Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.ДВ.15.02 Математические проблемы механики

Направление подготовки:

01.03.01 Математика

Направленность (профиль): Математическое моделирование

Программа подготовки:

академическая

Форма обучения:

очная

Квалификация (степень) выпускника:

бакалавр

Краснодар 2017

Рабочая программа дисциплины Б1.В.ДВ.15.02 «Математические проблемы механики» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению подготовки 01.03.01 Математика.

Программу составил:

Бирюк А.Э., доцент, кандидат физ.-мат. наук

Ay

Рабочая программа дисциплины Б1.В.ДВ.15.02 «Математические проблемы механики» утверждена на заседании кафедры теории функций протокол № 11 «09» июня 2017 г.

Заведующий кафедрой (разработчика) Лазарев В.А.

___less__

Рабочая программа обсуждена на заседании кафедры функционального анализа и алгебры протокол № 15 «09» июня 2017 г.

Заведующая кафедрой (выпускающей) Барсукова В.Ю.

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук протокол № 3 «20» июня 2017 г.

Председатель УМК факультета Титов Г.Н.

Humeb

Рецензенты:

Гусаков Валерий Александрович, канд. физ. – мат. наук, директор ООО «Просвещение – Юг»

Засядко О.В., доцент пед. наук, доцент кафедры информационных образовательных технологий ФГБОУ ВО КубГУ

1 Цели и задачи изучения дисциплины.

1.1 Цель освоения дисциплины.

Главная цель курса – изучение основных понятий, концепций и методов механики.

1.2 Задачи дисциплины.

- ознакомить слушателей с ключевыми положениями механики, основными этапами ее развития;
- ознакомить слушателей с основными направлениями развития механики;
- познакомить слушателей с самыми последними достижениями и результатами механики деформируемого твердого тела и механики жидкости и газа;
- дать глубокое представление слушателям о новых направлениях в механике и актуальных задачах механики, таких как наноматериалы и исследование их свойств, обратные задачи в механике деформируемого твердого тела, развитие современных вычислительных комплексов;
- дать представление о нелинейных проблемах в механике;
- научить студентов умению самостоятельно работать со специальной математической литературой по механике, добывать и осознанно применять полученные знания;
- выработать у студентов навыки математического исследования прикладных задач механики сплошных сред, интерпретации результатов исследования, доведения решения до практически приемлемого результата с применением вычислительной техники.

1.3 Место дисциплины в структуре образовательной программы.

Дисциплина «Математические проблемы механики» относится к вариативной части Блока 1 "Дисциплины " учебного плана и является дисциплиной по выбору.

Программа рассчитана на студентов, прослушавших курс математического анализа, включающий дифференциальное и интегральное исчисление, а также курсы линейной алгебры.

Знания, полученные в этом курсе, лежит в основе дальнейшего обучения профессиональной деятельности для решения практических задач в различных областях

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся профессиональных компетенций: ОПК-1, ОПК-3, ПК-3.

No	Индекс	Содержание	В результате	изучения учебной	й дисциплины	
	компет компетенции (или её		обучающиеся должны			
п.п.	енции	части)	знать	уметь	владеть	
1.		готовностью	- основные	- применять	-	
	ОПК-1	использовать	понятия,	математически	математически	
		фундаментальные	концепции и	е методы,	м аппаратом и	
	знания в области		методы	модели и	навыками	
	математического		механики;	законы для	использования	
	анализа,			решения	современных	
		комплексного и		практических	подходов и	
	функционального			задач;	методов	
		анализа, алгебры,			математики,	
		аналитической				
		геометрии,				

№	Индекс компет	Содержание компетенции (или её	В результате изучения учебной дисциплинь обучающиеся должны		
п.п.	енции	части)	знать	уметь	владеть
		дифференциальной геометрии и топологии, дифференциальных уравнений, дискретной математики и математической логики, теории вероятностей, математической статистики и случайных процессов, численных методов, теоретической механики в будущей профессиональной деятельности			
2.	ОПК-3	способностью к самостоятельной научно- исследовательской работе	- основные понятия, концепции и методы механики;	- применять математически е методы, модели и законы для решения практических задач;	- математически м аппаратом и современными подходами к описанию, анализу, теоретическом у и экспериментал ьному исследованию;
3.	ПК-3	способностью строго доказать утверждение, сформулировать результат, увидеть следствия полученного результата	-основные понятия и методы вариационног о исчисления, уравнений математическ ой физики	-применять математически е методы и законы для решения практических задач	- математически м аппаратом, необходимым для использования в обучении и профессионал ьной деятельности.

- 2. Структура и содержание дисциплины.
- 2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины составляет 2 зачетные единицы (72 часа, из них – 50.2 ч. контактной работы: лекционных 24 ч., практических 24 ч., КСР 2 ч., ИКР 0.2 ч.; 21.8 ч. СР).

Вил уцебр	Всего	Семестры (часы)	
Вид учест	Вид учебной работы		
Контактная работа, в то	50,2	50,2	
Аудиторные занятия (все	48	48	
Занятия лекционного типа		24	24
Лабораторные занятия		24	24
Занятия семинарского типа	а (семинары, практические		
занятия)		-	-
Иная контактная работа	:	2,2	2,2
Контроль самостоятельной	í работы (КСР)	2	2
Промежуточная аттестаци.	я (ИКР)	0,2	0,2
Самостоятельная работа	, в том числе:	21,8	21,8
Проработка учебного мате	риала	8	8
Выполнение индивидуалы	ных заданий	8	8
Подготовка к текущему ко	нтролю	5,8	5,8
Контроль:		-	-
Подготовка к экзамену	-	-	
Общая трудоемкость	час.	72	72
	в том числе контактная работа	50,2	50,2
	зач. ед	2	2

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в <u>8</u> семестре (очная форма)

No		Количество часов				
разд	Наименование разделов	Всего	Аудиторная работа			Самостоятельная работа
ела			Л	ПЗ	ЛР	CPC
1	2	3	4	5	6	7
1.	Комплексный анализ.	16	6	4		6
2.	Операционное исчисление.	14	4	4		6
3.	Вариационное исчисление.	16	4	6		6
1	Уравнения математической	23,8	10	10		3,8
4.	физики.					
	Итого по дисциплине:		24	24	_	21,8

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

	Наименование		Форма
$N_{\underline{0}}$	раздела	Содержание раздела	текущего
			контроля

1	2	3	4
1.		Функции комплексной переменной, их пределы и	Л
		непрерывность. Производная и комплексная	
		дифференцируемость. Условия Коши – Римана.	
		Аналитичность функции в точке и в области.	
		Гармонические и сопряженные гармонические	
		функции. Геометрический смысл модуля и	
		аргумента производной аналитической функции.	
	Комплексный	Понятие о конформном отображении. Некоторые	
	анализ.	элементарные функции комплексной	
		переменной. Интеграл от функции комплексной	
		переменной вдоль кривой, его свойства и	
		вычисление в случае параметрического задания	
		кривой. Теорема Коши. Неопределенный	
		интеграл. Формула Ньютона – Лейбница.	
		Интегральная формула Коши. Понятие о ряде	
		Лорана.	
2.		Преобразование Лапласа, его свойства. Класс	Л
		оригиналов. Класс изображений. Основные	
		теоремы операционного исчисления.	
		Изображение некоторых элементарных функций.	
	Операционное	Восстановление оригинала по изображению для	
	исчисление.	рациональных функций. Свёртка двух	
		оригиналов, ее свойства. Преобразование	
		Лапласа свёртки. Решение линейных	
		дифференциальных уравнений и их систем	
		операционным методом.	
3.		Примеры задач вариационного исчисления.	Л
		Функционал, его вариация. Экстремум	
		функционала. Необходимое условие экстремума.	
		Простейшая задача вариационного исчисления.	
	D	Уравнение Эйлера. Частные случаи	
	Вариационное	интегрируемости уравнения Эйлера.	
	исчисление.	Функционалы с производными высшего порядка.	
		Экстремумы функционалов, зависящих от	
		нескольких функций. Функционалы от функций	
		нескольких переменных. Условный экстремум	
		функционала	
4.		Физические задачи, приводящие к	Л
		дифференциальным уравнениям в частных	
		производных. Линейные дифференциальные	
		уравнения в частных производных второго	
	Уравнения математической физики.	порядка: уравнения гиперболического,	
		параболического и эллиптического типа.	
		Постановка краевых задач для уравнения	
		теплопроводности, уравнения Лапласа и	
		волнового уравнения. Неограниченная струна и	
		формула Даламбера. Метод	
		распространяющихся волн. Полуограниченная	
		струна. Метод продолжений. Метод Фурье	
		решения краевых задач для уравнения	
		теплопроводности. Решение краевых задач для	

волнового уравнения. Двумерное уравнение	
теплопроводности. Решение для случаев	
прямоугольной и круговой области. Решение	
задачи Дирихле для уравнения Лапласа для	
простейших областей. Приближенные	
(сеточные) методы решения уравнений в частных	
производных.	

2.3.2 Занятия семинарского типа.

Семинарские занятия: не предусмотрены.

2.3.3 Практические занятия.

		Форма
$N_{\underline{0}}$	Наименование лабораторных работ	текущего
		контроля
1	3	4
1.	Функции комплексной переменной. Их дифференцирование.	Отчет по
		лабораторной
	функции по известной действительной или мнимой части.	работе
2.		Отчет по
	Вычисление интегралов от функций комплексной переменной.	лабораторной
		работе
3.	Ряды Тейлора и Лорана. Представление аналитических функций	Отчет по
	1 1 1	лабораторной
	рядами.	работе
4.	Изображение свертки двух оригиналов. Изображение производных и	Отчет по
	интеграла от оригинала.	лабораторной
	интеграла от оригинала.	работе
5.		Отчет по
	Вариационное исчисление. Уравнение Эйлера.	лабораторной
		работе
6.	Экстремумы функционалов, зависящих от производных высших	Отчет по
	порядков. Решение уравнения Эйлера – Пуассона.	лабораторной
	порядков. т ещение уравнения экпера – туассона.	работе
7.	Экстремумы функционалов, зависящих от нескольких функций.	Отчет по
	Решение системы уравнений Эйлера.	лабораторной
	т степие системы уравнении эилера.	работе
8.	Приведение линейных уравнений в частных производных второго	Отчет по
	порядка к каноническому виду.	лабораторной
	порядки к кипопи всекому виду.	работе
9.		Отчет по
	Решение уравнений колебаний струны методом Даламбера.	лабораторной
		работе
10.		Отчет по
	Решение краевых задач для уравнения теплопроводности.	лабораторной
		работе
11.		Отчет по
	Решение краевых задач для волнового уравнения.	лабораторной
		работе

12.	Пуравнения Лапласа и Пуассона. Залача Лирихле лля прямоугольника	Отчет по лабораторной
	n kpyra.	работе

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы - не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Комплексный анализ.	Подготовка к практическим занятиям. Подготовка к контрольной работе «Функции комплексной переменной». Подготовка к тестированию.
2	Операционное исчисление.	Подготовка к практическим занятиям. Подготовка к контрольной работе «Операционное исчисление». Подготовка к тестированию.
3	Вариационное исчисление.	Подготовка к практическим занятиям. Подготовка к контрольной работе «Вариационное исчисление». Подготовка к тестированию.
	Уравнения математической физики.	Подготовка к практическим занятиям. Подготовка к тестированию.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

При изучении данного курса используются как традиционные лекции и лабораторные занятия, так и современные интерактивные образовательные технологии.

Цель лабораторных занятий – научить студента применять полученные на лекциях теоретические знания к решению и исследованию конкретных задач.

К образовательным технологиям также относятся интерактивные методы обучения. Интерактивность подачи материала по дисциплине «Математические проблемы механики» предполагает не только взаимодействия вида «преподаватель - студент» и «сту- дент - преподаватель», но и «студент - студент». Все эти виды взаимодействия хорошо до- стигаются при изложении материала, в ходе дискуссий. Также используются занятия- визуализации и доклады студентов.

Дискуссия

Возможность дискуссии предполагает умение высказать собственную идею, предложить свой путь решения, аргументировано отстаивать свою точку зрения, связно изла- гать мысли. Полезны следующие задания: составление плана решения задачи, поиск дру- гого способа решения, сравнение различных способов решения, проведение выкладок для решения задачи и выкладок для проверки правильности полученного решения, рассмот- рение задач с лишними и недостающими данными. Студентам предлагается проанализи- ровать варианты решения, высказать своё мнение. Основной объем использования интер- активных методов обучения реализуется именно в ходе дискуссий.

Общие вопросы, которые выносятся на дискуссию:

Описание модели.

Исследование модели или поиск различных способов решений задачи.

Выбор среди рассматриваемых способов наиболее рационального.

Занятие-визуализация.

В данном типе передача преподавателем информации студентам сопровождается показом различных рисунков, структурно-логических схем, опорных конспектов, диаграмм и т. п. (например, с помощью слайдов).

Всего учебным планом предусмотрено 24 часа в интерактивной форме

Семестр	Вид	Используемые интерактивные	Количе-
	занятия	образовательные технологии	ство ча-
			сов
6	Лаборатор- ные	Занятие-визуализация: «Уравнение Эйлера»	4
	занятия	Дискуссия «Необходимое условие экстремума»	10
		Занятие-визуализация: «Примеры задач вариационного исчисления»	10
Итого:			24

Самостоятельная работа студентов является неотъемлемой частью процесса подго- товки. Под самостоятельной работой понимается часть учебной планируемой работы, ко- торая выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Самостоятельная работа направлена на усвоение системы научных и профессиональных знаний, формирования умений и навыков, приобретение опыта самостоятельной творческой деятельности. СРС помогает формировать культуру мышления студентов, расширять познавательную деятельность.

Виды самостоятельной работы по курсу:

- **а) по целям:** подготовка к лекциям, к практическим занятиям, к контрольной работе, к коллоквиуму.
- **б) по характеру работы:** изучение литературы, конспекта лекций; поиск литературы в библиотеке; конспектирование рекомендуемой для самостоятельного изучения научной литературы; решение задач, тестов

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций со студентом при помощи электронной информационно-образовательной среды ВУЗа.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

4.1 Фонд оценочных средств для проведения текущего контроля.

- 1. Функции комплексной переменной. Их дифференцирование. Условия Коши–Римана. Восстановление дифференцируемой функции по известной действительной или мнимой части.
- 2. Вычисление интегралов от функций комплексной переменной.
- 3. Ряды Тейлора и Лорана. Представление аналитических функций рядами.
- 4. Изображение свертки двух оригиналов. Изображение производных и интеграла от оригинала.
- 5. Вариационное исчисление. Уравнение Эйлера.
- 6. Экстремумы функционалов, зависящих от производных высших порядков. Решение уравнения Эйлера Пуассона.
- 7. Экстремумы функционалов, зависящих от нескольких функций. Решение системы уравнений Эйлера.
- 8. Приведение линейных уравнений в частных производных второго порядка к каноническому виду.
- 9. Решение уравнений колебаний струны методом Даламбера.
- 10. Решение краевых задач для уравнения теплопроводности.
- 11. Решение краевых задач для волнового уравнения.
- 12. Уравнения Лапласа и Пуассона. Задача Дирихле для прямоугольника и круг

4.2 Фонд оценочных средств для проведения промежуточной аттестации. Вопросы к зачету

- 1. Функции комплексной переменной, их пределы и непрерывность.
- 2. Производная и комплексная дифференцируемость.
- 3. Условия Коши Римана. Аналитичность функции в точке и в области.
- 4. Гармонические и сопряженные гармонические функции.
- 5. Геометрический смысл модуля и аргумента производной аналитической функции.
- 6. Понятие о конформном отображении.
- 7. Некоторые элементарные функции комплексной переменной.
- 8. Интеграл от функции комплексной переменной вдоль кривой, его свойства и вычисление в случае параметрического задания кривой.
- 9. Теорема Коши.
- 10. Неопределенный интеграл.
- 11. Формула Ньютона Лейбница.
- 12. Интегральная формула Коши.
- 13. Понятие о ряде Лорана.
- 14. Необходимое условие экстремума.

- 15. Простейшая задача вариационного исчисления.
- 16. Уравнение Эйлера.
- 17. Частные случаи интегрируемости уравнения Эйлера.
- 18. Функционалы с производными высшего порядка.
- 19. Экстремумы функционалов, зависящих от нескольких функций
- 20. Метод распространяющихся волн. Полуограниченная струна
- 21. Метод Фурье решения краевых задач для уравнения теплопроводности.
- 22. Решение краевых задач для волнового уравнения.
- 23. Двумерное уравнение теплопроводности. Решение для случаев прямоугольной и круговой области.
- 24. Решение задачи Дирихле для уравнения Лапласа для простейших областей.
- 25. Приближенные (сеточные) методы решения уравнений в частных производных

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

5.1 Основная литература:

- 1. Жуков, В.Г. Механика. Сопротивление материалов [Электронный ресурс] : учебное пособие / В.Г. Жуков. Электрон. дан. Санкт-Петербург : Лань, 2012. 416 с. Режим доступа: https://e.lanbook.com/book/3721
- 2. Теоретическая механика: курс лекций / Министерство образования и науки Российской Федерации, Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Северо-Кавказский федеральный университет»; авт.-сост. Л.М. Кульгина, А.Р. Закинян и др. -

Ставрополь: СКФУ, 2015. - 118 с.: ил. - Библиогр. в кн.; То же [Электронный ресурс]. - URL: http://biblioclub.ru/index.php?page=book&id=457756

3. Остроградский, М.В. Собрание сочинений / М.В. Остроградский. - Москва ; Ленинград : Изд-во Акад. наук СССР, 1946. - Т. 1. - Ч. 2. Лекции по аналитической механике. - 303 с. - ISBN 978-5-4460-8375-6 ; То же [Электронный ресурс]. - URL: http://biblioclub.ru/index.php?page=book&id=105635

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература:

- 1. Бутенин, Н.В. Курс теоретической механики [Электронный ресурс] : учебное пособие / Н.В. Бутенин, Я.Л. Лунц, Д.Р. Меркин. Электрон. дан. Санкт-Петербург : Лань, 2009. 736 с. Режим доступа: https://e.lanbook.com/book/29
- 2. Фриш, Сергей Эдуардович. Курс общей физики [Текст]: учебник: [в 3 т.]. Т. 1: Физические основы механики. Молекулярная физика. Колебания и волны / С. Э. Фриш, А. В. Тиморева. Изд. 12-е, стер. СПб. [и др.]: Лань, 2007. 470 с.: ил. (Лучшие классические учебники) (Классическая учебная литература по физике) (Учебники для вузов. Специальная литература).

5.3. Периодические издания:

Не предусмотрены

- 6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.
 - 1. Электронная библиотечная система издательства "Лань" http://e.lanbook.com/
 - 2. Электронная библиотечная система "Юрайт" http://www.biblio-online.ru/
 - 7. Методические указания для обучающихся по освоению дисциплины.

Методические указания для обучающихся по освоению дисциплины: *не предусмотрены*

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

- 8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.
 - 8.1 Перечень информационных технологий.

Информационные технологии - не предусмотрены

8.2 Перечень необходимого программного обеспечения.

- MS Office 2015
- программа для работы с pdf файлами Adobe Acrobat Professional
- программа для создания слайд-шоу Microsoft Power Point
- архиватор WinRAR
- браузер MozillaFirefox браузер Chrome

8.3 Перечень информационных справочных систем:

Справочные системы: не предусмотрены.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине.

No	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные занятия	Лекционная аудитория, специально оборудованная мультимедийными демонстрационными комплексами, учебной мебелью
2.	Лабораторные занятия	Помещение для проведения лабораторных занятий оснащенное учебной мебелью, доской маркером или мелом
3.	Групповые (индивидуальные) консультации	Помещение для проведения групповых (индивидуальных) консультаций, учебной мебелью, доской маркером или мелом
4.	Текущий контроль, промежуточная аттестация	Помещение для проведения текущей и промежуточной аттестации, оснащенное учебной мебелью.
5.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета

Рецензия

на рабочую программу дисциплины «Математические проблемы механики» по направлению подготовки 01.03.01 Математика, очной формы обучения. Составитель рабочей программы: канд. физ.-мат. наук Костенко К.И.

Рабочая программа полностью соответствует требованиям ФГОС ВО по направлению подготовки 01.03.01 Математика (уровень бакалавриата).

Рабочая программы содержит тематический план, который раскрывает последовательность изучения тем и разделов программы, с указанием практических часов.

Содержащийся перечень и количество практических занятий достаточен для формирования уровня подготовки, определенного требованиями $\Phi \Gamma OC$.

Перечень тем и разделов, которые должны изучить слушатели, а также основные требования к уровню подготовки слушателей объему знаний и умений, которым они должны обладать по каждой из перечисленных тем. Информация о видах и объеме учебной работы содержит тематику лекционных занятий и лабораторных работ, призванных сформировать у студентов базовые знания, необходимые для решения задач, возникающих в практической деятельности.

Самостоятельные задания развивают знания, умения и навыки полученные в результате изучения предмета.

Перечень средств обучения исчерпывающий и соответствует предъявляемым требованиям.

Список литературы содержит достаточный состав источников, необходимых для качественного обучения студентов.

Рабочая программа дисциплины «Математические проблемы механики» способствует приобретению и развитию умений и навыков для решения профессиональных задач, формированию компетентного специалиста.

Рецензент, Гусаков В.А..

канд. физ. – мат. наук,

директор ООО «Просвещение-Юг».

Рецензия

на рабочую программу дисциплины «Математические проблемы механики» по направлению подготовки 01.03.01 Математика, очной формы обучения. Составитель рабочей программы: канд. физ.-мат. наук Костенко К.И.

Рецензируемая рабочая программа дисциплины составлена в соответствии с требованиями ФГОС ВО по направлению подготовки 01.03.01 Математика.

Тематический план имеет оптимальное распределение часов по разделам и темам по очной форме обучения, в соответствии с учебным планом.

Указан перечень тем и разделов, которые должны изучить слушатели, а также основные требования к уровню подготовки слушателей объему знаний и умений, которым они должны обладать по каждой из перечисленных тем.

Содержащийся перечень тем лабораторных занятий достаточен для формирования уровня подготовки, определенного требованиями ФГОС. В программе приведены оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение.

Профильная направленности в программе реализуется путем использования приобретенных знаний и умений в решениях задач профильной направленности, выполнении исследовательских и проектных работ по своей специальности с использованием математических методов, получения опыта использования математики в содержательных и профессионально значимых ситуациях.

Изучение дисциплины формирует весь необходимый перечень компетенций, предусмотренных ФГОС ВО. Представленная программа содержательна, отвечает требованиям ФГОС ВО по построению и содержанию, поставленным задачам, включает достаточное количество разнообразных элементов, направленных на развитие умственных, творческих способностей обучающегося.

Засядко О.В., доцент, канд. пед. наук, доцент кафедры информационных образовательных технологий ФГБОУ ВО КубГУ.