- написание контролируемой самостоятельной работы (домашнего расчетно-графического задания);
 - подготовка к текущему контролю.

Для закрепления теоретического материала и выполнения контролируемых самостоятельных работ по дисциплине во внеучебное время студентам предоставляется возможность пользования библиотекой КубГУ, возможностями компьютерных классов.

Итоговый контроль осуществляется в виде зачета.

По каждой лабораторной работе студенты представляют расчетнографические задания (РГЗ) с приложением необходимых расчетов, таблиц, графиков, результатов построений и т.п., в виде документов, рассчитанных в программе MATHCAD.

По контролируемой самостоятельной работе (КСР) студенты представляют домашнее расчетно-графическое задание (ДРГЗ) в виде документов, рассчитанных в программах MATHCAD и RadExPro Start.

Требования к аудиторным и домашним РГЗ:

- оформленный титульный лист;
- подробное описание методик расчета;
- расчет задачи по индивидуальному варианту;
- список используемых источников.

Защита контролируемой самостоятельной работы (КСР) осуществляется на лабораторных занятиях в виде собеседования с обсуждением отдельных его разделов, полноты раскрытия темы, новизны используемой информации.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

8.1. Перечень информационных технологий

Использование электронных презентаций при проведении занятий лекционного типа и лабораторных работ.

8.2. Перечень необходимого лицензионного программного обеспечения

При освоении курса "Цифровая обработка сигналов" используются:

- 1. лицензионные программы общего назначения, такие как Microsoft Windows 7, пакет Microsoft Officee Professional (Word, Excel, PowerPoint, Access), программы демонстрации видео материалов (Windows Media Player), программы для демонстрации и создания презентаций (Microsoft Power Point), PIC MATHCAD University Classroom Perpetual с пакетами расширения "Signal Processing" и "Wavelets";
- 2. лицензионная программа специального назначения: "RadExPro Start";
- 3. авторское программное обеспечение, разработанное преподавателями кафедры геофизических методов поисков и разведки и используемое в учебном процессе:

№	Программное обеспечение	Авторы	Номер свидетельства о государственной регистрации программ
1	Программа моделирования интерференционных характеристик приемных и излучающих систем морской сейсморазведки и интерференционных процессов в слоистых средах "ARRAY"	Гуленко В.И.	Свидетельство о государственной регистрации программ для ЭВМ №2010613128 от 13.05.2010 г.
2	Учебная программа "Спектральные теоремы" к курсу теории сигналов "SPEKTR-T"	Гуленко В.И.	Свидетельство о государственной регистрации программ для ЭВМ №2010610363 от 11.01.2010 г.

8.3. Перечень необходимых информационных справочных систем

- 1. Электронная библиотечная система издательства "Лань" (www.e.lanbook.com)
- 2. Электронная библиотечная система "Университетская Библиотека онлайн" (www.biblioclub.ru)
- 3. Электронная библиотечная система "ZNANIUM.COM" (www.znanium.com)
- 4. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)
- 5. Единая интернет- библиотека лекций "Лекториум" (www.lektorium.tv)

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность	
Занятия лекционного типа	Аудитория для проведения занятий лекционного типа, оснащенная презентационной техникой (проектор, экран, ноутбук) и соответствующим программным обеспечением (лицензионные программы общего назначения, такие как Microsoft Windows 7, пакет Microsoft Officce Professional (Word, Excel, PowerPoint, Access), программы демонстрации видео материалов (Windows Media Player), программы для демонстрации и создания презентаций (Microsoft Power Point)	
Лабораторные занятия	Аудитория для проведения лабораторных занятий, оснащенная презентационной техникой (проектор, экран, ноутбук) и соответствующим программным обеспечением	
Групповые (индивидуальные) консультации	Аудитория для проведения групповых (индивидуальных) консультаций	
Текущий контроль, промежуточная аттестация	Аудитория для проведения текущего контроля, аудитория для проведения промежуточной аттестации	
Самостоятельная работа	Аудитория для самостоятельной работы студентов, оснащенная компьютерной техникой с возможностью подключения к сети "Интернет", с соответствующим программным обеспечением, с программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета	