Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет физико-технический

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования – первый

проректор

Иванов А.Г.

2017г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.Б.04 ИСТОРИЯ И МЕТОДОЛОГИЯ ФИЗИКИ

(код и наименование дисциплины в соответствии с учебным планом)

Направление подготовки/	
специальность 03.04.0	02 Физика
· —	правления подготовки/специальности)
Направленность (профиль) /	
специализация «Информационные	е процессы и системы»
1 1	равленности (профиля) специализации)
Программа подготовки академич	еская
	л /прикладная)
Форма обучения очная	
(очная, о	чно-заочная, заочная)
Квалификация (степень) выпускни	ка <u>магистр</u>
	(бакалавр, магистр, специалист)

Рабочая программа дисциплины «История методология физики» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 03.04.02 Физика, профиль подготовки «Информационные процессы и системы».

подготовки минформационные процессы и системы».
Программу составил:
Рабочая программа дисциплины « <u>История методология физики</u> » утверждена на заседании кафедры физики и информационных систем протокол № 16 от 4 мая 2017 г.
Заведующий кафедрой (разработчика) Богатов Н.М.
Рабочая программа обсуждена на заседании кафедры физики и информационных систем протокол № 16 от 4 мая 2017 г. Заведующий кафедрой (разработчика) <u>Богатов Н.М.</u>
Утверждена на заседании учебно-методической комиссии физикотехнического факультета протокол № 6 от 4 мая 2017 г. Председатель УМК факультета Богатов Н.М.
Рецензенты: Копытов Г.Ф., Заведующий кафедрой радиофизики и нанотехнологий физико-технического факультета ФГБОУ ВО «КубГУ».

Половодов Ю.А., Генеральный директор ООО "КПК",

доктор физико-математических наук, профессор

кандидат педагогических наук

1. Цели и задачи изучения дисциплины

1.1 Цель дисциплины

Данная дисциплина ставит своей целью формирование основы целостного восприятия современного состояния физических исследований, осмысления перспектив и путей развития физических наук с точки зрения профессионального исследователя и преподавателя, обобщение и систематизация знаний студентов по истории физики, выработка целостного комплексного взгляда на физические науки их взаимосвязь с другими разделами естествознания, формирование интереса к истории физики и понимания логики развития современной физики.

1.2 Задачи освоения дисциплины

Основными задачами дисциплины «История методология физики» являются:

- получение общих знаний по истории физики, сведений о жизни и научном творчестве величайших физиков прошлых времен и современности;
- анализ предпосылок открытия важнейших физических законов и тех методов, основываясь на которых, эти открытия были сделаны;
- знакомство с новейшими физическими концепциями, определяющими логику развития науки

1.3 Место дисциплины в структуре образовательной программы

Изучение студентами методики преподавания физики опирается на знание курсов общей и теоретической физики, программирования и математического моделирования, педагогики и психологии.

1.4 Перечень планируемых результатов обучения по дисциплине «История и методология физики», соотнесенных с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций: ОК-3; ОПК-1; ОПК-7; ПК-6.

	Индекс	Содержание	В результате изучения уче	бной дисциплины обучан	ощиеся должны
№	компете	компетенции	знать	уметь	владеть
	нции	(или её части)	знать	yMCIB	Бладетв
1.	ОК-3	Готовностью к	Знать основные разделы	Уметь	Владеть
		саморазвитию,	и особенности	анализировать	общими
		самореализации,	современной физики;	предпосылки	знаниями по
		использованию		открытия	истории
		творческого		важнейших	физики,
		потенциала		физических законов	сведениями о
				и тех методов,	жизни и
				основываясь на	научном
				которых, эти	творчестве
				открытия были	величайших
				сделаны;	физиков
					прошлых
					времен и
					современности

2.	ОПК-1	готовностью к коммуникации в устной и письменной формах на государственном языке Российской Федерации и иностранном языке для	Знать основные разделы и особенности современной физики;	Уметь анализировать предпосылки открытия важнейших физических законов и тех методов, основываясь на которых, эти открытия были	Владеть общими знаниями по истории физики, сведениями о жизни и научном творчестве величайших
		решения задач профессиональн ой деятельности		сделаны;	физиков прошлых времен и современности
3.	ОПК-7	способностью демонстрировать знания в области философских вопросов естествознания, истории и методологии физики	Знать основные понятия физики, историю их возникновения, этапы эволюции;	Уметь анализировать предпосылки открытия важнейших физических законов и тех методов, основываясь на которых, эти открытия были сделаны;	Владеть новейшими физическими концепциями, определяющи ми логику развития науки.
4.	ПК-6	способностью методически грамотно строить планы лекционных и практических занятий по разделам учебных дисциплин и публично излагать теоретические и практические разделы учебных дисциплин в соответствии с утвержденными учебнометодическими пособиями при реализации программ бакалавриата в области физики	Знать основные методы исследований в физике важнейшие достижения физики XX-XXI веков, критически важные проблемы современной физики.	Уметь руководить научно- исследовательской деятельностью в области физики обучающихся по программам бакалавриата.	Владеть новейшими физическими концепциями, определяющи ми логику развития науки.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет __3_ зач.ед. (__108__ часов), их распределение по видам работ представлено в таблице (для студентов $O\Phi O$).

Вид учебной работы		Всего часов	Семестры	
			(час	сы)
TC C		2		
Контактная работа, в то				
Аудиторные занятия (все	,	24	24	
Занятия лекционного типа		12	12	-
Лабораторные занятия		-	-	-
Занятия семинарского тип	а (семинары,	12	12	
практические занятия)		12	12	-
		-	-	-
Иная контактная работа:				
Контроль самостоятельной	й работы (КСР)	-	-	
Промежуточная аттестаци	я (ИКР)	0,2	0,2	
Самостоятельная работа	, в том числе:			
Проработка учебного (те	оретического) материала	50	50	_
Выполнение индивидуально сообщений, презентаций)	20	20	-	
Подготовка к текущему ко	13,8	13,8	-	
Контроль:				
Подготовка к экзамену		-	26,7	
Общая трудоемкость	час.	108	108	-
	в том числе контактная работа	24,2	24,2	
	зач. ед	3	3	

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 2 семестре:

No		Количество часов				
разд	Наименование разделов	Всего	Аудиторная работа			Самостоятель
ела			Л	ПЗ	ЛР	ная работа
	стествознание как система наук о рироде. Методы и модели научного ознания.	8	1	1		8
2.	арождение физических представлений.	8	1	1		8
3.	Физические концепции эпохи античности	8	2	2		8
4.	Физические концепции средневековья и эпохи Возрождения	8	2	2		8
5.	Физические концепции XII- XVIII вв.	8	2	2		8
6	Классическая физика	12	2	2		8
7	Основные концепции и достижения физики XX-XXI вв.	8	1	1		9

Mo	No		Количество часов			
разд	Наименование разделов	Всего	_	диторна работа	R	Самостоятель ная работа
ела			Л	ПЗ	ЛР	ная расота
	Новые парадигмы и пути развития естествознания.	12	1	1		13,8
9	Всего:		12	12		83,8

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

№	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
1.	Естествознание как система наук о природе. Методы и модели научного познания.	Методология науки. Специфика научной деятельности. Критерии научного знания. Методы и средства научного познания. Возникновение естествознания. Структура научного знания. Научные открытия. Модели научного познания. Научные традиции. Научные революции. Фундаментальные научные открытия.	контрольные вопросы (КВ) / выполнение практических заданий (ПЗ) /
2.	Зарождение физических представлений	Хронологические и географические рамки древнейших культур. Миф как часть культурного наследия древнейших народов. Мифологическая картина мира. Натурфилософские представления древнего Китая и древней Индии.	
3.	Физические концепции эпохи античности	Античная культура: время, место, особенности миропонимания, периодизация. Специфика первых систем теоретического физического знания. Концепция атомистики. Физическое учение Платона. Аристотелева физика. Статика и гидростатика Архимеда. Оптика Евклида и Птолемея.	
4.	Физические концепции средневековья и эпохи Возрождения	Социокультурные особенности развития науки в эпоху средневековья. Основные физические достижения средневековья. Влияние потребностей практики и инженерии на развитие физики в эпоху Возрождения. Экспериментальные физические исследования Леонардо да Винчи. Гелиоцентрическая концепция Н. Коперника.	
5.	Физические концепции XII-XVIII вв.	Особенности периода начала Нового времени. Механика Г.Галилея и начало критики аристотелевской физики.	

		Особенности картезианской физики. Разработка основ классической физики. Физическая концепция И. Ньютона как итог развития опытного естествознания. Законы классической механики. Ньютоновская концепция пространства-времени. Принципы минимального времени П.Ферма и наименьшего действия П.Мопертюи. Теория теплорода и механическая концепция теплоты.	
6	Классическая физика	Становление классического естествознания. Волновая концепция света О.Френеля. Концепции классической электродинамики. Электромагнитное поле Максвелла и эфир. Молекулярно-кинетическая концепция тепловых процессов. Концепции классической термодинамики. Возникновение предпосылок атомной и ядерной физики.	КВ / ПЗ / Т
7	Основные концепции и достижения физики XX-XXI вв.	• •	КВ / ПЗ / Т
8	Новые парадигмы и пути развития естествознания.	Современная астрофизика и космология. Темная материя и темная энергия. Фрактальная физика. Самоорганизация и хаос. Нанонауки и нанотехнологии. Квантовые вычисления и квантовые компьютеры.	КВ / ПЗ / Т

2.3.2 Занятия семинарского типа

Наименование	Тематика практических занятий	Форма текущего
раздела	(семинаров)	контроля
2	3	4
истема наук о природе	Іпоридина Наушина откритив Молапи	
2. Зарождение	Хронологические и географические рамки Проверочна	
физических	древнейших культур Мифологическая	контрольная работа,

представлений.	картина мира. Натурфилософские	
	представления древнего Китая и древней Индии.	домашнего задания.
3. Физические		Проверочная
концепции эпохи	,	контрольная работа,
античности	гидростатика Архимеда. Оптика Евклида	
средневековья и эпохи	-	домашнего задания.
Возрождения.	достижения средневековья.	, ,
	Экспериментальные физические	
	исследования Леонардо да Винчи.	
	Гелиоцентрическая концепция Н.	
	Коперника.	
4. Физические	Механика Г.Галилея и начало критики	Проверочная
концепции XII-	l *	контрольная работа,
XVIII вв., Классическая	картезианской физики. Разработка основ	1
физика.		домашнего задания.
	классической механики. Принципы	
	минимального времени П.Ферма и	
	наименьшего действия П.Мопертюи.	
	Теория теплорода и механическая	
	концепция теплоты. Волновая концепция	
	света О.Френеля. Концепции	
	классической электродинамики.	
	Электромагнитное поле Максвелла и	
	эфир. Молекулярно-кинетическая	
	концепция тепловых процессов.	
	Концепции классической термодинамики.	
	Возникновение предпосылок атомной и	
	ядерной физики.	
5. Основные концепции	Кризис классических представлений о	Проверочная
и достижения физики	пространстве и времени. Специальная	контрольная работа,
XX-XXI вв.	теория относительности. Общая теория	проверка
	относительности. Квантовая теория.	домашнего задания.
	Волновая механика. Квантовая	
	статистика. Концепции физики атомного	
	ядра и элементарных частиц. Квантовая	
	теория поля. Электронная техника.	
	Возникновение и развитие радиофизики	
6. Новые парадигмы и	Современная астрофизика и космология.	Проверочная
пути развития	Темная материя и темная энергия.	контрольная работа,
естествознания.	Фрактальная физика. Самоорганизация и	проверка
	хаос. Нанонауки и нанотехнологии.	домашнего задания.
	Квантовые вычисления и квантовые	
	компьютеры.	
7. Итоговая контрольная		Проверочная
работа	студента	контрольная работа.

2.3.3 Лабораторные занятия

Согласно учебному плану лабораторные занятия по данной дисциплине не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Nº	Наименование раздела	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
рироде гознани 2 зарожде античн 4 Физиче эпохи з Физиче XVIII в Класси 7 Основи физики 8 Новые	ение физических представлений еские концепции эпохи ости еские концепции средневековья и Возрождения XII-	раооты 1. Исследования по истории физики и механики. 2008/РАН; Ин–т истории естествознания и техники им. С.И. Вавилова; отв.ред. Г.М.ИдлисМ.: Физмалит, 2010 - 169 с. 2. Захаров, В.Д. От философии физики к идее Бога / Захаров, Валерий Дмитриевич; В. Д. Захаров М.: URSS: [Изд-во ЛКИ], 2010. 3. Дубнищева Т. Я. Концепции современного естествознания: учебное пособие для студентов вузов / Дубнищева, Татьяна Яковлевна; Т. Я. Дубнищева 10-е изд., стер М.: Академия, 2009 606 с. 4. Горобец Б.С. Круг Ландау и Лифшица / Горобец, Борис Соломонович; Б. С. Горобец; предисл. В. И. Манько М.: URSS: [ЛИБРОКОМ], 2009 332 с. 5. Вайнберг, Стивен. Мечты об окончательной теории: физика в поисках самых фундаментальных законов природы / = Dreams of a final theory / S. Weinberg. / Вайнберг, Стивен.; С. Вайнберг; пер. с англ. А. В. Беркова Изд. 2-е М.: URSS: [Изд-во ЛКИ], 2008 253 с.

3. Образовательные технологии

В процессе преподавания дисциплины используются следующие методы:

- лекции;
- опрос;
- домашние задания;
- индивидуальные практические задания;
- тестирование;
- консультации преподавателей;
- самостоятельная работа студентов (изучение теоретического материала, подготовка к практическим занятиям, выполнение домашних работ и индивидуальных типовых расчетов, подготовка к опросу, тестированию и зачету).

Для проведения лекционных занятий могут использоваться мультимедийные средства воспроизведения активного содержимого, позволяющего слушателю воспринимать особенности изучаемого материала, зачастую играющие решающую роль в

понимании и восприятии, а также формировании профессиональных компетенций. Эффективное обсуждение сложных и дискуссионных вопросов и проблем.

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и осуществляемое путем подготовки индивидуальных докладов;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

Основные образовательные технологии, используемые в учебном процессе:

- лекции с проблемным изложением;
- обсуждение сложных и дискуссионных вопросов и проблем и разрешение проблем;
- компьютерные занятия в режимах взаимодействия «преподаватель студент»,
 «студент преподаватель», «студент студент»;
- технологии смешанного обучения: дистанционные задания и упражнения, составление глоссариев терминов и определений, групповые методы Wiki, интернеттестирование и анкетирование.

Интерактивные образовательные технологии, используемые в аудиторных занятиях:

- технология развития критического мышления;
- лекции с проблемным изложением;
- изучение и закрепление нового материала (использование вопросов, Сократический диалог);
- обсуждение сложных и дискуссионных вопросов и проблем («Займи позицию (шкала мнений)», проективные техники, «Один − вдвоем − все вместе», «Смени позицию», «Дискуссия в стиле телевизионного ток-шоу», дебаты, симпозиум);
 - разрешение проблем («Дерево решений», «Мозговой штурм», «Анализ казусов»);
 - творческие задания;
 - работа в малых группах;
 - технология компьютерного моделирования численных расчетов.

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и путем подготовки докладов;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Текущий контроль: проверка самостоятельно выполненных заданий, ответы на контрольные и дополнительные вопросы по соответствующим разделам дисциплины.

Итоговый контроль: зачет.

4.1 Фонд оценочных средств для проведения текущей аттестации

Контрольные вопросы по учебной программе

В процессе подготовки и ответам на контрольные вопросы формируются и оцениваются все требуемые ФГОС и ООП для направления 03.04.02 ФИЗИКА (профиль: Информационные процессы и системы) компетенции: ОПК-7 ПК-6,ОК-3,ОПК-1

Ниже приводятся примеры контрольных вопросов для разделов рабочей программы.

- 1. Что изучает физика?
- 2. Какова современная структура физики?
- 3. Каковы место физики в системе наук и ее роль в развитии естествознания?
- 4. Каковы основные этапы развития физики?
- 5. Каковы основные этапы развития представлений о пространстве и времени и основные физические концепции пространства и времени?
- 6. Чем отличается эксперимент от наблюдения?
- 7. Как связано представление о существовании эфира с принципом относительности?
- 8. Что такое принцип близкодействия и дальнодействия и как менялись взгляды на природу электромагнитного взаимодействия?
- 9. Почему принцип относительности Эйнштейна не согласуется с Ньютоновскими представлениями об абсолютном времени.
- 10. В чем трудности построения релятивистской теории гравитации?
- 11. Каковы предпосылки построения геометризованной теории гравитации?
- 12. Какие изменения произошли в космологии в XX веке?
- 13. Как были получены первые свидетельства реальности существования атомов?
- 14. Почему молекулярно-кинетическая теория подвергалась критике в конце XIX века?
- 15. Какие свидетельства реальности существования атомов, полученные в конце XIX начале XX века оказались решающими?
- 16. В чем состояли трудности классической физики при описании строения атомов?
- 17. Что нового внесла квантовая теория поля в физическую картину мира?
- 18. Каковы современные представления о строении вещества?

4.2 Фонд оценочных средств для проведения промежуточной аттестации

4.2.1 Вопросы, выносимые на зачет по дисциплине «История и методология физики» для направления подготовки: 03.04.02 Физика

- 1. Методы и средства научного познания.
- 2. Модели научного познания.
- 3. Фундаментальные научные открытия.
- 4. Натурфилософские представления древнего Китая и древней Индии.
- 5. Натурфилософские представления древней Индии.
- 6. Мифологическая картина мира.
- 7. Специфика первых систем теоретического физического знания.
- 8. Физическое учение Платона.
- 9. Аристотелева физика.
- 10. Статика и гидростатика Архимеда.
- 11. Оптика Евклида и Птолемея.
- 12. Основные физические достижения средневековья.
- 13. Экспериментальные физические исследования Леонардо да Винчи.
- 14. Гелиоцентрическая концепция Н. Коперника.
- 15. Механика Г.Галилея и начало критики аристотелевской физики.
- 16. Особенности картезианской физики.
- 17. Физическая концепция И. Ньютона
- 18. Законы классической механики.

- 19. Принципы минимального времени П.Ферма
- 20. Принципы наименьшего действия П.Мопертюи.
- 21. Теория теплорода и механическая концепция теплоты.
- 22. Волновая концепция света О.Френеля.
- 23. Концепции классической электродинамики.
- 24. Электромагнитное поле Максвелла и эфир.
- 25. Молекулярно-кинетическая концепция тепловых процессов.
- 26. Специальная и общая теория относительности.
- 27. Квантовая теория
- 28. Возникновение и развитие радиофизики.
- 29. Современная астрофизика и космология.
- 30. Темная материя и темная энергия.
- 31. Фрактальная физика.
- 32. Самоорганизация и хаос.
- 33. Нанонауки и нанотехнологии.
- 34. Квантовые вычисления и квантовые компьютеры.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

5.1 Основная литература:

- 1. Григорьев, В.И. О физиках и физике [Электронный ресурс] Электрон. дан. Москва : Физматлит, 2008. 264 с. Режим доступа: https://e.lanbook.com/book/59504.
- 2. Пономарев, Л.И. Под знаком кванта [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : Физматлит, 2007. 416 с. Режим доступа: https://e.lanbook.com/book/2282
- 3. Захаров, В.Д. Тяготение: от Аристотеля до Эйнштейна [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : Издательство "Лаборатория знаний", 2015. 281 с. Режим доступа: https://e.lanbook.com/book/70762
- 4. Владимиров, Ю.С. Основания физики [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : Издательство "Лаборатория знаний", 2015. 458 с. Режим доступа: https://e.lanbook.com/book/66343

5.2 Дополнительная литература:

- 1. Льоцци М. История физики. М.: Мир, 1970.
- 2. Гинзбург В.Л. О науке, о себе и о других. М.: Физматгиз, 1997.
- 3. Голин Г.М., Филонович С.Р. Классики физической науки (с древнейших времен до начала XX в.). М.: Высшая школа, 1989.
- 4. Дорфман Я.Г. Всемирная история физики от древнейших времен до середины XX века. В 2 т. М.: Наука, 1974, 1979.
- 5. Кириллин В.А. Страницы истории науки и техники. М.: Наука, 1986.
- 6. Спасский Б.И. История физики. В 2 ч. М.: Изд-во МГУ, 1977.
- 7. Храмов Ю.А. Научные школы в физике. Киев: Наукова Думка, 1987.
- 8. Храмов Ю.А. Физики: биографический справочник. М.: Наука, 1983.
- 9. Чолаков В. Нобелевские премии. Ученые и открытия. М., 1986.

«Интернет», необходимых для освоения дисциплины

- 1. Электронные ресурсы ФГБОУ ВО «Кубанский государственный университет»: http://www.kubsu.ru/node/1145
- 2. Информационная система «Единое окно доступа к образовательным ресурсам»: http://window.edu.ru/window
- 3. Федеральный образовательный портал: http://www.edu.ru/db/portal/sites/res_page.htm
- 4. Большая научная библиотека: http://www.sci-lib.com/

7. Методические указания для обучающихся по освоению дисциплины

На самостоятельную работу студентов, согласно требованиям ФГОС ВО по направлению **03.04.02 Физика** (профиль: Информационные процессы и системы), отводится около 56 % времени от общей трудоемкости дисциплины. Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов;
- проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе различных способов взаимодействия.

В соответствии с этим при проведении оперативного контроля могут использоваться контрольные вопросы к соответствующим разделам дисциплины «История и методология физики».

Контроль может осуществляться также посредством тестирования студентов по окончании изучения тем учебной дисциплины.

Дополнительная форма контроля эффективности усвоения материала и приобретения практических навыков заключается в открытой интерактивной защите работы на устном выступлении перед аудиторией сокурсников краткого доклада с презентацией.

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и осуществляемое путем написания реферативных работ;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

К средствам обеспечения освоения дисциплины «История и методология физики» также относится

- контрольные вопросы по разделам учебной дисциплины;
- набор тем для дополнительного исследования по разделам учебной дисциплины.

8 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

8.1 Перечень информационных технологий.

- 1. Проверка домашних заданий и консультирование посредством электронной почты.
 - 2. Использование электронных презентаций при проведении практических занятий.

8.2 Перечень необходимого программного обеспечения.

Программный продукт	Договор/лицензия
OC MS Windows 7	Дог. № 77-АЭФ/223-Ф3/2017 от 03.11.2017
Офисное приложение MS Office 7	Дог. № 77-АЭФ/223-Ф3/2017 от 03.11.2017
Kaspersky Endpoint Security для бизнеса	Контракт №69-АЭФ/223-Ф3 от 11.09.2017
– Стандартный Russian Edition	
Adobe Acrobat Reader DC	Не требуется
Версия 2019.008.20071	

8.3 Перечень информационных справочных систем:

- 1. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)
- 2. Научная электронная библиотека «КиберЛенинка» (https://cyberleninka.ru)

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Для проведения занятий по дисциплине «История и методология» имеется необходимая материально-техническая база, соответствующая действующим санитарным и противопожарным правилам и нормам:

– специализированная лекционная аудитория физико-технического факультета (201 C), оснащенная мультимедийным проектором, экраном, интерактивной доской, а также приборами и оборудованием для постановки учебных демонстрационных экспериментов.

- литература в библиотеке университета, доступ к внешним информационным источникам для самостоятельной работы студентов.

№	Вид работ	Материально-техническое обеспечение дисциплины и
- 10		оснащенность
1	2	3
	Лекционные занятия	Лекционная аудитория №201С, оснащенная презентационной
1		техникой (проектор, экран, компьютер) и соответствующим
		программным обеспечением (ПО).
2	Семинарские занятия	Лекционная аудитория №201С, оснащенная презентационной
		техникой (проектор, экран, компьютер) и соответствующим
		программным обеспечением (ПО).
3	Текущий контроль,	Аудитория №201С
	промежуточная	
	аттестация	
4	Самостоятельная работа	Кабинет для самостоятельной работы №201С

Рецензия

на рабочую программу по дисциплины **Б1.Б.04 История и методология физики** для магистров направление 03.04.02 Физика. (квалификация «магистр»)

Программу подготовил доцент кафедры физики и информационных систем физико-технического факультета ФГБОУ ВО «КубГУ» Добро Л.Ф.

Рабочая программа включает следующие разделы: цели и задачи дисциплины, место дисциплины в структуре основной образовательной программы, перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы, общую трудоемкость дисциплины, образовательные технологии, формы промежуточной аттестации, описание учебнометодического, информационного и материально-технического обеспечения дисциплины. Указаны примеры оценочных средств для контроля результатов обучения. В тематическом плане данной дисциплины выделены следующие составляющие: лекции, практические занятия, лабораторные занятия и самостоятельная работа студентов, отвечающие требованиям образовательного стандарта.

Рабочая программа подготовки магистров направления 03.04.02 Физика отвечает специфике будущей профессиональной деятельности выпускников, в том числе производственно-технологической, проектной и экспериментально-исследовательской деятельности.

Образовательные технологии характеризуются не только общепринятыми формами, но и выполнением индивидуальных практических заданий и активным вовлечением студентов в учебный процесс, использованием лекций с проблемным изложением, обсуждением сложных и дискуссионных вопросов и проблем, проведением предварительно подготовленных, обучаемыми, компьютерных занятий, и диалоговыми принципами обсуждения возникающих у студентов затруднений, открытой интерактивной защитой лабораторной работы на выступлении перед аудиторией сокурсников

Из всего вышеприведенного следует заключение, что рабочая программа дисциплины полностью соответствует ФГОС ВО и основной образовательной программе по направлению подготовки 03.04.02 Физика, профиль "Информационные процессы и системы" (квалификация «магистр») и может быть использована в учебном процессе в ФГБОУ ВО «Кубанский государственный университет».

Генеральный директор ООО "КПК" кандидат педагогических наук

_ Ю.А. Половодов

Репензия

на рабочую программу по дисциплины **Б1.Б.04 История и методология физики** для магистров направление 03.04.02 Физика.

магистров направление 05.04.02 Физик. (квалификация «магистр»)

Программу подготовил доцент кафедры физики и информационных систем физикотехнического факультета ФГБОУ ВО «КубГУ» Добро Л.Ф.

Рабочая программа включает следующие разделы: цели и задачи дисциплины, место дисциплины в структуре основной образовательной программы, перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы, общую трудоемкость дисциплины, образовательные технологии, формы промежуточной аттестации, описание учебно-методического, информационного и материально-технического обеспечения дисциплины. Указаны примеры оценочных средств для контроля результатов обучения. В тематическом плане данной дисциплины выделены следующие составляющие: лекции, практические занятия, лабораторные занятия и самостоятельная работа студентов, отвечающие требованиям образовательного стандарта.

Рабочая программа подготовки магистров направления 03.04.02 Физика отвечает специфике будущей профессиональной деятельности выпускников, в том числе производственно-технологической, проектной и экспериментально-исследовательской деятельности.

Образовательные технологии характеризуются не только общепринятыми формами, но и выполнением индивидуальных практических заданий и активным вовлечением студентов в учебный процесс, использованием лекций с проблемным изложением, обсуждением сложных и дискуссионных вопросов и проблем, проведением предварительно подготовленных, обучаемыми, компьютерных занятий, и диалоговыми принципами обсуждения возникающих у студентов затруднений, открытой интерактивной защитой лабораторной работы на выступлении перед аудиторией сокурсников

Из всего вышеприведенного следует заключение, что рабочая программа дисциплины полностью соответствует ФГОС ВО и основной образовательной программе по направлению подготовки 03.04.02 Физика, профиль " Информационные процессы и системы" (квалификация «магистр») и может быть использована в учебном процессе в ФГБОУ ВО «Кубанский государственный университет».

Заведующий кафедрой радиофизики и нанотехнологий физико-технического факультета ФГБОУ ВО «КубГУ», доктор физико-математических наук, профессор

Г.Ф. Копытов