Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет химии и высоких технологий

УТВЕРЖДАЮ:

Проректор по учебной работе, ка-честву объебания про-

Иванов А.Г.

2017г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.03.02 СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ЗАЩИТЫ И РЕАБИЛИТАЦИИ ОКРУЖАЮЩЕЙ СРЕДЫ

Направление подготовки/ специальность <u>04.04.01</u> Химия

Направленность (профиль) / специализация <u>Электрохимия</u>

Программа подготовки академическая

Форма обучения очная

Квалификация (степень) выпускника магистр

Рабочая программа дисциплины Б1.В.ДВ.03.02 «Современные технологии защиты и реабилитации окружающей среды» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 04.04.01 Техносферная безопасность.

Программу составил(и):

Профессор кафедры физической химии, д-р хим.наук, профессор, Письменская Н.Д.

Plu

Преподаватель кафедры физической химии канд.хим.наук, Невакшенова Е.Е.

Рабочая программа дисциплины Б1.В.ДВ.03.02 «Современные технологии защиты и реабилитации окружающей среды» обсуждена и утверждена на заседании кафедры физической химии протокол № 22 от «26» июня 2017г.
Заведующий кафедрой физической химии

Заведующий кафедрой физической химии д-р хим.наук, профессор, Заболоцкий В.И.

Утверждена на заседании учебно-методической комиссии факультета химии и высоких технологий протокол № 5 от «27» июня 2017г.

Председатель УМК факультета Стороженко Т.П.

- Jing

Рецензенты:

Н.А. Мельник, заместитель руководителя Отраслевого учебно-методического центра охраны труда работников агропромышленного комплекса Краснодарского края КРИА ДПО ФГБОУ ВО Кубанский ГАУ, канд.хим.наук М.Е. Соколов, Руководитель НОЦ "ДССН"-ЦКП ФГБОУ ВО «КубГУ», канд.хим.наук

1 Цели и задачи освоения дисциплины

1.1 Цель дисциплины:

Целью учебной дисциплины Б1.В.ДВ.03.02 «Современные технологии защиты и реабилитации окружающей среды» является создание целостного представления о современных системах защиты окружающей среды от антропогенного воздействия.

1.2 Задачи дисциплины:

- показать историю развития и классификацию систем защиты среды обитания; дать теоретические основы процессов, используемых в этих системах;
- продемонстрировать наиболее типичные конструкционные решения устройств, аппаратов и установок, применяемых в быту и промышленности, а также условия проведения процессов задержания, очистки и разделения токсичных веществ;
- проанализировать достоинства и недостатки систем защиты среды обитания с точки зрения ресурсосбережения и экологической целесообразности;
- рассмотреть принципы математического моделирования, лежащие в основе расчетов процессов очистки и разделения веществ;
- привить первичные навыки прогнозирования результатов работы отдельных устройств и сложных технологических схем, предназначенных для предотвращения вредных выбросов в атмосферу, гидросферу и литосферу.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Б1.В.ДВ.03.02 «Современные технологии защиты и реабилитации окружающей среды» относится к дисциплинам по выбору вариативной части Блока 1 "Дисциплины (модули)" учебного плана направления подготовки 04.04.01 Химия, магистерской программы Электрохимия. Изучение данной дисциплины опирается на знания, полученные в ходе освоения таких дисциплин, как «Мембранная электрохимия и мембранные материалы новых поколений», «Актуальные задачи современной химии».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины «Современные технологии защиты и реабилитации окружающей среды» направлен на формирование следующих общекультурных и профессиональных компетенций: ОК-2, ПК-4.

№	Индекс	Содержание	В результате изучения учебной дисциплины обучаю-		
п.п.	компе-	компетенции		щиеся должны	
	тенции	(или её части)	знать	уметь	владеть
1.	OK-2	готовностью	принципы ра-	модифицировать	представлением о
		действовать в	боты совре-	применяемые	социальных и
		нестандартных	менной науч-	решения для	этических
		ситуациях,	ной аппара-	защиты	последствиях
		нести социаль-	туры	окружающей	деградации
		ную и этиче-		среды с учетом	окружающей
		скую ответ-		возникающих	среды
		ственность за		нестандартных	
		принятые реше-		ситуациях	
		ния			
2.	ПК-4	способностью	типичные	отбирать необхо-	базовыми навы-
		участвовать в			

No	Индекс	Содержание	В результате и	изучения учебной дис	сциплины обучаю-
П.П.	компе-	компетенции		щиеся должны	
	тенции	(или её части)	знать	уметь	владеть
		научных дис-	проблемы, ос-	димую информа-	ками анализа, си-
		куссиях и пред-	новы куль-	цию, разбивать на	стематизации и
		ставлять полу-	туры речи,	связанные части,	обобщения ре-
		ченные в иссле-	информаци-	компилировать	зультатов науч-
		дованиях ре-	онных техно-	для представле-	ных исследова-
		зультаты в виде	логий и воз-	ния в устном,	ний;
		отчетов и науч-	можности	письменном и	навыками пред-
		ных публика-	программных	мультимедийном	ставления резуль-
		_	пакетов об-	форматах;	татов научных ис-
		ций (стендовые	щего и специ-	использовать ком-	следований в виде
		доклады, рефе-	ального	пьютерные техно-	устных докладов,
		раты и статьи в	назначения	логии для пред-	письменном и
		периодической	для представ-	ставления резуль-	мультимедийном
		научной пе-	ления резуль-	татов научных ис-	форматах с помо-
		чати)	татов науч-	следований в раз-	щью современных
			ных исследо-	личных формах	компьютерных
			ваний	презентаций	технологий

2. Структура и содержание дисциплины 2.1 Распределение трудоёмкости дисциплины по видам работ

Вид учебн	Вид учебной работы			естры
_	-	часов	(ча	сы)
			2	3
Контактная работа, в то	м числе:			
Аудиторные занятия (все	его):	82	54	28
Занятия лекционного типа		32	18	14
Лабораторные занятия		14	-	14
Занятия семинарского тип ские занятия)	а (семинары, практиче-	36	36	-
Иная контактная работа	:			
Контроль самостоятельной		-	-	-
Промежуточная аттестаци	я (ИКР)	0,5	0,2	0,3
Самостоятельная работа				
Самостоятельное изучение	10	5	5	
Подготовка докладов, реф	10	5	5	
Самоподготовка (проработ	гка и повторение лекцион-			
ного материала и учебных	пособий, подготовка к	10,8	7,8	3
практическим занятиям)				
Подготовка к сдаче лабора	торных работ	4	-	4
Контроль:				
Подготовка к экзамену	26,7	-	26,7	
Общая трудоемкость час.		144	72	72
	в том числе контактная работа	82,5	54,2	28,3
	зач. ед	4	2	2

2.2 Структура дисциплины Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в семестрах 2 и 3 (для студентов ОФО)

Тизде	Разделы дисциплины, изучаемые в семестрах 2 и 3 (оля стуоентов ОФО)						
№				Ко	личе	ство ч	асов
pa3-	Наименование разделов	Семестр	Всего	Аудиторная			Самостоятель-
дела	тинменование разделов			работа			ная работа
				Л	П3	ЛР	
1	2		3	4	5	6	7
1.	Стратегия и тактика использования физических и физико-химических методов для решения экологических проблем	2	13	4	6	-	3
2.	Устройства потенциометриче- ского мониторинга состояния окружающей среды	2	16	4	8	ı	4
3.	Микрополлютанты и методы концентрирования	2	16	4	8	1	4
4.	Абсорбция и адсорбция	2	15	3	8	-	4
5.	Каталитическое обезвреживание выхлопных газов	2	12	3	6	-	3
6.	Системы обеззараживания природных и сточных вод	3	12	4	-	4	4
7.	Конверсия, очистка, фракционирование и концентрирование жидких промышленных отходов	3	12	4	-	4	4
8.	Современные методы перера- ботки водно-органических отхо- дов	3	12	4	-	4	4
9.	Комбинированные многоступен- чатые системы переработки и обезвреживание жидких радиоак- тивных и высокотоксичных отхо- дов	3	8,8	2	-	2	4,8
	Итого по дисциплине:			32	36	14	34,8

2.3 Содержание разделов дисциплины

2.3.1 Занятия лекционного типа

	21011 SWIIIIIII VICKQIIOIIIOI V IIIIW			
№	Наименование раздела	Содержание раздела	Форма теку- щего кон- троля	
1	2	3	4	
1	Стратегия и тактика использования физических и физико-химических методов для решения экологических проблем	Классификация и основы применения эко- биозащитных процессов; стратегия и так- тика защиты атмосферы, гидросферы, лито- сферы. Направления и цели создания мало- и безотходных производств, а также ресур- сосберегающих технологий.	Реферат Устный опрос	

2	Устройства потенциометрического мониторинга состояния окружающей среды	Ионселективные сенсоры. Селективность и перекрестная чувствительность сенсоров. Мультисенсорные системы.	Контроль- ная работа
3	Микрополлютанты и методы концентрирования	Микрополлютанты. Хроматография. Ионный обмен.	Устный опрос
4	Абсорбция и адсорб- ция	Адсорбенты и адсорберы (адсорбционные установки периодического и непрерывного действия). Регенерация адсорбентов. Регенерация абсорбентов и рекуперация твердых отходов.	Контроль- ная работа
5	Каталитическое обезвреживание выхлопных газов	Теоретические основы процессов физической и химической абсорбции газов Абсорбционные методы очистки воздуха от вредных газов (на примере очистки воздуха от диоксида серы): абсорбция водой; известняковые и известковые методы; нерекуперационные методы очистки с регенерацией хемосорбентов. Теоретические основы процессов физической и химической адсорбции газов, дисперсных и ионных примесей.	Контроль- ная работа
6	Системы обеззара- живания природных и сточных вод	Классификация методов, механизмы переноса, движущие силы и теоретическое описание процессов очистки. Очистка и концентрирование растворов, нейтрализация кислотно-основных стоков.	Контроль- ная работа
7	Конверсия, очистка, фракционирование и концентрирование жидких промышленных отходов	Фильтрование жидких сред (механизмы процесса фильтрования, особенности конструкций, эксплуатации и регенерации фильтров). Электрофлотация. Процессы коагуляции и флокуляции. Электрокоагуляция. Типы коагулянтов и флокулянтов).	Контроль- ная работа
8	Современные методы переработки водно-органических отходов	Электрохимические окислительно-восстановительные методы обезвреживания токсичных примесей (окисление кислородом воздуха, хлорирование, озонирование).	Устный опрос
9	Комбинированные многоступенчатые системы переработки и обезвреживание жидких радиоактивных и высокотоксичных отходов	Переработка сточных вод масложиркомбинатов, предприятий нефтяной и целлюлозно-бумажной промышленности методами коагуляции и флокуляции	Реферат

2.3.2 Занятия семинарского типа

№	Наименование раздела	Тематика практических занятий	Форма теку-
31=	танменование раздела	<u> </u>	*
		(семинаров)	щего контроля
1.	Стратегия и тактика использова-	Программа MGM, реализующая	Устный опрос
	ния физических и физико-хими-	микрогетерогенную модель. Рас-	Реферат
	ческих методов для решения	чет сорбции электролита.	
	экологических проблем		
2.	Устройства потенциометриче-	Изготовление и применение по-	Контрольная
	ского мониторинга состояния	тенциометрических сенсоров. Се-	работа
	окружающей среды	лективность и перекрестная чув-	
		ствительность.	
3.	Микрополлютанты и методы	Хроматография. Ионный обмен.	Устный опрос
	концентрирования		
4.	Абсорбция и адсорбция	Методы регенерация абсорбентов	Контрольная
			работа
			Устный опрос
5.	Каталитическое обезвреживание	Методы термической нейтрализа-	Контрольная
	выхлопных газов	ции отходящих газов с использо-	работа
		ванием высокотемпературных ка-	Устный опрос
		тализаторов.	

2.3.3 Лабораторные занятия

$N_{\underline{0}}$	Тема лабораторной работы	Форма текущего кон-
		троля
1	2	3
1	Извлечение ионных примесей из сточных вод методом	Защита ЛР
	электродиализа	
2	Обезвреживание сточных вод гальванических произ-	Защита ЛР
	водств с применением комбинированных мембранных	
	технологий	
3	Мембранно-сорбционные процессы извлечение антоци-	Защита ЛР
	анов из сточных вод пищевой промышленности	
4	Применение метатезисного электродиализа для очистки	Защита ЛР
	шахтных вод	

2.3.4 Примерная тематика курсовых работ (проектов) Курсовые работы не предусмотрены учебным планом

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Самостоятельное	Ветошкин А.Г. Защита окружающей среды от энергетических
	изучение разделов	воздействий. М.: Высшая школа. – 2010. 383 с.
2	Подготовка докла-	Волков В.А. Теоретические основы охраны окружающей среды.
	THAD BEMENSTAD	M.: Лань 2015. https://e.lanbook.com/book/61358#authors

3	Самоподготовка	Методические указания по организации самостоятельной работы.
	(проработка и по-	Методические указания к выполнению лабораторных работ.
	вторение лекцион-	Методические указания по написанию рефератов. Утверждены ка-
	ного материала и	федрой физической химии, протокол № 17 от 11.05.2017 г.
	учебных пособий,	Методические указания к выполнению лабораторных работ по
	подготовка к прак-	дисциплине. Утверждены кафедрой физической химии, протокол
	тическим заня-	№ 10 от 13.03.2018 г.
	тиям)	Методические рекомендации к организации аудиторной и внеа-
4	Подготовка к	удиторной (самостоятельной) работы студентов: методические
	сдаче лаборатор-	указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В., Беспалов,
	ных работ	Н.В. Лоза. – Краснодар: Кубанский гос. ун-т, 2018. 89 с

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3 Образовательные технологии

Для формирования профессиональных компетенций в процессе освоения курса используется технология профессионально-развивающего обучения, предусматривающая не только передачу теоретического материала, но и стимулирование и развитие продуктивных познавательных действий студентов (на основе психолого-педагогической теории поэтапного формирования умственных действий).

Сомость	Вид занятия	Используемые интерактивные образовательные	Количество
Семестр	(Л, ПР, ЛР)	технологии	часов
2	ПР	Работа в малых группах	4
		Метод поиска быстрых решений в группе	4
		Мозговой штурм	6
3	ЛР	Работа в малых группах	2
		Метод поиска быстрых решений в группе	2
		Мозговой штурм	2
Итого:			20

Для инвалидов и лиц с ограниченными возможностями здоровья реализуются индивидуальные образовательные технологии, которые позволяют полностью индивидуализировать содержание, методы и темпы учебной деятельности инвалида, вносить вовремя необходимые коррекции как в деятельность студента-инвалида, так и в деятельность преподавателя. Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

4.1 Фонд оценочных средств для проведения текущей аттестации

Примерные темы для устных опросов и рефератов к разделу «Стратегия и тактика использования физических и физико-химических методов для решения экологических проблем»

- 1. Аппаратурное оформление гибридных установок, использующих баро- и электромем- бранные методы.
- 2. Установки для сверхглубокой очистки воды.
- 3. Установки с адсорберами периодического действия.
- 4. Биологические методы очистки: активный ил и пленки; аэротэнки.
- 5. Биореакторы
- 6. Принципы применения обратного осмоса в комбинированных мембранных методах и многоступенчатых установках.
- 7. Специфика обезвреживания жидких радиоактивных отходов.
- 8. Принципы совершенствования существующих производств с использованием мембранных методов.
- 9. Рекуперация твердых отходов методом электродиализа
- 10. Преимущества использования мембранных методов при обработке водно-органических отходов.
- 11. Перспективы развития мембранных процессов.

Вопросы для контрольной работы по теме «Устройства потенциометрического мониторинга состояния окружающей среды»

- 1. Каковы принципы создания потенциометрических сенсоров?
- 2. Какие требования предъявляются к мембранам, используемым в потенциометрических сенсорах?
- 3. Приведите примеры использования мембранных потенциометрических сенсоров для мониторинга реальных объектов окружающей среды.

Вопросы для устного опроса по теме «Микрополлютанты и методы концентрирования»

- 1. Какие новейшие мембранные технологии, разработанные для предконцентрирования и очистки стоков, вам известны? Опишите принцип их работы.
- 2. Каково типичное аппаратное оформление емкостного электродеионизатора?
- 3. Каким требованиям должны отвечать вещества, используемые в качестве адсорбентов?
- 4. Что такое изотерма сорбции?
- 5. Для каких систем она может быть уравнением Лэнгмюра?
- 6. Для описания каких систем лучше использовать теорию БЭТ?

Перечень части компетенции, проверяемых оценочным средством: ОК-2, ПК-4

Пример контрольной работы по теме «Абсорбция и адсорбция» Вариант 1.

- 1. В чем суть регенерации адсорбентов методом биполярного электродиализа?
- 2. Какие методы термической нейтрализации отходящих газов с использованием нано- и микроструктурированных мембран с каталитической составляющей Вам известны?
- 3. Каковы причины деградации мембран, используемых для очистки газовых смесей? **Вариант 2.**
- 1. Какие фундаментальные процессы диффузии лежат в основе применения различных типов мембран для газоразделения?
- 2. Опишите мембранные методы регенерации абсорбентов на примере очистки метана от

- углекислого газа.
- 3. Каковы принципиальные подходы к восстановлению мембран, используемых в процессе регенерации абсорбентов?

Пример контрольной работы по теме «Каталитическое обезвреживание выхлопных газов»

- 1. Какие классические методы обезвреживания токсичных примесей, находящихся в составе газовых смесей, вам известны?
- 2. Какие мембранные методы обезвреживания токсичных примесей, присутствующих в составе газовых смесей, вам известны?

Пример контрольной работы по теме «Системы обеззараживания природных и сточных вод»

Вариант 1.

- 1. Каковы основные принципы работы электродиализатора-концентратора?
- 2. Какие новейшие мембранные технологии, разработанные для нейтрализации стоков, вам известны? Опишите принцип их работы.
- 3. Какие стадии разработки процессов очистки с использованием мембранных технологий Вам известны?
- 4. Как используют мембранные методы для извлечения и рекуперации тяжёлых металлов? **Вариант 2.**
- 1. Каково типичное аппаратное оформление электродиализатора-концентратора?
- 2. В чем суть нейтрализации кислотно-основных стоков методом биполярного электродиализа?
- 3. Каковы принципы создания производств с замкнутым циклом по воде?
- В чём суть переработки сточных вод масложиркомбинатов, предприятий нефтяной и целлюлозно-бумажной промышленности методами микро- и ультрафильтрации?

Перечень части компетенции, проверяемых оценочным средством: ОК-2

Пример контрольной работы по теме «Конверсия, очистка, фракционирование и концентрирование жидких промышленных отходов»

- 1. Какие критерии лежат в основе выбора методов и схем очистки водных растворов?
- 2. От каких факторов (и почему от них) зависит скорость осаждения крупнодисперсных частиц в условиях естественной конвекции?
- 3. Каков принцип выбора формул для расчета поправочного коэффициента, необходимого при определении скорости осаждения частицы в условиях вынужденной конвекции?
- 4. Какой принцип лежит в основе определения скорости осаждения частиц, форма которых отличается от сферической?
- 5. Какое оборудование применяют для грубой очистки от нерастворимых примесей?
- 6. В чем суть метода флотации и электрофлотации?
- 7. Почему флотирующая сила зависит от угла смачивания частиц?
- 8. Назовите устройства, используемые для отделения нефтепродуктов и жиров от очищенной воды во флотаторах.
- 9. Каким образом и почему можно интенсифицировать процесс флотации?
- 10. Какие методы повышения эффективности оборудования, предназначенного для очистки от жиров и нефти Вы можете предложить?
- 11. Какие механизмы, лежат в основе процесса фильтрования?
- 12. Как определяют тип фильтрования через пористый слой?
- 13. От каких параметров зависит коэффициент фильтрации? Как он изменяется во времени?
- 14. Как регенерируют фильтры, применяемые для очистки нефте- и маслопродуктов?

- 15. Каков принцип действия электромагнитные фильтров? Назовите области их применения и способы регенерации.
- 16. В чем сущность процесса коагуляции?
- 17. Что такое электрокинетический потенциал? Какую роль он играет в процессе коагуляции?
- 18. Какие вещества используют в качестве коагулянтов и почему?
- 19. Назовите преимущества и недостатки использования в качестве коагулянтов солей железа по сравнению с солями алюминия.
- 20. Что такое флокуляция? Для чего она нужна?
- 21. Как определяют дозы коагулянтов и флокулянтов?
- 22. Почему нейтрализация щелочных вод дымовыми газами является примером ресурсосберегающей технологии?
- 23. Что такое гиразёр и как он устроен?
- 24. Назовите вещества, которые используют в качестве окислитетей?
- 25. Чем окислители отличаются от восстановителей?
- 26. Что такое свободный «активным» хлор и как его получают?
- 27. Как готовят «хлорку» и соединения, содержащие связанный «активный» хлор?
- 28. От каких параметров зависит время обеззараживания сточных вод химическими мето- дами?
- 29. В каких случаях «нормальное хлорирование» лучше заменить «перхлорированием»?
- 30. Как обезвреживают сульфидные стоки целлюлозных, нефтеперерабатывающих и нефтехимических заводов?
- 31. Каковы механизмы действие озона в процессах окисления?
- 32. Что такое электролиз? Каковы конструкции простейших электролизеров?
- 33. Какие процессы идут на катоде и аноде электролизера? Приведите примеры окислителей и восстановителей, образующихся в результате протекания электрохимических реакций.

Вопросы для устного опроса по теме «Современные методы переработки водно-органических отходов»

- 1. Аппаратурное оформление гибридных установок, использующих баро- и электромембранные методы.
- 2. Установки для сверхглубокой очистки воды.
- 3. Переработка стоков масложиркомбинатов.
- 4. Переработка стоков предприятий нефтяной промышленности.
- 5. Переработка стоков целлюлозно-бумажной промышленности.
- 6. Принципы применения обратного осмоса в комбинированных мембранных методах и многоступенчатых установках.
- 7. Специфика обезвреживания жидких радиоактивных отходов.
- 8. Принципы совершенствования существующих производств с использованием мембранных методов.
- 9. Конверсия мембран.
- 10. Конструкционные и эксплуатационные особенности аппаратов, работающих на предприятиях фармацевтики.
- 11. Конструкционные и эксплуатационные особенности аппаратов, работающих на винодельческих предприятиях.
- 12. Конструкционные и эксплуатационные особенности аппаратов, работающих на предприятиях производства молока.
- 13. Рекуперация твердых отходов методом электродиализа
- 14. Преимущества использования мембранных методов при обработке водно-органических отходов.

15. Перспективы развития мембранных процессов.

Примерные темы рефератов по разделу «Комбинированные многоступенчатые системы переработки и обезвреживание жидких радиоактивных и высокотоксичных отходов».

- 1. Безотходная переработка отходов
- 2. Особенности переработки твердых радиоактивных отходов
- 3. Санитарное захоронение отходов
- 4. Конструкционные особенности полигона для санитарного захоронения отходов
- 5. Выбор места захоронения высокотоксичных отходов
- 6. Проблемы захоронения радиоактивных отходов в геологических формациях.
- 7. Переработка радиоактивных отходов. Влияние на человека.
- 8. Решение проблемы утилизации радиоактивных отходов в [страна по выбору студента]

Перечень части компетенции, проверяемых оценочным средством: ОК-2, ПК-4

Критерии оценивания рефератов.

Оценка «отлично» — выполнены все требования к написанию и защите реферата: обозначена проблема и обоснована ее актуальность, сделан краткий анализ различных точек зрения на рассматриваемую проблему и логично изложена собственная позиция, сформулированы выводы, тема раскрыта полностью, выдержан объем, соблюдены требования к внешнему оформлению, даны правильные ответы на дополнительные вопросы.

Оценка «**хорошо**» – основные требования к реферату и его защите выполнены, но при этом допущены недочеты. В частности, имеются неточности в изложении материала; отсутствует логическая последовательность в суждениях; не выдержан объем реферата; имеются упущения в оформлении; на дополнительные вопросы при защите даны неполные ответы.

Оценка «удовлетворительно» — имеются существенные отступления от требований к реферированию. В частности, тема освещена лишь частично; допущены фактические ошибки в содержании реферата или при ответе на дополнительные вопросы; во время защиты отсутствует вывод.

Оценка «неудовлетворительно» — тема реферата не раскрыта, обнаруживается существенное непонимание проблемы.

Критерии дифференцированной оценки реферата

Критерии оценки	Максимальная оценка в баллах
Логичность изложения	3
Раскрытие темы	3
Использование широкой информационной базы	3
Наличие собственных выводов, обобщений, крити-	3
ческого анализа	
Соблюдение правил цитирования	2
Правильность оформления	1
Итого:	15

13-15 баллов – отлично

10-12 баллов – хорошо

8-9 баллов - удовлетворительно

0 баллов – неудовлетворительно

Критерии оценивания презентации.

Оценка «отлично» выставляется студенту, если:

- презентация соответствует теме самостоятельной работы;
- оформлен титульный слайд с заголовком (тема, цели, план и т.п.);

- сформулированная тема ясно изложена и структурирована;
- использованы графические изображения (фотографии, картинки и т.п.), соответствующие теме;
- выдержан стиль, цветовая гамма, использована анимация, звук; работа оформлена и предоставлена в установленный срок.

Оценка «хорошо» выставляется студенту, если:

- презентация соответствует теме самостоятельной работы; оформлен титульный слайд с заголовком (тема, цели, план и т.п.);
- сформулированная тема ясно изложена и структурирована;
- использованы графические изображения (фотографии, картинки и т.п.), соответствующие теме;
- работа оформлена и предоставлена в установленный срок.

Оценка *«неудовлетворительно»* выставляется студенту, если работа не выполнена или содержит материал не по вопросу.

Во всех остальных случаях работа оценивается на «удовлетворительно»

Критерии оценивания результатов устного опроса.

Оценка «*отпично*» ставится, если студент полно излагает материал (отвечает на вопрос), дает правильное определение основных понятий; обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только из учебника, но и самостоятельно составленные; излагает материал последовательно и правильно с точки зрения норм литературного языка.

Оценка *«хорошо»* ставится, если студент дает ответ, удовлетворяющий тем же требованиям, что и для оценки «отлично», но допускает 1–2 ошибки, которые сам же исправляет, и 1–2 недочета в последовательности и языковом оформлении излагаемого.

Оценка *«удовлетворительно»* ставится, если студент обнаруживает знание и понимание основных положений данной темы, нот излагает материал неполно и допускает неточности в определении понятий или формулировке правил; не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры; излагает материал непоследовательно и допускает ошибки в языковом оформлении излагаемого.

Оценка *«неудовлетворительно»* ставится, если студент обнаруживает незнание большей части соответствующего вопроса, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал. Оценка «2» отмечает такие недостатки в подготовке, которые являются серьезным препятствием к успешному овладению последующим материалом.

Критерии оценивания результатов контрольных работ.

Контрольная работа проводится в письменной форме.

Оценка «отлично» выставляется, если студент выполнил работу без ошибок и недочетов, допустил не более одного недочета.

Оценка «хорошо», если студент выполнил работу полностью, но допустил в ней не более одной негрубой ошибки и одного недочета, или не более двух недочетов.

Оценка «удовлетворительно», если студент правильно выполнил не менее половины работы или допустил не более двух грубых ошибок, или не более одной грубой и одной негрубой ошибки и одного недочета, или не более двух-трех негрубых ошибок, или одной негрубой ошибки и трех недочетов, или при отсутствии ошибок, но при наличии четырехпяти недочетов, плохо знает текст произведения, допускает искажение фактов.

Оценка «неудовлетворительно», если студент допустил число ошибок и недочетов превосходящее норму, при которой может быть выставлена оценка «3», или если правильно выполнил менее половины работы.

Критерии оценивания лабораторных работ.

- «5» (отлично): выполнены все задания лабораторной работы, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания лабораторной работы; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все задания лабораторной работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.
- «2» (не зачтено): студент не выполнил или выполнил неправильно задания лабораторной работы; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

4.2 Фонд оценочных средств для проведения промежуточной аттестации

Вопросы к экзамену:

- 1. Каковы основные правила формирования систем защиты биосферы?
- 2. Назовите основные подходы, используемые при разработке систем защиты биосферы.
- 3. Какие законы, лежат в основе описания массопереноса физической абсорбции?
- 4. Какие факторы определяют скорость физической и химической абсорбции?
- 5. В чем сущность сульфит-бисульфитного метода поглощения сернистого газа?
- 6. В чем сущность метода адсорбции?
- 7. Каким требованиям должны отвечать вещества, используемые в качестве адсорбентов?
- 8. Что такое изотерма сорбции? Для каких систем она может быть уравнением Лэнгмюра? Для описания каких систем лучше использовать теорию БЭТ?
- 9. Как работают установки с адсорберами периодического действия?
- 10. Каковы принципиальные особенности конструкции адсорберов непрерывного действия?
- 11. Как и почему осуществляют регенерацию адсорбентов?
- 12. Какие критерии лежат в основе выбора методов и схем очистки водных растворов?
- 13. Какое современное оборудование применяют для грубой очистки сточных вод от нерастворимых примесей?
- 14. В чем суть метода флотации и электрофлотации?
- 15. Охарактеризуйте устройства, используемые для отделения нефтепродуктов и жиров от очищенной воды во флотаторах.
- 16. Какие методы повышения эффективности оборудования, предназначенного для очистки от жиров и нефти Вы можете предложить?
- 17. Что такое электролиз? Каковы конструкции простейших электролизеров?
- 18. Какие процессы идут на катоде и аноде электролизера? Приведите примеры окислителей и восстановителей, образующихся в результате протекания электрохимических реакций.
- 19. Что такое концентрационная поляризация? Как снизить её негативное воздействие на процесс переработки растворов в электролизере?
- 20. Что такое «выход по току»? От каких факторов зависит его величина?
- 21. Какой процесс лежит в основе электрохимического обезвреживания цианидов?
- 22. Какой процесс лежит в основе электрохимического удаления из растворов ионов тяжелых металлов?
- 23. В чем преимущества и недостатки электрохимических методов очистки и обеззараживания растворов по сравнению с химическими?
- 24. Чем электрохимическая коагуляция отличается от электрокоагуляции?
- 25. В чем различия между ионным обменом и адсорбцией? Приведите примеры современных систем защиты, использующих эти методы.
- 26. Какие требования и почему предъявляются к ионообменным материалам?
- 27. Какие способы регенерации ионитов Вы знаете?

- 28. Какая технологическая схема с использованием ионного обмена на Ваш взгляд является идеальной для деминерализации растворов, содержащих сильные и слабые электролиты?
- 29. В чем сходства и различия мембранных и химических процессов очистки и разделения веществ?
- 30. Объясните, почему в мембранном пакете электродиализатора, предназначенного для обессоливания растворов, анионообменные мембраны чередуются с катионообменными?
- 31. Как выбрать оптимальную конструкцию каналов обессоливания электродиализаторов?
- 32. Какие механизмы лежат в основе концентрирования разбавленных промышленных стоков электромембранными методами?
- 33. Почему при переработке радиоактивных отходов используют несколько типов конструкций мембранных пакетов электродиализаторов?
- 34. В чем сущность методов микрофильтации, ультрафильтрации, обратного осмоса?
- 35. Какой из баромембранных методов используют для очистки сточных вод от масел и нефтепродуктов?
- 36. Каков состав биоактивного ила и пленки? Какое оборудование применяют для реализации биохимических методов защиты биосферы?
- 37. Какими факторами (и почему) определяется скорость процесса аэробной очистки?
- 38. Чем поля орошения отличаются от полей фильтрации и биологических прудов?
- 39. Охарактеризуйте основные механизмы нарушения технологии и эксплуатации аэротэнков и биофильтров, а также меры по их устранению.
- 40. Чем биореакторы первого поколения отличаются от биореакторов второго поколения?
- 41. Как осуществляют совместную очистку бытовых и сточных вод?
- 42. Какова стратегия и тактика защиты человека и среды обитания с использованием мембранных методов?
- 43. Каковы основные принципы создания безотходных и малоотходных технологий с использованием мембранных методов (на примере создания замкнутых по воде технологических циклов при производстве полиарамидных волокон)?
- 44. Как осуществляется контроль pH и микроколичеств загрязняющих веществ в атмосфере, гидросфере, литосфере с использованием стеклянных измерительных электродов и селективных электродов с ионообменной поверхностью?
- 45. Каковы основные принципы хроматографического определения микрокомпонентов в газовых, водных и водно-органических растворах? Как мембранные методы используют для обеспечения заданных значений рН элюентов?
- 46. Известны ли Вам мембранные методы регенерация абсорбентов (на примере очистки воздуха и метана от диоксида серы и углекислого газа)?
- 47. Какие методы термической нейтрализации отходящих газов с использованием нано- и микроструктурированных мембран с каталитической составляющей Вам известны?
- 48. Каковы классические и электрохимические окислительно-восстановительные методы обезвреживания токсичных примесей с использованием мембран (окисление кислородом воздуха, хлорирование, озонирование)?
- 49. Каковы основные принципы и аппаратурное оформление очистки и концентрирования растворов методом электродиализа?
- 50. В чём суть нейтрализации кислотно-основных стоков и регенерации абсорбентов методом биполярного электродиализа?
- 51. Как осуществляют рекуперацию твердых отходов методом электродиализа (на примере переработки пластиковых бутылок)?
- 52. В каких случаях применяют электродиализ с ультрафильтрационными мембранами? Каково аппаратурное оформление метода?

- 53. В чём суть переработки сточных вод масложиркомбинатов, предприятий нефтяной и целлюлозно-бумажной промышленности методами микро- и ультрафильтрации?
- 54. Каковы принципиальные особенности использования обратного осмоса в комбинированных мембранных методах переработки и обезвреживания жидких радиоактивных отходов?
- 55. Как используют мембранные методы для извлечения и рекуперации тяжёлых металлов?
- 56. Почему мембранные технологии являются малоотходными и ресурсосберегающими? В чём их преимущества по сравнению с традиционными методами очистки, фракционирования и концентрирования веществ?
- 57. Каковы важнейшие типовые процессы защиты среды обитания? Какова последовательность стадий разработки этих процессов?
- 58. Какие безотходные и ресурсосберегающие технологии использования воды в техносфере Вам известны? Какова концепция безотходного производства?
- 59. Какие принципы совершенствования существующих производств с использованием мембранных методов Вам известны?
- 60. Какие важнейшие процессы защиты человека на основе мембранных технологий Вам известны? Какие технологические, экологические и экономические принципы лежат в основе этих технологий?
- 61. Какие стадии разработки процессов очистки с использованием мембранных технологий Вам известны?

Перечень компетенций, проверяемых оценочным средством: ОК-2 — вопросы 1,2,5,12-18,20-22,24,26,29-33,35-40,42,43,47,48,50-61; ПК-4 — вопросы 3,4,6-11,19,23,25,27,28,44-46,49.

Пример экзаменационного билета:

Федеральное государственное образовательное учреждение высшего образования «Кубанский государственный университет»

Химия

Электрохимия Кафедра физической химии

В чём суть нейтрализации кислотно-основных стоков и регенерации абсорбентов

Дисциплина «Современные технологии защиты и реабилитации окружающей среды» Экзаменационный билет № 9

	методом биполярного электродиализа?		
2.	Каковы важнейшие типовые процессы защиты среды обитания? Какова		
	последовательность стадий разработки этих процессов?		
	Заведующий кафедрой	В.И. Заболоцкий	

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Критерии оценки по промежуточной аттестации в форме экзамена и зачета. При оценке учитываются следующие качественные показатели ответов:

- глубина (соответствие изученным теоретическим обобщениям); широта;
- осознанность (соответствие требуемым в программе умениям применять полученную информацию);
- полнота (соответствие объёму программы);
- число и характер ошибок.

Зачет.

Оценки «зачтено» заслуживает студент, обнаруживший знание основного программного материала в объёме, необходимом для дальнейшей учёбы и предстоящей работы по профессии, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «зачтено» выставляется студентам, допустившим погрешности непринципиального характера в ответе на экзамене и при выполнении экзаменационных заданий;

Оценка «не зачтено» выставляется студенту, обнаружившему пробелы в знаниях основного программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «не зачтено» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Экзамен.

- отметка «отлично» выставляется студенту, если ответ полный, правильный, самостоятельный, материал изложен в определенной логической последовательности демонстрируется многосторонность подходов, многоаспектность обсуждения проблемы, умение аргументировать собственную точку зрения, находить пути решения познавательных задач, устанавливать причинно-следственные связи между строением, свойствами и применением веществ, в логическом рассуждении и решении задачи нет ошибок, задача решена рациональным способом;
- отметка «хорошо» выставляется студенту, если ответ полный и правильный на основе изученных теорий, материал изложен в определённой логической последовательности, при этом допускаются несущественные ошибки в ответах на теоретические вопросы или в решении задачи, которые студент может исправить по указанию преподавателя
- отметка «удовлетворительно» выставляется студенту, если ответ полный, но при этом допущена существенная ошибка или ответ неполный, несвязный, не проявляются умения применять теоретические знания при решении практических проблем; за знание предмета с заметными пробелами, неточностями, но такими, которые не служат препятствием для дальнейшего обучения

- отметка «неудовлетворительно» выставляется, если ответ обнаруживает незнание основного содержания учебного материала.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1. Основная литература

- 1. Ветошкин А.Г. Защита окружающей среды от энергетических воздействий. М.: Высшая школа. – 2010. 383 с.
- 2. Волков В.А. Теоретические основы охраны окружающей среды. М.: Лань 2015. https://e.lanbook.com/book/61358#authors

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2. Дополнительная литература

- 1. Ветошкин, А.Г. Технологии защиты окружающей среды от отходов производства и потребления [Электронный ресурс] : учебное пособие / А.Г. Ветошкин. Электрон. дан. Санкт-Петербург : Лань, 2016. 304 с. Режим доступа: https://e.lanbook.com/book/72577.
- 2. Денисов, В.В. Экология и охрана окружающей среды. Практикум [Электронный ресурс] : учебное пособие / В.В. Денисов, Т.И. Дрововозова, Б.И. Хорунжий, О.Ю. Шалашова. Электрон. дан. Санкт-Петербург : Лань, 2017. 440 с. Режим доступа: https://e.lanbook.com/book/91305.

5.3. Периодические издания

Журнал «Мембраны и мембранные технологии» Журнал «Физическая химия»

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», в том числе современные профессиональные базы данных и информационные справочные системы, необходимые для освоения дисциплины (модуля).

- 1. Справочно-правовая система «Консультант Плюс» http://www.consultant.ru
- 2. Портал открытых данных Российской Федерации https://data.gov.ru
- 3. База открытых данных Министерства труда и социальной защиты РФ https://rosmintrud.ru/opendata
- 4. База данных Научной электронный библиотеки eLIBRARY.RU https://elibrary.ru/
- 5. База данных Всероссийского института научной и технической информации (ВИНИТИ) РАН http://www2.viniti.ru/
- б. Базы данных в сфере интеллектуальной собственности, включая патентные базы данных www.rusnano.com
- 7. Базы данных и аналитические публикации «Университетская информационная система РОССИЯ» https://uisrussia.msu.ru/
- 8. Федеральная государственная информационная система «Национальная электронная библиотека» https://нэб.pф
- 9. База данных профессиональных стандартов Министерства труда и социальной защиты РФ http://profstandart.rosmintrud.ru/obshchiy-informatsionnyy-blok/natsionalnyy-reestr-professionalnykh-standartov/
- 10. Базы данных Министерства экономического развития РФ http://www.economy.gov.ru

- 11. Официальный сайт Федерального агентства по техническому регулированию и метрологии http://protect.gost.ru/
- 12. Единая база гостов РФ http://gostexpert.ru/
- 13. Ресурсы по термодинамике (Martindale's calculators chemisty on-line center) http://www.martindalecenter.com/Calculators3B.html
- 14. Информационно-правовая система «Гарант» [Электронный ресурс] Режим доступа: http://garant.ru/
- 15. Электронно-библиотечная система «Консультант студента» www.studmedlib.ru
- 16. База нормативных документов по охране труда (http://econavt.ru/instrukcii-po-ohrane-truda/dokumenty)
- 17. Российская мембранная сеть Russian membrane network www.rusmembrane.net/
- 18. Электронные учебники кафедры Мембранной Технологии Российского Химико-Технологического Университета им. Д.И. Менделеева, http://membrane.msk.ru/index.php?pageID=77

7. Методические указания и материалы по видам занятий

Успешное освоение дисциплины предполагает активное, творческое участие студента путем планомерной, повседневной работы.

Общие рекомендации

Изучение дисциплины следует начинать с проработки рабочей программы, особое внимание, уделяя целям и задачам, структуре и содержанию курса.

Имеется электронная версия лекций по данной дисциплине.

Основной формой обучения студентов является самостоятельная работа над учебным материалом. Процесс изучения дисциплины "Мембранные технологии в решении экологических проблем" состоит из следующих этапов:

- 1. Проработка теоретического материала по рекомендованному учебнику и конспектам лекций, предоставленных преподавателем в электронном виде. В случае недоступности данного пособия необходимо обратиться к списку литературы, приведенного в рабочей программе дисциплины "Мембранные технологии в решении экологических проблем".
 - 2. Выполнение самостоятельных работ.
- 3. Подготовка и представление перед однокурсниками презентаций на заданную тему.
 - 4. Сдачи экзамена в устной или письменной форме (по усмотрению преподавателя).

С целью контроля и подготовки студентов к изучению новой темы вначале каждой практического занятия преподавателем проводится индивидуальный или фронтальный устный опрос по выполненным заданиям предыдущей темы. Критерии оценки: — правильность ответа по содержанию задания (учитывается количество и характер ошибок при ответе);

- полнота и глубина ответа (учитывается количество усвоенных фактов, понятий и т.п.);
- сознательность ответа (учитывается понимание излагаемого материала);
- логика изложения материала (учитывается умение строить целостный, последовательный рассказ, грамотно пользоваться специальной терминологией);
- рациональность использованных приемов и способов решения поставленной учебной задачи (учитывается умение использовать наиболее прогрессивные и эффективные способы достижения цели);
- своевременность и эффективность использования наглядных пособий и технических средств при ответе (учитывается грамотно и с пользой применять наглядность и демонстрационный опыт при устном ответе);
- использование дополнительного материала (обязательное условие);

– рациональность использования времени, отведенного на задание (не одобряется затянутость выполнения задания, устного ответа во времени, с учетом индивидуальных особенностей студентов).

Развернутый ответ студента должен представлять собой связанное, логически последовательное сообщение на заданную тему, показывать его умение применять определения, правила в конкретных случаях.

Реферат представляет собой краткое изложение содержания научных трудов, литературы по определенной научной теме. Объем реферата может достигать 20–30 стр.; время, отводимое на его подготовку – от 2 недель до месяца. Подготовка реферата подразумевает самостоятельное изучение студентом нескольких (не менее 10) литературных источников (монографий, научных статей и т.д.) по определённой теме, не рассматриваемой подробно на лекции, систематизацию материала и краткое его изложение. Цель написания реферата – привитие студенту навыков краткого и лаконичного представления собранных материалов и фактов в соответствии с требованиями, предъявляемыми к научным отчетам, обзорам и статьям.

Работа должна состоять из следующих частей:

- введение,
- основная часть (может включать 2-4 главы)
- заключение.
- список использованных источников,
- приложения.

Во введении обосновывается актуальность выбранной темы для исследования, характеризуется ее научное и практическое значение для развития современного производства, формируются цели и задачи контрольной работы, определяется объект, предмет и методы исследования, источники информации для выполнения работы. Примерный объем введения — 1—2 страницы машинописного текста.

Основная часть работы выполняется на основе изучения имеющейся отечественной и зарубежной научной и специальной экономической литературы по исследуемой проблеме, законодательных и нормативных материалов. Основное внимание в главе должно быть уделено критическому обзору существующих точек зрения по предмету исследования и обоснованной аргументации собственной позиции и взглядов автора работы на решение проблемы. Теоретические положения, сформулированные в главе, должны стать исходной научной базой для выполнения последующих глав работы.

Для подготовки реферата должны использоваться только специальные релевантные источники. Кроме рефератов, тематика которых связана с динамикой каких-либо явлений за многие годы, либо исторического развития научных взглядов на какую-либо проблему, следует использовать источники за период не более 10 лет.

Примерный объем – 15–20 страниц машинописного текста.

В заключении отражаются основные результаты выполненной работы, важнейшие выводы, и рекомендации, и предложения по их практическому использованию. Примерный объем заключения -2-3 страницы машинописного текста.

В приложениях помещаются по необходимости иллюстрированные материалы, имеющие вспомогательное значение (таблицы, схемы, диаграммы и т.п.), а также материалы по использованию результатов исследований с помощью вычислительной техники (алгоритмы и программы расчетов и решения конкретных задач и т.д.).

Задание о подготовке реферата студентом выдается преподавателем индивидуально, но также может быть инициировано самим студентом.

Презентации на заданную тему выполняются в программе Power Point. Она должна состоять из 5-8 слайдов и содержать основные определения, фактический иллюстрированный материал, выводы и список использованных источников.

Материал для сообщения необходимо искать в книгах, журналах и интернет-источниках, опубликованных в последние 3 года.

Доклад, сопровождающий презентации, должен занимать 7-10 минут.

И доклад, и презентации предварительно присылаются преподавателю по электронной почте на проверку.

Самостоятельные работы выполняются каждым студентом на отдельных листках. Не допускается использование любых средств коммуникации (ноутбуки, мобильные телефоны с выходом в интернет и пр.

Лабораторная работа выполняется студентом в составе группы, подгруппы или индивидуально. Все вычисления желательно проводить во время занятия. При недостаточном количестве времени их можно выполнять в часы самостоятельной работы с обязательным представлением результатов преподавателю на последующих занятиях или консультациях.

Оформление отчетов должно проводиться после окончания работы. Для подготовки к защите отчета следует проанализировать результаты, сопоставить их с известными теоретическими положениями или справочными данными, обобщить результаты исследований в виде выводов по работе, подготовить ответы на вопросы. После завершения выполнения лабораторных работ производится их защита.

Допускается использование рабочих тетрадей, в которых законспектированы наиболее важные с точки зрения каждого из студентов моменты, выделенные при самостоятельной проработке каждой из тем.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю)

8.1 Перечень информационных технологий.

- 1. Использование слайд-презентаций при проведении лекционных занятий.
- 2. Организация взаимодействия с обучающимися посредством электронной почты (проверка домашних заданий и консультирование посредством электронной почты).

8.2 Перечень необходимого лицензионного программного обеспечения

- 1. Microsoft Office
- 2. Программное обеспечение для слабовидящих

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

№	Вид ра-	Материально-техническое обеспечение дисциплины (модуля) и осна-
745	бот	щенность
1.	Лекцион-	Учебная аудитория для проведения занятий лекционного типа, оснащен-
	ные заня-	ная комплектом учебной мебели, доской-экраном универсальной, проек-
	тия	тором, ноутбуком и соответствующим программным обеспечением для
		демонстрации презентаций.
		(ауд. 126с, г. Краснодар, ул. Ставропольская, 149)

2.	Семинар-	Учебная аудитория для проведения занятий семинарского типа, оснащен-
۷.	ские за-	ная комплектом учебной мебели, доской-экраном универсальной, проек-
	НЯТИЯ	тором, ноутбуком и соответствующим программным обеспечением для
	КИТКН	демонстрации презентаций.
2	π.σ	(ауд. 126с корп. С, г. Краснодар, ул. Ставропольская, 149)
3.	Лабора-	Учебные лаборатории, укомплектованные специализированной мебелью,
	торные	вытяжной системой вентиляции, меловой доской, средствами пожарной
	занятия	безопасности и оказания первой медицинской помощи и необходимым ла-
		бораторным оборудованием:
		1. Учебная лаборатория коллоидной химии (ауд. 328с корп. С, г. Красно-
		дар, ул. Ставропольская, 149).
		Оснащена необходимым лабораторным оборудованием:
		Сканирующий спектрофотометр Leki SS2109UV; Спектрофотометр Leki
		SS2107; Микроскоп оптический Altami; Кондуктометр «Эксперт-002»;
		Весы аналитические «Adventures Pro»; Турбидиметр Hann; Вискозиметр
		Brookfield; Вискозиметр капиллярный ВПЖ-2; Весы лабораторные; Весы
		торсионные; Мешалка с подогревом «Ika C-MAB HS7»; Шейкер лабора-
		торный LS110; pH-метр Hanna Hi2211; Мультиметр; Источник пистания
		постоянного тока стабилизированный Б5-49; Кондуктометр портативный
		Hanna HI 9033; Насос перистальтический многоканальный; Насос пери-
		стальтический одноканальный LS 301; Мультитест ИПП-101-1; ПК.
4.	Группо-	Учебные аудитории для проведения групповых и индивидуальных кон-
	вые (ин-	сультаций, оснащенные комплектом учебной мебели, доской-экраном
	дивиду-	универсальной, переносным проектором, ноутбуком и соответствующим
	альные)	программным обеспечением для демонстрации презентаций.
	консуль-	(ауд. 328с, 332с, 416с, г. Краснодар, ул. Ставропольская, 149)
	тации	
5.	Текущий	Учебные аудитории для проведения текущего контроля и промежуточной
	контроль,	аттестации, оснащенные комплектом учебной мебели, доской-экраном
	промежу-	универсальной, переносным проектором, ноутбуком и соответствующим
	точная ат-	программным обеспечением для демонстрации презентаций.
	тестация	(ауд. 328с, 332с, 416с, г. Краснодар, ул. Ставропольская, 149)
6.	Самосто-	Помещения для самостоятельной работы студентов, оснащенные учебной
	ятельная	мебелью и компьютерной техникой с возможностью подключения к сети
	работа	"Интернет" и обеспечением доступа в электронную информационно-обра-
	•	зовательную среду университета.
		(ауд. 329с, 400с, 431с, г. Краснодар ул. Ставропольская, 149)
	l	(