Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.06 КРАЕВЫЕ ЗАДАЧИ И ПРОЕКЦИОННЫЕ АЛГОРИТМЫ

Направление подготовки /специальность

02.04.01 МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ

Направленность (профиль) /специализация

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ТЕОРИИ СЛОЖНЫХ СИСТЕМ

Программа подготовки

АКАДЕМИЧЕСКАЯ

Форма обучения

КАНРО

Квалификация (степень) выпускника

МАГИСТР

Краснодар 2017

Рабочая программа дисциплины «Краевые задачи и проекционные алгоритмы» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.04.01 МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ

Программу составил:

Марковский А.Н., доц. кафедры математических и компьютерных методов, к. ф.-м. н.

Рабочая программа дисциплины «Краевые задачи и проекционные алгоритмы» утверждена на заседании кафедры математических и компьютерных методов

протокол № 14 «09» июня 2017 г.

Заведующий кафедрой (разработчика) Дроботенко М.И.

Рабочая программа обсуждена на заседании кафедры математических и компьютерных методов

протокол № 14 «09» июня 2017 г.

Заведующий кафедрой (выпускающей)

Дроботенко М.И.

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук

протокол № 3 «20» июня 2017 г.

Председатель УМК факультета

Титов Г.Н

Trymple

Рецензенты:

Бунякин А.В., доцент кафедры оборудования нефтегазовых промыслов $\Phi \Gamma Б O Y B O \ll K y \delta \Gamma T Y \gg$

Никитин Ю.Г., доцент кафедры теоретической физики и компьютерных технологий ФГБОУ ВО «Кубанский государственный университет»

1.1 Цели и задачи освоения дисциплины

Цель освоения дисциплины — ознакомление магистрантов с теоретическими основами и вычислительными проекционными методами решения краевых задач математической физики.

Особое внимание уделяется методу базисных потенциалов который опирается на полноту систем сдвигов фундаментальных решений уравнения Лапласа и построению сходящихся алгоритмов решения краевых задач. Изучаются прикладные программы, предназначенные для создания алгоритмов и визуализации полученных результатов.

1.2 Задачи дисциплины

Задачи освоения магистрантами дисциплины — получение навыков применения математических методов при решении краевых задач, в частности, внутренней задачи для бигармонического уравнения.

Знания и навыки, получаемые магистрантами в результате изучения дисциплины, необходимы для подготовки к решению сложных прикладных задач.

1.3 Место дисциплины (модуля) в структуре ООП ВО

Дисциплина «Краевые задачи и проекционные алгоритмы» относится к вариативной части общенаучного цикла дисциплин. Данная дисциплина тесно связана с дисциплинами: «Методы программирования и алгоритмы», «Теория алгоритмов», «Бигармоническое уравнение и вихревые течения» и «Краевые задачи и проекционные алгоритмы».

Для её успешного усвоения необходимы знания, умения и компетенции, приобретаемые при изучении следующих дисциплин: «Уравнения в частных производных», «Численные методы», «Функциональный анализ», «Теория функций комплексного переменного».

Изучение этой дисциплины готовит обучаемых к различным видам как практической, так и теоретической, исследовательской деятельности.

1.4. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

В процессе освоения данной дисциплины формируются и демонстрируются следующие общекультурные и профессиональные компетенции:

No	Индекс	Содержание	В результате	е изучения учебно	ой дисциплины				
	компет	компетенции (или её	0	обучающиеся должны					
П.П.	енции	части)	знать	уметь	владеть				
1.	ПК-1	способностью к	методы	алгоритмизи-	методами				
		интенсивной научно-	математичес-	ровать решение	программирования				
		исследовательской	кого	задачи и	на средах и на				
		работе	моделирования	составлять	программных				
			при решении	структурно -	пакетах				

No	Индекс	Содержание	В результате	е изучения учебно	ой дисциплины
	компет	компетенции (или её	0	бучающиеся долх	кны
П.П.	енции	части)	знать	уметь	владеть
			теоретических и	логическую	(комплексах)
			прикладных	блок – схему	
			задач	программы	
2	ПК-5	способностью к	основные	творчески	практическими
		творческому	методы	применять и	навыками
		применению,	алгоритмирован	реализовывать	создания
		развитию и реализации	ия	математически	интерпретаторов
		математически	интерпретаторо	сложные	эзотерических
		сложных алгоритмов в	В И	алгоритмы при	языков
		современных	трансляторов	создании	программирования
		программных		интерпретаторо	
		комплексах		В	

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоемкость дисциплины составляет 72 часов (2 ЗЕТ).

Вид учебной работы			Семестры		
			В		
Контактная работа, в том	Контактная работа, в том числе:				
Аудиторные занятия (всег	Аудиторные занятия (всего)				
Занятия лекционного типа		12	12		
Занятия семинарского типа занятия)	а (семинары, практические	12	12		
Лабораторные занятия					
Иная контактная работа:					
Контроль самостоятельной ј	работы (КСР)				
Промежуточная аттестация	(ИКР)	0,2	0,2		
Самостоятельная работа,	в том числе:	47,8	47,8		
Проработка учебного (теоре	тического) материала	47,8	47,8		
Подготовка к текущему кон	тролю				
Общая трудоемкость	час.	72	72		
	в том числе контактная работа	24	24		
	зач. ед	2	2		

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы дисциплины, изучаемые в В семестре.

Mo				Колі	ичество	часов		
№ раз- дела	Наименование разделов	Всего	A	удиторна работа	ая	Внеауди	торная р	абота
	1 //		Л	ПЗ	ЛР	CP	КСР	ИКР
1	2	3	4	5	6	7	8	9

No		Количество часов						
№ pa3-	Наименование разделов	Всего	Аудиторная работа			Внеаудиторная работа		
дела	разделов Основы теории потенциала Метод базисных		Л	ПЗ	ЛР	CP	КСР	ИКР
1.	Основы теории потенциала	36	6	6		24		
2.	Метод базисных потенциалов	36	6	6		23,8		0,2
	Итого:	72	12	12		47,8		0,2

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

№	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
1	Основы теории потенциала	Задача электростатики. Уравнения Лапласа и Пуассона. Фундаментальные решения. Потенциал энергии. Емкость множества. Существование равновесного распределения. Принцип максимума для потенциалов. Единственность равновесного распределения. Особенности ограниченных гармонических функций. Функция Грина	P
2	Метод базисных потенциалов	Системы сдвигов фундаментальных решений уравнения Лапласа. Достаточное условие полноты. Лемма Новикова. Задача Робена. Бигармоническая задача. Алгоритмы решения основных краевых задач математической физики	У

В данном подразделе, в табличной форме приводится описание содержания дисциплины, структурированное по разделам, с указанием по каждому разделу формы текущего контроля: написание реферата (Р), проведение устного опроса (У).

2.3.2 Занятия семинарского типа.

No	Наименование раздела	Тематика практических занятий (семинаров)	Форма текущего контроля
1	2	3	4
1	Основы теории	Уравнение Лапласа. Свойства	ИЗ
	потенциала	фундаментального решения	

		уравнения Лапласа.	
		Гармонические функции. Свойства	
		гармонических функции.	
		Потенциал простого и двойного	
		слоя. Интегральные операторы	
		теории потенциала. Граничные	
		свойства потенциала двойного	
		слоя. Равновесны потенциал,	
		потенциал Робена.	
2		Полнота систем базисных	ИЗ
		потенциалов. Соленоидальные и	
		потенциальные векторные поля.	
	Maa	Дифференциальные операторы	
	Метод базисных	векторного анализа. Интегральная	
	потенциалов	формула Гауса-Остроградского.	
		Комплексные потенциал.	
		Основные краевые задачи	
		математической физики	

В данном подразделе, в табличной форме приводится описание содержания дисциплины, структурированное по разделам, с указанием по каждому разделу формы текущего контроля: выполнение индивидуального задания (ИЗ), устного опроса (У).

2.3.3 Лабораторные типа.

Лабораторные занятие учебным планом не предусмотрены.

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы учебным планом не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

	-		Перечень у	учебно	-методи	ческого)
$N_{\underline{0}}$	Вид СРС		обеспече	ния ді	исципли	ны по	
			выполнению	самос	гоятельн	ой рабо	ТЫ
1	2			3	3		
1	Проработка	учебного	Литература	И3	основ	вного	И
	(теоретического) материа	ала	дополнительн	ого сп	исков		
2	Подготовка к то	екущему	Литература	И3	основ	вного	И
	контролю		дополнительн	ого сі	писков,	матери	алы
			лекций				

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

Лекции, семинарские занятия, индивидуальные задания, устные опросы, экзамен.

Сем	Вид	Используемые интерактивные образовательные	Кол-во
естр	занятия	технологии	часов
В	Лабораторные Дискуссия на тему: «Уравнения Лапласа и В занятия Пуассона»		2
		Дискуссия на тему: «Существование равновесного распределения»	2
		Дискуссия на тему: «Достаточное условие полноты»	
		Дискуссия на тему: «Алгоритмы решения основных краевых задач математической физики»	2
И	того:		8

Разбор практических задач и примеров, моделирование ситуаций, приводящих к тем или иным ошибкам в программе, выработка навыков выявления и исправления ошибок в процессе написания программы. Построение тестовых примеров для выявления ошибок в программе и сравнения эффективности различных алгоритмов.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

4.1 Фонд оценочных средств для проведения текущего контроля.

2.1.1 Примерный перечень тем для рефератов и устных опросов

- 1. Какие дифференциальные операторы векторного анализа вы знаете?
- 2. Физический смысл формулы Гауса-Остроградского?
- 3. Что такое комплексный потенциал?
- 4. Как вычислить циркуляцию и поток векторного поля?

- 5. Сформулируйте теорему Жуковского.
- 6. Что выражает формула Чаплыгина?
- 7. Аналитическое решение обтекания кругового цилиндра?
- 8. Какое уравнение называют уравнением Лапласа?
- 9. Свойства фундаментального решения уравнения Лапласа?
- 10. Дайте определение гармонической функции.
- 11. Каковы основные свойства гармонических функции?
- 12. Дайте определение потенциалов простого и двойного слоя.
- 13. Что такое интегральный оператор теории потенциала?
- 14. Сформулируйте граничные свойства потенциала двойного слоя.
- 15. Что такое равновесный потенциал и потенциал Робена?
- 16. Что такое полная система функций?

2.1.2 Образец индивидуального задания

- 1. Пусть мера μ имеет компактный носитель и r действительное число. Доказать что $\int_{|x|< r} U^{\mu}(x) dx < \infty$.
- 2. Используя предыдущий результат доказать, что $U^{\mu}(x) < \infty$ почти всюду по мере Лебега.
- 3. Пусть мера μ имеет компактный носитель K. Доказать, что в каждой точке x области $\mathbb{R}^3 \backslash K$ функция $U^{\mu}(x)$ бесконечно дифференцируема и удовлетворяет уравнению $\Delta U^{\mu}(x) = 0$, то есть является гармонической.
- 4. Поток через поверхность равен полному заряду, содержащемуся внутри поверхности, умноженному на 4π . Вычислить $\iiint_{|\xi|<1} \frac{dV}{|x-\xi|}$, для всех $x \in \mathbb{R}^3$.
- 5. Доказать, что емкость шара равна его радиусу.
- 6. Доказать, что потенциал $U(x) = \iiint_{\Sigma} \frac{\varrho(\zeta)dS}{|x-\zeta|}$, непрерывен в каждой точке поверхности Σ .
- 7. Пусть E компакт в \mathbb{R}^3 , $\bar{\mu}$ равновесное распределение на E и γ такое число, что $U^{\bar{\mu}}(x) = \gamma$ квази всюду на E. Пусть $T = \{x \in E | U^{\bar{\mu}}(x) < \gamma\}$. Доказать, что T борелевское множество. C(T) = 0.
- 8. Если E_1 , E_2 борелевские множества и $E_1 \subseteq E_2$, то $\mathcal{C}(E_1) \le \mathcal{C}(E_2)$.
 - Если E борелевское множество, то $C(E) = \sup C(F)$, где верхняя грань берется по всем компактным $F \subseteq E$.
- 9. Если компактные множества E_1 , E_2 в \mathbb{R}^3 конгруэнтны, то есть существует такое евклидово движение, что $T(E_1)=E_2$, то $C(E_1)=C(E_2)$.

- 10.Построить компакт E в \mathbb{R}^3 с равновесным распределением $\bar{\mu}$ на нем, для которого $U^{\bar{\mu}}(x) = \gamma$ квази всюду на E, но существует неизолированная точка $x_0 \in E$, в которой $U^{\bar{\mu}}(x_0) < \gamma$.
- 11. Пусть G(x,y) функция Грина. Показать, что G(x,y) > 0, при всех x и y.
- 12. Доказать, что для единичного шара $G(x,y) = \frac{1}{|x-y|} \frac{1}{|y|} \frac{1}{|x-y^*|}$. G(x,y) = G(y,x).
- 13.Потенциал простого слоя $R(x) = \int_S \varphi^*(y) E(x-y) dS_y$, принимающий постоянные значения на границе $R(x)|_S = R_S \equiv \text{const}$, называется потенциалом Робена, а φ^* и R_S плотностью и константой Робена соответственно. Для заданной кривой S найти плотность φ^* и константу R_S Робена. Используя метод базисных потенциалов.
- 14. Для краевой задачи Неймана для уравнения Пуассона

15.
$$\frac{\Delta v(x,y)|_{D} = f(x,y)}{\partial n|_{\partial D}}$$
, $(x,y) \in D$,
$$16. \frac{\frac{\partial v}{\partial n}|_{\partial D}}{\partial n} = 0$$
.

в области $D=(0,\pi)\times(0,\pi)$ вычислить коэффициенты v_{nk} разложения решения v(x,y) по ортонормированной системе $\varphi_{nk}(x,y)$ и получить аналитическое решение (в виде ряда), где $f(x,y)=H(x)\cos(2y)$ для нечетных вариантов k и $f(x,y)=\sin x H(y)$ для четных вариантов k; функция H(x) для варианта k определяется сторонами S2, S3 криволинейного треугольника Q_k . Представить график поверхности $v^N(x,y)$; графики $\Delta v^N(x,y)$ и вычислить погрешность $\varepsilon(N)=(\iint_D (\Delta v^N(x,y)-f(x,y))^2 dx dy)^{\frac{1}{2}}$; для n,k=0,1,...,7 представить таблицу коэффициентов v_{nk} . Использовать метод Фурье (метод разложения по собственным функциям оператора Лапласа образующими полную систему в подпространстве $L_2^C(D)$,

 $\varphi_{n0}(x, y) = \sqrt{\frac{2}{\pi}} \cos n x, \quad \varphi_{0k}(x, y) = \sqrt{\frac{2}{\pi}} \cos k y,$ $\varphi_{nk}(x, y) = \frac{2}{\pi} \cos n x \cos k y, \quad n, k = 1, 2, ...$

ортогональном единице, $L_2(D) = \{1\} \oplus L_2^C(D)\}$:

17. Решить численно внутреннюю задачу Дирихле для уравнения Лапласа $\Delta u(x,y)\big|_{Q}=0\,,\;(x,y)\in Q\,,\;u\big|_{S}=g(x,y)\,,$

используя систему функций α_m^+ , m=1,...,N; где $Q=Q_k$, $\partial Q_k=S=S1\cup S2\cup S3$, g(x,y)=M при $(x,y)\in S$. Представить линии уровня функции $u^N(x,y)$; вычислить погрешность $\delta(N)=\|g-u^N\|_S$ для разных N. Вычислить интеграл по S от нормальной производной $u^N(x,y)$.

18. Решить численно краевую задачу для бигармонического уравнения

$$\begin{split} & \Delta^2 \, w(x,y) \Big|_{\mathcal{Q}} = 0, \quad (x,y) \in \mathcal{Q} \,, \quad w \Big|_{\mathcal{S}} = a(x,y), \quad \frac{\partial \, w}{\partial \, n} \Big|_{\mathcal{S}} = b(x,y) \,, \\ & \text{где } a(x,y) = \begin{cases} -1, (x,y) \in S_1, \\ 0, (x,y) \in S_2, & \text{и} \ b(x,y) = \begin{cases} 0, (x,y) \in S_1, \\ 1, (x,y) \in S_2, \\ 0, (x,y) \in S_3. \end{cases} \end{split}$$

Представить: формулировку задачи, представление решения w(x,y), график линий уровня функции w(x,y), погрешность $\delta(N) = \|g - w^N\|_s$, таблицу вычисленных коэффициентов (физическая интерпретация: если w(x,y) — функции тока, то вершины треугольника — это точечные источники и стоки).

19. Решить численно краевую задачу для бигармонического уравнения при условии a(x,y)=0, $b(x,y)=\phi^*(x,y)$, где $\phi^*(x,y)$ -плотность потенциала Робена для S. Решение w(x,y)-собственный (регулярный) вихрь области.

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

4.2.1 Примерный перечень вопросов к экзамену

- 1. Задача электростатики.
- 2. Уравнения Лапласа и Пуассона.
- 3. Фундаментальные решения уравнения Лапласа.
- 4. Потенциал энергии.
- 5. Емкость множества.
- 6. Существование равновесного распределения.
- 7. Принцип максимума для потенциалов.
- 8. Единственность равновесного распределения.
- 9. Особенности ограниченных гармонических функций.
- 10. Функция Грина.

- 11. Системы сдвигов фундаментальных решений уравнения Лапласа.
- 12. Достаточное условие полноты.
- 13. Лемма Новикова.
- 14. Задача Робена.
- 15. Бигармоническая задача.
- 16. Алгоритмы решения основных краевых задач математической физики.

4.2.2 Примерные билеты к экзамену

БИЛЕТ № 1

- 1. Фундаментальные решения уравнения Лапласа
- 2. Функция Грина

Зав. кафедрой математических и компьютерных методов

(М.И. Дроботенко)

БИЛЕТ № 2

- 1. Подпространство гармонических функций
- 2. Лемма Новикова

Зав. кафедрой математических и компьютерных методов

(М.И. Дроботенко)

Экзамены оцениваются по системе: неудовлетворительно, удовлетворительно, хорошо, отлично.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю)

предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

– в форме электронного документа.

Для лиц с нарушениями слуха:

- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

– в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

- 1) Палин, В. В. Методы математической физики. Лекционный курс: учебное пособие для академического бакалавриата / В. В. Палин, Е. В. Радкевич. 2-е изд., испр. и доп. М.: Издательство Юрайт, 2018. 222 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-534-03589-6. Режим доступа: www.biblio-online.ru/book/F1D3857B-4F8B-44AA-B791-B9228AC40755
- 2) Шапкин, А.С. Математические методы и модели исследования операций: учебник / А.С. Шапкин, В.А. Шапкин. 7-е изд. Москва: Издательско-торговая корпорация «Дашков и К°», 2017. 398 с.: табл., схем., граф. Библиогр. в кн. ISBN 978-5-394-02736-9; То же [Электронный ресурс]. URL:http://biblioclub.ru/index.php?page=book&id=452649

5.2 Дополнительная литература:

- 1. Голоскоков, Д.П. Курс математической физики с использованием пакета Maple [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2015. 576 с. Режим доступа: https://e.lanbook.com/book/67461
- 2. Дзержинский, Р.И. Уравнения математической физики: курс лекций / Р.И. Дзержинский, В.А. Логинов; Министерство транспорта Российской Федерации, Московская государственная академия водного транспорта. Москва: Альтаир: МГАВТ, 2015. 67 с.: ил. Библиогр. в кн.; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=429675
- 3. Емельянов В.М. Уравнения математической физики. Практикум по решению задач: учеб. пособие / В.М. Емельянов, Е.А. Рыбакина. Электрон. дан. Санкт-Петербург: Лань, 2016. 216 с. ISBN 978-5-8114-0863-4 [Электронный ресурс]. URL: https://e.lanbook.com/book/71748

5.3. Периодические издания:

1. Вестник Московского Университета. Серия 15. Вычислительная математика и кибернетика: научный журнал. М.: МГУ, 2014, 2015. - доступно: www.biblioclub.ru — Университетская библиотека ONLINE.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля).

- 1. Электронно-библиотечная система "Университетская библиотека online" www.biblioclub.ru.
- 2. Электронно-библиотечная система Издательства «Лань» http://e.lanbook.com.
 - 3. Список литературы по MathCAD. Образовательный математический сайт:

http://www.exponenta.ru/soft/mathcad/mathcad_book.asp

4. Общероссийский математический портал - www.mathnet.ru;

7. Методические указания для обучающихся по освоению дисциплины (модуля)

По курсу предусмотрено проведение лекционных занятий, на которых дается основной теоретический материал, рассматриваются основные приёмы решения задач и решаются примеры практических задач.

Используется как традиционная информационно-объяснительная подача материала, так и интерактивная подача материала с мультимедийной системой. Компьютерные технологии в данном случае обеспечивают возможность разнопланового отображения алгоритмов и демонстрационного материала. Такое сочетание позволяет оптимально использовать отведённое время и раскрывать логику и содержание дисциплины.

Интерактивные образовательные технологии, используемые в аудиторных занятиях включают следующее:

- семинары в диалоговом режиме,
- групповые дискуссии,
- обсуждение результатов работы исследовательских групп, сформированных из магистрантов.

На практических занятиях студенты, решая семестровые задания, приобретают практические навыки применения компьютерных технологий, написания и отладки программ, программной реализации алгоритмов.

Важнейшим этапом курса является самостоятельная работа, во время которой студенты осуществляют проработку необходимого материала, используя литературу из основного и дополнительного списков, готовятся к текущему контролю, изучая примеры задач, рассмотренных на лекциях и на практических занятиях.

Для текущего контроля магистранты предоставляют презентации в электронном виде по результатам изучения теоретических вопросов и

выполнения заданий к самостоятельной работе.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

8.1 Перечень информационных технологий.

Выполнение практических заданий на компьютере с использованием математического пакета компьютерной алгебры MathCAD 14.

Проверка индивидуальных заданий и консультирование посредством электронной почты.

8.2 Перечень необходимого программного обеспечения.

Пакет компьютерной алгебры MathCAD 14.

8.3 Перечень информационных справочных систем:

- 1. Очков В.Ф. MathCAD 14 для студентов, инженеров и конструкторов. СПб.: БХВ-Петербург, 2007. 369 с.
- 2. Мурашкин В. Г. Инженерные и научные расчеты в программном комплексе MathCAD: учебное пособие. Самара: СГАСУ, 2011. 84 с. доступно: www.biblioclub.ru Университетская библиотека ONLINE.
- 3. Список литературы по MathCAD. Образовательный математический сайт: http://www.exponenta.ru/soft/mathcad/mathcad_book.asp.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

No	Вид работ	Материально-техническое обеспечение дисциплины				
312	Вид расст	(модуля) и оснащенность				
1.	Лекционные занятия	Аудитория для проведения занятий лекционного типа				
2.	Лабораторные	Аудитория, укомплектованная компьютерами для работы				
	занятия	студентов и компьютером для преподавателя,				
		подключенным к интерактивной доске				
3.	Текущий контроль,	Аудитория, укомплектованная компьютерами для работы				
	промежуточная	студентов и компьютером для преподавателя,				
	аттестация	подключенным к интерактивной доске				
4.	Самостоятельная	Аудитория, укомплектованная компьютерами для работы				
	работа	студентов				