### Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет математики и компьютерных наук



### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

# **Б1.В.09 КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ** НАНОСТРУКТУР И НАНОСИСТЕМ

Направление подготовки /специальность

02.04.01 МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ

Направленность (профиль) /специализация

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ТЕОРИИ СЛОЖНЫХ СИСТЕМ

Программа подготовки

АКАДЕМИЧЕСКАЯ

Форма обучения

**КАНРО** 

Квалификация (степень) выпускника

МАГИСТР

Краснодар 2017

Рабочая программа дисциплины «Компьютерное моделирование наноструктур и наносистем» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.04.01 МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ

Программу составил: Усатиков С.В., проф. кафедры математических и компьютерных методов, д. ф.-м. н., доц.

Рабочая программа дисциплины «Компьютерное моделирование наноструктур и наносистем» утверждена на заседании кафедры математических и компьютерных методов протокол № 14 «09» июня 2017 г.

Заведующий кафедрой (разработчика) Дроботенко М.И.

Рабочая программа обсуждена на заседании кафедры математических и компьютерных методов протокол № 14 «09» июня 2017 г.

Заведующий кафедрой (выпускающей) Дроботенко М.И.

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук протокол № 3 «20» июня 2017 г. Председатель УМК факультета

Председатель УМК факультета Титов Г.Н

#### Рецензенты:

Барсукова В.Ю., канд. физ.-мат. наук, доц., зав. кафедры функционального анализа и алгебры КубГУ

Терещенко И.В., канд. физ.-мат. наук, доц., зав. кафедрой общей математики КубГТУ

#### 1 Цели и задачи изучения дисциплины

#### 1.1 Цель дисциплины

Подготовить теоретический фундамент и познакомить слушателей с применением ряда формализмов математического аппарата в исследовании наносистем, а также программно-аппаратными средствами. Исследование наносистем объединяет самые на первый взгляд далекие математические дисциплины, выявляя связи между различными математическими дисциплинами и то, как переход с одного математического языка на другой позволяет получать нетривиальные результаты.

#### 1.2 Задачи дисциплины

Дать представление о современном состоянии науки моделированя наноструктур и наносистем. Изложить основные методы и направления исследования, которые разовьют способность к собственной организации научно-исследовательской работы. Развить устойчивый навык решения практически важных задач, основываясь на собственном ведении прикладного аспекта в теоретических основах моделирования наноструктур и наносистем.

#### 1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Компьютерное моделирование наноструктур и наносистем» относится к вариативной части цикла дисциплин учебного плана.

Дисциплина базируется на знаниях, полученных по стандарту высшего образования, и является основой для решения исследовательских задач. Перечень предшествующих дисциплин, необходимых для изучения данной дисциплины: математический анализ, линейная алгебра, дифференциальная геометрия, функциональный анализ, обыкновенные дифференциальные уравнения с частными производными, уравнения математической физики, теория устойчивости.

# 1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся общекультурных/профессиональных компетенций (ОК/ПК)

| ООЩС   | 1 11   | пл/профессиональных к |                   | /               |                |
|--------|--------|-----------------------|-------------------|-----------------|----------------|
| №      | Индекс | Содержание компе-     | В результате изуч | •               | циплины ооуча- |
| П.П.   | компе- | тенции (или её ча-    | ющиеся должны     |                 |                |
| 11.11. | тенции | сти)                  | знать             | уметь           | владеть        |
| 1.     | ОПК-3  | Готовностью само-     | Основные тен-     | Осуществлять    | Методами и     |
|        |        | стоятельно создавать  | денции развития   | отбор и анализ  | технологиями   |
|        |        | прикладные про-       | современных ин-   | значимого ма-   | проектирова-   |
|        |        | граммные средства     | формационных и    | териала в обла- | ния и созда-   |
|        |        | на основе современ-   | сетевых ресур-    | сти нанострук-  | ния про-       |
|        |        | ных информацион-      | сов               | тур и наноси-   | граммных       |
|        |        | ных и сетевых ресур-  |                   | стем            | продуктов на   |
|        |        | сов                   |                   |                 | основе ин-     |
|        |        |                       |                   |                 | формацион-     |
|        |        |                       |                   |                 | ных и сетевых  |
|        |        |                       |                   |                 | технологиях    |
| 2.     | ПК-2   | Способностью к ор-    | Основные          | Планировать     | Навыками       |
|        |        | ганизации научно-     | принципы          | научную ра-     | планирования   |
|        |        | исследовательских и   | организации       | боту, формиро-  | научного       |
|        |        | научно-производ-      | работы в          | вать состав ра- | исследования,  |
|        |        | ственных работ, к     | коллективе и      | бочей группы и  | анализа        |
|        |        | управлению науч-      | способы           | оптимизиро-     | получаемых     |
|        |        | ным коллективом       | разрешения        | вать распреде-  | результатов и  |
|        |        |                       | конфликтных       | ление обязан-   | формулировк    |
|        |        |                       | ситуаций          | ностей между    | и выводов      |

| <b>№</b><br>п.п. | Индекс компе- | Содержание компетенции (или её ча-                                                                                  | В результате изуче                                              | ения учебной дисп<br>ощиеся должны                                                                                 | иплины обуча-                                                                                   |
|------------------|---------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 11.11.           | тенции        | сти)                                                                                                                | знать                                                           | уметь                                                                                                              | владеть                                                                                         |
|                  |               |                                                                                                                     |                                                                 | членами исследовательского коллектива                                                                              |                                                                                                 |
| 3.               | ПК-6          | Способностью к соб-<br>ственному видению<br>прикладного аспекта<br>в строгих математи-<br>ческих формулиров-<br>ках | Современное состояние науки в области наноструктур и наносистем | Выбирать и применять в профессиональной деятельности экспериментальные и расчетнотеоретические методы исследования | Методами<br>планирования<br>, подготовки,<br>проведения<br>НИР, анализа<br>полученных<br>данных |

#### 2. Структура и содержание дисциплины

### 2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 2 зач.ед. (72 часа), их распределение по вилам работ представлено в таблице.

| Вид учебной работы Всего Семестры              |                         |      |      |      |     |   |
|------------------------------------------------|-------------------------|------|------|------|-----|---|
| Вид учеон                                      | Всего                   |      |      | стры |     |   |
|                                                |                         |      |      | (ча  | сы) |   |
|                                                |                         | В    |      |      |     |   |
| Контактная работа, в то                        | м числе:                |      |      |      |     |   |
| Аудиторные занятия (все                        | ero):                   | 24   | 24   |      |     |   |
| Занятия лекционного типа                       |                         | 12   | 12   | -    | -   | - |
| Лабораторные занятия                           |                         | 12   | 12   | ı    | -   | - |
| Занятия семинарского типа                      | а (семинары, практиче-  |      |      |      |     |   |
| ские занятия)                                  |                         | _    | -    | -    | _   | - |
|                                                |                         | -    | -    | ı    | -   | - |
| Иная контактная работа                         | •                       |      |      |      |     |   |
| Контроль самостоятельной                       | -                       | -    | ı    | -    | -   |   |
| Промежуточная аттестация (ИКР)                 |                         |      | 0,2  | ı    | -   | - |
| Самостоятельная работа                         |                         |      |      |      |     |   |
| Курсовая работа                                | 5                       | -    | -    | -    | -   |   |
| Проработка учебного (теоретического) материала |                         |      | 5    | -    | -   | - |
| Выполнение индивидуальн                        | ных заданий (подготовка | 25   | 25   |      |     |   |
| сообщений, презентаций)                        |                         | 23   | 23   | •    | -   | - |
| Реферат                                        |                         | 10   | 10   | ı    | -   | - |
|                                                |                         |      |      |      |     |   |
| Подготовка к текущему ког                      | 7,8                     | 7,8  | -    | -    | -   |   |
| Контроль:                                      |                         |      |      |      |     |   |
| Подготовка к экзамену                          | -                       | -    | -    | -    | -   |   |
| Общая трудоемкость                             | час.                    | 72   | 72   | -    | -   | - |
|                                                | в том числе контактная  | 24.2 | 242  |      |     |   |
|                                                | работа                  | 24,2 | 24,2 |      |     |   |
|                                                | зач. ед                 | 2    | 2    |      |     |   |

### 2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. *Разделы дисциплины, изучаемые в В семестре* 

| No   |                              | Количество часов |    |          |    |               |
|------|------------------------------|------------------|----|----------|----|---------------|
| pa3- | Наименование разделов        |                  | A  | удиторна | ая | Самостоятель- |
| 1    | паименование разделов        | Всего            |    | работа   |    | ная работа    |
| дела |                              |                  | Л  | ПЗ       | ЛР |               |
| 1    | 2                            | 3                | 4  | 5        | 6  | 7             |
|      | Основные понятия и определе- |                  |    |          |    |               |
| 1.   | ния наук о наносистемах и    | 24               | 4  |          | 4  | 16            |
|      | нанотехнологий               |                  |    |          |    |               |
| 2.   | Методы анализа наноструктур  | 24               | 4  |          | 4  | 16            |
| 3.   | Компьютерное моделирование   | 23,8             | 4  |          | 4  | 15,8          |
| ٥.   | наноструктур и наносистем    | 25,6             | †  |          | ۲  | 13,6          |
|      | Итого по дисциплине:         | 71,8             | 12 |          | 12 | 47,8          |

# 2.3 Содержание разделов дисциплины: 2.3.1 Занятия лекционного типа

|                     | Наименование                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Форма текущего           |
|---------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| $N_{\underline{0}}$ | раздела                                                             | Содержание раздела                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | контроля                 |
| 1                   | <u>риздели</u><br>2                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                        |
| 1.                  | Основные понятия и определения наук о наносистемах и нанотехнологий | История возникновения нанотехнологий и наук о наносистемах. Междисциплинарность и мультидисциплинарность. Примеры нанообъектов и наносистем, их особенности и технологические приложения. Объекты и методы нанотехнологий. Принципы и перспективы развития нанотехнологий.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Реферативный до-<br>клад |
| 2.                  | методы анализа<br>наноструктур                                      | Техника и методы сканирующей зондовой микроскопии. Визуализация наноструктур с помощью СЗМ (сканирующей зондовой микроскопии). СЗМ - прибор NanoEducator - научная учебная лаборатория по нанотехнологии для институтов и университетов, разработанная компанией NT-MDT. Основы сканирующей зондовой микроскопии. Обработка и представление экспериментальных результатов, обработка и количественный анализ СЗМ изображений. Фильтрация изображения, параметры шероховатости изображений до и после фильтрации. Фурье-спектр изображения, величины преобладающих пространственных частот спектра, соответствующие этим частотам периоды повторения элементов изображения с интервалами, полученными при измерениях на изображении. Вейвлетпреобразование. | Реферативный до-         |
| 3.                  | Компьютерное моделирование наноструктур и наносистем                | Микроскопические и мезоскопические методы моделирования (Монте-Карло и молекулярная динамика, диссипатив-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Реферативный до-<br>клад |

| <br><del>-</del>                     |   |
|--------------------------------------|---|
| ная динамика частиц, теоретико-поле- |   |
| вые методы, методы конечных элемен-  |   |
| тов и перидинамика).                 |   |
| Сопряжение различных простран-       |   |
| ственных и временных масштабов. Мо-  |   |
| лекулярное конструирование. Компью-  |   |
| терная визуализация нанообъектов.    |   |
| Возможности численного экспери-      |   |
| мента. Примеры молекулярного моде-   |   |
| лирования наноструктур, молекуляр-   |   |
| ных переключателей, белков, биомем-  |   |
| бран, ионных каналов, молекулярных   |   |
| машин.                               |   |
| Алгоритм Верлета. Двухчастичные и    |   |
| многочастичные потенциалы взаимо-    |   |
| действия. Моделирование нанокласте-  |   |
| ров инертных газов.                  |   |
| Стохастический и нелинейно-динами-   |   |
| ческий анализ пространственно-вре-   |   |
| менных самоорганизованных нано-      |   |
| структур. Реконструкция динамики не- |   |
| линейно-динамической системы.        |   |
| 1                                    | 1 |

### 2.3.2 Занятия семинарского типа

Занятия семинарского типа не предусмотрены

### 2.3.3 Практические занятия

| No  | Наименование                                                                 | Тематика практических занятий                                                                                                                                                                                                                                                                                                                                              | Форма текущего                    |
|-----|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| J\º | раздела                                                                      | (семинаров)                                                                                                                                                                                                                                                                                                                                                                | контроля                          |
| 1   | 2                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                          | 4                                 |
| 1.  | Основные понятия и определения наук о наносистемах и нанотехнологий.         | Многочастичное уравнение Шрёдингера и его приближенные формы для молекул, твердых тел и наносистем. Принцип Паули. Приближение Хартри и Хартри-Фока. Вариационный метод приближённого решения многоэлектронной задачи.                                                                                                                                                     | Расчетно-графиче-<br>ское задание |
| 2.  | Микроскопические и мезоскопические методы моделирования.                     | Методы теории функционала электронной плотности в математическом моделировании.                                                                                                                                                                                                                                                                                            | Расчетно-графиче-<br>ское задание |
| 3.  | Компьютерная визуализация нанообъектов. Возможности численного эксперимента. | Современные компьютерные методы решения многоэлектронной проблемы: иерархия и критерии практической применимости. Нанотранзисторы, их устройство, принципы работы. Физические модели работы транзисторов. Учет квантовых эффектов при моделировании. Математические модели конкретных типов современных транзисторов: кремний на изоляторе, транзисторы на основе графена. | Расчетно-графическое задание      |

### 2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы

обучающихся по дисциплине (модулю)

| № |                       | Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы      |
|---|-----------------------|------------------------------------------------------------------------------------------------|
| 1 | 2                     | 3                                                                                              |
| 1 | Написание             | «Методические указания по организации самостоятельной                                          |
|   | реферативного доклада | работы студентов», утвержденные кафедрой                                                       |
|   |                       | информационных и образовательных технологий, протокол № 1 от 31 августа 2017 г.                |
| 2 | Выполнение проектной  | «Методические указания по организации самостоятельной                                          |
|   | работы                | работы студентов», утвержденные кафедрой информационных и образовательных технологий, протокол |
|   |                       | № 1 от 31 августа 2017 г.                                                                      |

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

#### 3. Образовательные технологии

Активные и интерактивные формы лекционных занятий, лабораторных занятий, контрольных работ, тестовых заданий, типовых расчетов, докладов, сдача экзамена.

| Семестр | Вид занятия             | Используемые интерактивные                                                                            | Количество |
|---------|-------------------------|-------------------------------------------------------------------------------------------------------|------------|
|         |                         | образовательные технологии                                                                            | часов      |
| В       | Лабораторные<br>занятия | Метод проектов. Студенты выбирают проекты, примерные формулировки которых представлены в ФОС пункт 4. | 8          |
| Итого:  |                         |                                                                                                       | 8          |

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

## 4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

| <b>№</b><br>π/π | Контролируемые разделы<br>дисциплины                                | Код контролируемой компетенции (или ее части) | Наименование<br>оценочного средства |
|-----------------|---------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|
| 1               | Основные понятия и определения наук о наносистемах и нанотехнологий | ОПК-3, ПК-2, ПК-6                             | Задания компьютерного практикума    |
| 2               | Методы анализа наноструктур                                         | ОПК-3, ПК-2, ПК-6                             | Задания компьютерного практикума    |

| 3 | Компьютерное моделирование |                   | Задания       |
|---|----------------------------|-------------------|---------------|
|   | наноструктур и наносистем  | ОПК-3, ПК-2, ПК-6 | компьютерного |
|   |                            |                   | практикума    |

Для получения зачета по дисциплине или допуска к экзамену необходимо сформировать «Портфель магистранта», который должен содержать результаты всех предусмотренных учебным планом работ.

«Портфель магистранта» представляет собой целевую подборку работ студента на компьютере, раскрывающую его индивидуальные образовательные достижения в учебной дисциплине. Структура портфеля включает следующие учебные материалы:

- результаты выполнения практических работ на компьютере;
- выполненные задания для самостоятельной работы на компьютере;
- выполненными контрольными работами, в том числе работами над ошибками. Критерии оценки учебного портфолио магистранта:

оценка «зачтено» выставляется за 90–100% наличия необходимых материалов в портфолио;

оценка «не зачтено» выставляется, если материалов в портфолио присутствует менее 90%.

#### 4.1 Фонд оценочных средств для проведения текущей аттестации

В ходе текущей аттестации оцениваются промежуточные результаты освоения студентами дисциплины «Компьютерное моделирование наноструктур и наносистем». Текущий контроль осуществляется с использованием традиционной технологий оценивания качества знаний студентов и включает оценку самостоятельной (внеаудиторной) и аудиторной работы (в том числе рубежный контроль). В качестве оценочных средств используются:

- различные виды устного и письменного контроля (выступление на семинаре, реферат, учебно-методический проект);
- индивидуальные и/или групповые домашние задания, творческие работы, проекты и т.д.;
  - отчет по практической работе.

#### 4.2 Фонд оценочных средств для проведения промежуточной аттестации

Формой промежуточного контроля является анализ и обсуждение представленных разработок, собеседование и качественная оценка хода выполнения индивидуальных заданий по дисциплине, публичные доклады по выбранным темам.

Перечень вопросов для организации промежуточного контроля:

- 1. Моделирование строения многоэлектронных атомов.
- 2. Многочастичное уравнение Шрёдингера и его приближённые формы для молекул и твёрдых тел.
- 3. Принцип Паули. Приближение Хартри и Хартри-Фока. Вариационный метод при ближённого решения многоэлектронной задачи.
- 4. Методы теории функционала электронной плотности в математическом моделировании.
- 5. Современные компьютерные методы решения многоэлектронной проблемы: иерархия и критерии практической применимости.
- 6. Моделирование физико-химических и оптических свойств нанокластеров с помощью квантово-химического пакета «Gaussian».
- 7. Метод сильной связи и его применения для расчета электронных свойств графена и нанотрубок.
- 8. Нанотранзисторы, их устройство, принципы работы. Физические модели работы транзисторов. Учёт квантовых эффектов при моделировании.
- 9. Математические модели конкретных типов современных транзисторов: кремний на изоляторе, транзисторы на основе графена.
- 10. Нанотрубки. Структура, свойства и методы получения. Особенности математического моделирования.

- 11. Обзор кинетических методов Монте-Карло, применяемых для моделирования наносистем.
- 12. Расчеты из первых принципов. Модели, алгоритмы, проблемы.
- 13. Обзор методов моделирования взаимодействия частиц с поверхностью.
- 14. Представление наносистем континуальными и дискретно-элементными моделями. Термодинамическое описание кластера, система уравнений кинетики неравновесной кластеризации, преобразование к уравнению диффузии в пространстве размеров.
- 15. Математические модели транспортно-диффузионного переноса (в интегральной и дифференциальных формах) в наносистемах, аналитические решения, метод контрольного объема.
- 16. Описание аномальной диффузии в наносистемах на основе дробно-дифференциального исчисления
- 17. Моделирование наносистем методами Монте-Карло. Кинетические методы Монте-Карло.
- 18. ПО моделирования наносистем: программы расчётов «из первых принципов» (обзор, математические основы и принципы работы, примеры моделирования).
- 19. ПО моделирования наносистем: программы полуэмпирических методов расчёта (обзор, математические основы и принципы работы, примеры моделирования).
- 20. ПО моделирования наносистем: программы для моделирования в молекулярной динамике (обзор, математические основы и принципы работы, примеры моделирования).
- 21. ПО моделирования наносистем: интегрированные пакеты программ (обзор, математические основы и принципы работы, примеры моделирования).
- 22. ПО моделирования наносистем: Material Studio и пакеты и среды, объединяющие технологии моделирования с трёхмерной визуализацией (обзор, математические основы и принципы работы, примеры моделирования).
- 23. Визуализация и конструирование наносистем в рамках многомасштабного подхода: «НАНОМОДЕЛЛЕР» http://sv-journal.com/2010-4/03/index.html
- 24. Основные модули, математические основы и принципы работы, примеры моделирования наноструктур и вычисления молекулярных свойств в пакетах моделирования молекулярных систем MOPAC, GAMESS.
- 25. Основные модули, математические основы и принципы работы, примеры моделирования наноструктур в пакете молекулярного динамического моделирования свойств материалов SageMD2.
- 26. Основные модули, математические основы и принципы работы, примеры проектирования наноустройств в пакете NanoXplorer иерархического языка nanoML описания наноструктур.
- 27. Основные модули, математические основы и принципы работы, примеры проектирования и тестирования отдельных узлов наномашин в пакете молекулярного моделирования Chem3D.
- 28. Обзор современной научной периодики по теме «Диффузионная металлизация из среды легкоплавких растворов в системе «диффундирующий элемент транспортный расплав насыщаемая сталь» и наноструктуры в ДМ-покрытиях (тема может быть изменена и согласовывается)», пример (самостоятельно выполненный) хранения аннотаций и части полного текста в локальной базе данных.
- 29. Обзор современной научной периодики по теме «Современное состояние методов диагностики наномерными датчиками (наносенсоры на квантовых точках и углеродных нанотрубках) при мониторинге качества и безопасности пищевых продуктов (тема может быть изменена и согласовывается)», пример (самостоятельно выполненный) хранения аннотаций и части полного текста в локальной базе данных.
- 30. Проблема взаимодействия иерархических уровней в нанонауке и пути её решения.
- 31. Нелинейно-динамический хаос и его применение к моделированию наноструктур и наносистем.

- 32. Стохастический анализ и его применение к моделированию наноструктур и наносистем.
- 33. Нейронные сети и их применение к моделированию наноструктур и наносистем.
- 34. Парадигма диссипативных структур и её применение к моделированию наноструктур и наносистем.
- 35. Наноструктуры: восстановление аффинных коэффициентов, реконструкция динамики нелинейно-динамической системы и динамических уравнений по экспериментальным данным СЗМ-микроскопии.
- 36. Наноструктуры: восстановление бифуркационных диаграмм по экспериментальным данным СЗМ-микроскопии.
- 37. Компьютерный дизайн биомакромолекул. Работа с Интернет-базой данных рентгеноструктурного анализа. Построение пространственных моделей ферментов в программе Molscript. Определение числа и типов элементов вторичной структуры фермента. Анализ упорядоченности молекулы фермента.
- 38. САПР в микронаноэлектронике. Моделирование квантоворазмерных эффектов в элементах наноэлектроники в САПР ISE TCAD. Моделирование технологических процессов и конструкции субмикронных полупроводниковых приборов и приборов наноэлектроники, имитация работы приборов.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических—при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

# 5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

#### 5.1 Основная литература:

- 1. Рогов, В. А. Технология конструкционных материалов. Нанотехнологии: учебник для вузов / В. А. Рогов. 2-е изд., пер. и доп. М.: Издательство Юрайт, 2018. 190 с. (Серия: Авторский учебник). ISBN 978-5-534-00528-8. Режим доступа: <a href="www.biblio-online.ru/book/D01BA5DD-AA3D-49CF-A067-C6351CB24814">www.biblio-online.ru/book/D01BA5DD-AA3D-49CF-A067-C6351CB24814</a>.
- 2. Кузнецов, Н.Т. Основы нанотехнологии [Электронный ресурс] : учебник / Н.Т. Кузнецов, В.М. Новоторцев, В.А. Жабрев, В.И. Марголин. Электрон. дан. Москва : Издательство "Лаборатория знаний", 2017. 400 с. Режим доступа:

#### https://e.lanbook.com/book/94129. — Загл. с экрана.

#### 5.2 Дополнительная литература:

- 1. Осипов, Ю.В. Компьютерное моделирование нанотехнологий, наноматериалов и наноструктур. Диффузия [Электронный ресурс] : учебное пособие / Ю.В. Осипов, М.Б. Славин. Электрон. дан. Москва : МИСИС, 2011. 73 с. Режим доступа: <a href="https://e.lanbook.com/book/47465">https://e.lanbook.com/book/47465</a>. Загл. с экрана.
- 2. Старостин, В.В. Материалы и методы нанотехнологий [Электронный ресурс] : учебное пособие / В.В. Старостин. Электрон. дан. Москва : Издательство "Лаборатория знаний", 2015. 434 с. Режим доступа: <a href="https://e.lanbook.com/book/66203">https://e.lanbook.com/book/66203</a>. Загл. с экрана.
- 3. Хартманн У., Очарование нанотехнологии [Электронный ресурс] : учебное пособие / Хартманн У. ; под ред. Л. Н. Патрикеева ; пер. с нем. Т. Н. Захаровой. Электрон. дан. Москва : Издательство "Лаборатория знаний", 2017. 176 с. Режим доступа: <a href="https://e.lanbook.com/book/94133">https://e.lanbook.com/book/94133</a>. Загл. с экрана.

#### 5.3. Периодические издания:

- 1. Журнал «Математическое моделирование»
- 2. Журнал «Журнал вычислительной математики и математической физики»
- 3. Журнал «Вычислительные методы и программирование»
- 4. Журнал «Фундаментальная и прикладная математика»

# 6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. Научная электронная библиотека Российского фонда фундаментальных исследований (РФФИ) http://www.elibrary.ru/
- 2. Доступ к базам данных компании EBSCO Publishing, насчитывающим более 7 тыс. названий журналов, более 3,5 тыс. рецензируемых журналов, более 2 тыс. брошюр, 500 книг, 500 журналов и газет на русском языке. http://search.ebscohost.com/
- 3. Базы данных Американского института физики American Institute of Physics (AIP) http://scitation.aip.org
- 4. Электронный доступ к авторефератам http://vak.ed.gov.ru/search/http://vak.ed.gov.ru/announcements/techn/581/
- 5. Электронная библиотека диссертаций» Российской Государственной Библиотеки (РГБ) http://diss.rsl.ru/
- 6. Бесплатная специализированная поисковая система Scirus для поиска научной информации http://www.scirus.com
- 7. Информационная система «Единое окно доступа к образовательным ресурсам» http://window.edu.ru/window
- 8. Библиотека электронных учебников http://www.book-ua.org/
- 9. РУБРИКОН информационно-энциклопедический проект компании «Русс портал» http://www.rubricon.com/.
- 10. http://nano.msu.ru/education/courses/basics/materials Материалы лекций «Фундаментальные основы нанотехнологий». Лекция 1, 10.02.2009г., академик РАН, профессор Ю.Д. Третьяков
- 11. http://nano.msu.ru/education/courses/basics/materials Материалы лекций «Фундаментальные основы нанотехнологий». Лекция 6, 10.03.2009г., профессор П.Г. Халатур.
- 12. http://nanotech.iu4.bmstu.ru/about/ Портал НОЦ "Наносистемы".
- 13. http://nanotech.iu4.bmstu.ru/online\_lab/ научная учебная лаборатория NanoEducator по нанотехнологии для институтов и университетов, разработанная компанией NT-MDT.
- 14. http://nanotech.iu4.bmstu.ru/nano\_engineering/literature/bakalavr/ Учебно-методические комплексы по дисциплинам бакалавриата ОСНОВЫ МОДЕЛИРОВАНИЯ НАНОСИСТЕМ.
- **7. Методические указания для обучающихся по освоению дисциплины (модуля)** Для успешного усвоения теоретического материала, необходимо изучение лекции и рекомендуемой литературы из пункта 5.

Лекционные занятия проводятся по основным разделам дисциплины, описанные в пункте 2.3.1. Они дополняются практическими занятиями, в ходе которых студенты готовят индивидуальные проекты. Самостоятельная работа студентов состоит из подготовки материалов и литературы для успешного выполнения проекта.

Форма текущего контроля знаний – посещение лекционных занятий, работа студента на практических занятиях, подготовка реферативных докладов. Итоговая форма контроля знаний по дисциплине – зачет.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

# 8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю). (при необходимости)

#### 8.1 Перечень информационных технологий.

- Используются электронные презентации при проведении лекционных и практических занятий
- Проверка домашних заданий и консультирование может осуществляться посредством электронной почты

#### 8.2 Перечень необходимого программного обеспечения.

Microsoft Office

#### 8.3 Перечень информационных справочных систем:

Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru/)

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

|    | Б б                | Материально-техническое обеспечение дисциплины        |
|----|--------------------|-------------------------------------------------------|
| №  | Вид работ          | (модуля) и оснащенность                               |
| 1. | Лекционные занятия | Лекционная аудитория, специально оборудованная        |
|    |                    | мультимедийными демонстрационными комплексами,        |
|    |                    | учебной мебелью                                       |
| 2. | Лабораторные       | Помещение для проведения лабораторных занятий         |
|    | занятия            | оснащенное учебной мебелью, персональными             |
|    |                    | компьютерами с доступом к сети "Интернет" и           |
|    |                    | обеспечением доступа в электронную информационно-     |
|    |                    | образовательную среду организации                     |
| 3. | Групповые          | Помещение для проведения групповых (индивидуальных)   |
|    | (индивидуальные)   | консультаций, учебной мебелью, оснащенное             |
|    | консультации       | презентационной техникой (проектор, экран, ноутбук) и |
|    |                    | соответствующим программным обеспечением              |
| 4. | Текущий контроль,  | Помещение для проведения текущей и промежуточной      |
|    | промежуточная      | аттестации, оснащенное учебной мебелью, персональными |
|    | аттестация         | компьютерами с доступом к сети "Интернет" и           |
|    |                    | обеспечением доступа в электронную информационно-     |
|    |                    | образовательную среду организации                     |
| 5. | Самостоятельная    | Кабинет для самостоятельной работы, оснащенный        |
|    | работа             | компьютерной техникой с возможностью подключения к    |
|    |                    | сети «Интернет», программой экранного увеличения и    |
|    |                    | обеспеченный доступом в электронную информационно-    |
|    |                    | образовательную среду университета                    |