МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Физико-технический факультет Кафедра физики и информационных систем

Рабочая программа дисциплины Б1.Б.05.01 ФИЗИКА-1

Направление подготовки - **27.03.01 Стандартизация и метрология** Профиль — *стандартизация и сертификация* Программа подготовки - **академическая** Форма обучения - **очная** Квалификация выпускника — **бакалавр**

Рабочая программа дисциплины *Б1.Б.05.02 ФИЗИКА-2* составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки *27.03.01 Стандартизация и метрология*. Приказ Минобрнауки № 168 от 06.03.2015 г.

Программу составил: П.И. Быковский, доцент кафедры физики и информационных систем

Рабочая программа дисциплины *Физика-2* утверждена на заседании кафедры физики и информационных систем 6 апреля 2018 г, протокол №15. Заведующий кафедрой (разработчика) Богатов Н.М. ______

Рабочая программа обсуждена на заседании кафедры аналитической химии. Протокол № 5 от «19» апреля 2018г. Заведующий кафедрой (выпускающей) Темердашев З.А.

Утверждена на заседании учебно-методической комиссии физикотехнического факультета.

Протокол № 10 от 12 апреля 2018 г.

Председатель УМК ФТФ профессор Богатов Н.М.

Тумаев Е.Н., профессор кафедры теоретической физики и компьютерных технологий; Григорьян Л.Р., генеральный директор ООО НПФ "Мезон".

1. Цели и задачи изучения дисциплины

1.1 Цели освоения дисциплины

Модернизация и развитие курсов физики связаны с возрастающей ролью фундаментальных наук в подготовке бакалавров.

Внедрение высоких технологий в инженерную практику предполагает основательное знакомство как с классическими, так и с новейшими методами и результатами физических исследований.

Обладая логической стройностью и опираясь на экспериментальные факты, дисциплина «Физика» является идеальной для формирования у студентов общекультурных и профессиональных компетенций.

Основные цели освоения дисциплины "Физика-1":

- создание универсальной базы для изучения общепрофессиональных дисциплин, фундамента последующего обучения в магистратуре, аспирантуре;
- формирование цельного представления о физических законах окружающего мира в их единстве и взаимосвязи.

1.2. Задачи дисциплины.

- формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми инженеру приходится сталкиваться при создании новой техники и новых технологий;
- освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных технологических задач:
- формирование навыков системно-аналитической постановки задач физического моделирования процессов и объектов исследования.

1.3. Место дисциплины в структуре основной образовательной программы высшего образования

Дисциплина Б1.Б.05.01 «Физика-1», входящая в базовую часть цикла математических и естественнонаучных дисциплин в государственных образовательных стандартах 3-го поколения, предназначена для ознакомления студентов с современной физической картиной мира, приобретения навыков экспериментального исследования физических явлений и процессов, изучения теоретических методов анализа физических явлений.

Для успешного освоения курса физики необходимы знания основ дифференциального и интегрального исчисления, векторной алгебры и аналитической геометрии.

В свою очередь, освоение курса физики способствует более глубокому пониманию законов химии, экологии и является базой таких специальных дисциплин, как теоретическая механика, материаловедение.

1.4.Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программ

Выпускник бакалавриата направления 27.03.01 "Стандартизация и метрология" должен обладать следующими общепрофессиональными компетенциями (ОПК), которые формируются в процессе изучения физики:

Инд ком	Содержание компетенции	В результате изучения учебной дисциплины обучающиеся должны			
ции	(или её части)	знать	уметь	владеть	
ОП К-2	обладать способностью и готовностью участвовать в организации работы по повышению научнотехнических знаний, во внедрении достижений отечественной и зарубежной науки и техники, обеспечивающих эффективную работу предприятия.	основные достижения отечественной и зарубежной науки и техники, обеспечивающие эффективную работу предприятия.	применять основные достижения отечественной и зарубежной науки и техники в обеспечении эффективной работы предприятия	способностью участвовать в организации работы по повышению научно-технических знаний во внедрении достижений отечественной и зарубежной науки и техники в повышение эффективности работы предприятия.	

В результате освоения дисциплины "Физика-1" обучающийся

должен знать основные физические явления и законы в области механики, термодинамики и молекулярной физики; основные физические величины и константы, их определение и единицы измерения;

уметь применять физико-математические методы для решения прикладных задач в области технического регулирования и метрологии;

- применять вероятностно-статистический подход к точности измерений, испытаний и качества продукции и технологических процессов;

владеть методами физики при решении современных и перспективных задач в области технологии и метрологии.

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины Физика-1 составляет 4 зач. ед. (144 часа), их распределение по видам работ и по семестрам представлено в таблице.

Вид учебной работы	Всего	Семе	стры /ч	асы
	часов	1		
Контактная работа, в том числе:				
Аудиторные занятия (всего):	72	72		
Занятия лекционного типа	36	36		
Лабораторные занятия	36	36		
Занятия семинарского типа (семинары, практические занятия)	-	_	-	-
Иная контактная работа:				
Контроль самостоятельной работы (КСР)	4	4	-	
Промежуточная аттестация (ИКР)	0,5	0,5	-	-
Самостоятельная работа	40,8	40,8		
в том числе:				
Курсовая работа	-	-	-	-
Проработка учебного (теоретического) материала	20	20		

Общая трудоемкость	час. в том числе контактная	144	144		
Подготовка к экзамену		26,7	26,7		
Понголовка к окрамаци					
Подготовка к текущему ко	Подготовка к текущему контролю				
Реферат		-	_	-	
Выполнение индивидуальн сообщений, презентаций)	10	10	-		

2.2 Структура дисциплины:

Дисциплина "Физика-1" включает в себя следующие разделы:

- 1. Механика.
- 2. Молекулярная физика термодинамика.

Распределение видов учебной работы и их трудоемкости по разделам дисциплины:

No		Количество часов				
раз-	Наименование разделов	Всего	A	удиторна	ая работа	CPC
дела			Л	ПР	ЛР	
1	Механика	78,8	24	-	24	30,8
2	Молекулярная физика и термодинамика	34	12	-	12	10
	Итого по дисциплине:	112,8	36	-	36	40,8

Примечание: Л – лекции, ПР – практические работы, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

$N_{\underline{0}}$	Наиме-	Содержание раздела	Форма
	вание		текущег
	раздел		контрол
1	2	3	4
	Механи	Основные понятия кинематики:	
1	ка	путь, перемещение, скорости, ускорения. Кинематика	
		вращательного движения. Уравнения поступательного и	
		вращательного движений.	Выпол-
		Системы отсчета. Законы Ньютона. Импульс тела и закон	нение
		сохранения импульса. Закон всемирного тяготения.	домашн
		Свободное падение тел.	их
		Момент импульса материальной точки и механической	заданий,
		системы.	контр-х
		Закон сохранения момента импульса.	и лабор.
		Момент инерции. Теорема Штейнера. Кинетическая энергия	работ,
		вращающегося твердого тела.	тести-
		Закон сохранения полной механической энергии системы.	рование
		Неинерциальные системы отсчёта. Сила Кориолиса.	
		Стационарное течение идеальной жидкости.	
		Уравнение Бернулли.	

	Молеку	Термодинамическое равновесие и температура. Обратимые и	Выполн
2	лярная	необратимые процессы. Первое начало термодинамики.	ение
физика Изопроцессы в идеальных газах. Объединённый га		Изопроцессы в идеальных газах. Объединённый газовый	контр-х
	и закон. Преобразование теплоты в механическую работу. Цикл		и лабор.
	термоди	Карно и его коэффициент полезного действия. Энтропия.	работ,
	намика	4-хтактный двигатель внутреннего сгорания. Его круговой	тести-
		цикл и тепловой баланс.	рование.

2.3.2 Занятия семинарского типа: (не предусмотрены).

2.3.3 Лабораторные занятия.

No		Форма
№ семестра	Наименование лабораторных работ	текущего
Семестра		контроля
1	3	4
1.	- Определение ускорения свободного падения с помощью	Отчеты по
	математического маятника.	лабораторным
	- Определение момента инерции твердых тел с помощью	работам
	крутильных колебаний	// //
	- Изучение колебаний физического маятника.	
	- Проверка теоремы Штейнера.	
	- Измерение вязкости жидкости.	// //
	- Определение отношения теплоёмкостей (C_p/C_v) в газах.	

2.3.4 Примерная тематика курсовых работ (проектов).

(Курсовые работы - не предусмотрены).

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю).

	1	
		Перечень учебно-методического обеспечения дисциплины по
$N_{\underline{0}}$	Вид СРС	выполнению самостоятельной работы
		1
1	2	3
1	Проработка	1. Трофимова Т.И. Курс физики: учеб. пособие [для вузов] / Т.И.
	учебного	Трофимова. – М.: Академия, 2014.
	(теоретического)	2. Методические рекомендации к организации аудиторной и
	материала	внеаудиторной (самостоятельной) работы студентов: методические
		указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов,
		Н.В. Лоза. – Краснодар: Кубанский гос. ун-т, 2018. 89 с.
2	Выполнение	1. Трофимова Т.И. Курс физики: учеб. пособие [для вузов] / Т.И.
	индивидуальных	Трофимова. – М.: Академия, 2014.
	заданий	2. Методические рекомендации к организации аудиторной и
	(подготовка	внеаудиторной (самостоятельной) работы студентов: методические
	сообщений,	указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов,
	презентаций)	Н.В. Лоза. – Краснодар: Кубанский гос. ун-т, 2018. 89 с.
	-	
3	Подготовка к	1. Методические рекомендации к организации аудиторной и
	текущему	внеаудиторной (самостоятельной) работы студентов: методические
	контролю	указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В. Беспалов,
		Н.В. Лоза. – Краснодар: Кубанский гос. ун-т, 2018. 89 с.

	2. Методические рекомендации по выполнению лабораторных
	работ. Описания лабораторных работ.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

При реализации учебной работы по освоению дисциплины «Физика» используются современные образовательные технологии:

- активные и интерактивные формы обучения;
- исследовательские методы в обучении;
- проблемное обучение.

Интерактивные технологии, используемые при изучении дисциплины:

Семестр	Вид	Используемые интерактивные образовательные	Кол-	
	занятия		TBO	
	$(\Pi, \Pi P)$	технологии	час.	
1	Л	Лекция с элементами педагогической эвристики,	6	
		лекция-консультация.		
	ЛР	Беседы, разбор ситуаций, работа в малых группах в	10	
		процессе защиты лабораторных работ.		
	Итого:			

Самостоятельная работа по дисциплине включает:

- самоподготовку к учебным занятиям по конспектам, учебной литературе, интернет ресурсам;
- выполнение домашних заданий (решение типовых задач и выполнение творческих заданий).

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

Текущий контроль: составление и защита технического отчета по выполняемым лабораторным работам практикума; проверка домашних заданий. Ответы на контрольные вопросы, приведенные в описаниях работ и на дополнительные вопросы, касающиеся соответствующих разделов основной дисциплины.

Промежуточный контроль: зачёты в конце каждого семестра и экзамены в конце 1-го и 2-го семестров.

Итоговый контроль: экзамен в конце 3-го семестра.

Эффективность учебной деятельности бакалавров оценивается по балльнорейтинговой системе.

В учебном процессе используются активные и интерактивные формы проведения занятий: презентация, дискуссия, разбор конкретных ситуаций, творческие задания, мозговой штурм, работа в малых группах.

Учебно-познавательные экскурсии – важный элемент образовательного процесса. Прежде всего, это экскурсии в астрофизическую обсерваторию КубГУ, в лабораторию нанотехнологий, в спецлаборатории естественных факультетов.

Экскурсии в лаборатории "бизнес - инкубатора":

- мембранные технологии,
- выращивание монокристаллов для квантовой электронники.

Оценка качества освоения программы включает текущий контроль успеваемости, промежуточную аттестацию обучающихся, итоговые зачёты и экзамены в каждом семестре.

Текущий контроль и промежуточная аттестация ведутся по результатам выполнения лабораторных работ, домашних заданий и контрольных работ.

В конце каждого раздела проводится так называемый "блиц-опрос", когда студенты тут же, после номера заданного вопроса, пишут формулы и (или) определения, решают "короткие" задачи.

4.1 Фонд оценочных средств для проведения текущего контроля.

Пример теста:

№	Вопросы	Вариан	ты ответ	ОВ	
		1	2	3	4
1	Уравнение равноускоренного движения	S=Vt	$S=at^2/2$	V=at/2	h=gt ²
2	Импульс тела (количество движения)	mv,	ma,	mr,	mvr
3	Уравнение неразрывности потока: const =	PV,	mgh,	SV,	hv
4	Закон Бойля – Мариотта: Const =	SV,	TV	VP	Jω
5	Уравнение равноускоренного вращения	φ=ωt	ε=dω/dt	$\varphi = \varepsilon t^2/2$	M=Jε

Примеры задач:

Тема: Системы отсчёта. Движение переносное, относительное и абсолютное.

Задача 1. Найти все скорости и ускорения города, выбранного на глобусе, в указанное время года и время суток. (У каждого студента свой город и разные времена. Легко получаются индивидуальные задания).

Задача 2. Определить силу Кориолиса, действующую на один погонный метр берега выбранной Вами реки (ручья).

Тема: Движение свободно падающих тел.

 $3a\partial a va$. Тело бросили под углом α к горизонту со скоростью V. Найти все параметры движения: дальность полёта, высоту подъёма, время полёта, конечную скорость, минимальный радиус кривизны траектории. Сопротивление воздуха не учитывать. Сделать рисунок.

(Задавая различные значения a и V, получим серию вариантов).

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

Такой вид контроля, как "блиц-опросы", позволяет оперативно проверить качество усвоения отдельных тем и программы в целом.

Примеры бланков для блиц-опросов и контрольных работ:

Тема: Механика. Термодинамика и молекулярная физика.

	Группа	_ Студент(ка)	_
		tt ² . Построить график скорости за первые ведите пример такого движения.	e 5
1 1 2	лы, соответствующи ной механической эн	ие законам сохранения: импульса, моменергии.	нта
3.По какой формул Солнца?	те можно найти 1-ю	о космическую скорость ракеты относите	ельно
		ющей на пулю, при выстреле из ружья. N	Macca
5.Определить плот		ои комнатных условиях.	
		пре ДВС, считая его идеальной тепловой урой выхлопной трубы 200°С.	İ
7.Определить высо	оту фонтана, если пл	лотность кинетической энергии струи =	1 кДж/м³

Вопросы для подготовки к экзамену

- 1. Основные понятия кинематики поступательного движения: путь, перемещение, скорости, ускорения.
- 2. Общее уравнение поступательного движения.
- 3. Общее уравнение вращательного движения.
- 4. Сложение скоростей и ускорений при сложном движении.
- 5. Инерциальные системы отсчёта и законы Ньютона.
- 6. Неинерциальные системы. Сила Кориолиса.
- 7. Импульс тела и закон сохранения импульса.
- 8. Закон всемирного тяготения. Свободное падение тел.

Примеры экзаменационных билетов (Физика-1):

Министерство науки и высшего образования Российской Федерации ФГБОУ ВО "Кубанский государственный университет" Кафедра физики и информационных систем Направление подготовки: 27.03.01 Стандартизация и метрология Профиль – стандартизация и сертификация

Дисциплина: *Физика-1* БИЛЕТ № 1

- 1. Угловая скорость, угловое ускорение. Уравнение вращательного движения.
- 2. Уравнения теплового баланса. Примеры.
- 3. Пароход идёт по реке от пункта А до пункта В со скоростью 10 км/час, а обратно со скоростью 16 км/час. Найти среднюю скорость парохода и скорость течения реки.

Заведующий кафедрой физики и информационных систем Н.М. Богатов

Министерство науки и высшего образования Российской Федерации ФГБОУ ВО "Кубанский государственный университет"

Кафедра физики и информационных систем Направление подготовки: 27.03.01 Стандартизация и метрология Профиль – стандартизация и сертификация

Дисциплина: *Физика-1* БИЛЕТ № 2

- 1. Законы Ньютона.
- 2. Цикл Карно. Теорема Карно. К п д идеальной тепловой машины.
- 3. Тело, брошенное вертикально вверх, упало на землю через 6 секунд. Написать уравнение движения и построить график скорости (от времени).

Заведующий кафедрой физики и информационных систем Н.М. Богатов

Министерство науки и высшего образования Российской Федерации ФГБОУ ВО "Кубанский государственный университет" Кафедра физики и информационных систем

Направление подготовки: 27.03.01 Стандартизация и метрология Профиль – стандартизация и сертификация

Дисциплина: *Физика-1* БИЛЕТ № 3

- 1. Закон сохранения полной механической энергии. Примеры.
- 2. Абсолютные скорости и ускорения при сложном вращательном движении. Пример.
- 3. В одном из сечений горизонтальной трубки вода течёт со скоростью 1 м/с при статическом давлении 12 кПа. Каким будет давление воды на стенки трубки в другом сечении, где скорость течения 3 м/с?

Заведующий кафедрой физики и информационных систем Н.М. Богатов

4.2.1 Критерии оценки при промежуточной аттестации:

Критериями устного ответа будут выступать следующие качества знаний: -полнота – количество знаний об изучаемом объекте, входящих в программу; -глубина – совокупность осознанных знаний об объекте;

- -конкретность умение раскрыть конкретные проявления обобщённых знаний (доказать на примерах основные положения);
- -системность представление знаний об объекте в системе, с выделением структурных её элементов, расположенных в логической последовательности;
- -развёрнутость способность развернуть знания в ряд последовательных шагов;
- -осознанность понимание связей между знаниями, умение выделить существенные и несущественные связи, познание способов и принципов получения знаний.

Критериями письменного ответа и практического отчёта будут выступать следующие качества знаний:

- полнота количество знаний об изучаемом объекте, входящих в программу;
- глубина совокупность осознанных знаний об объекте;
- конкретность умение раскрыть конкретные проявления обобщённых знаний.

Критерии оценки знаний студента на зачёте

«Зачтено» ставится, если:

- дан ответ достаточной степени полноты на поставленный вопрос;
- логика и последовательность изложения не имеют нарушений или присутствуют незначительные нарушения;
- изложение теоретического материала и употребление терминов было безошибочным или допущены несущественные неточности или ошибки;
- показаны умения и навыки практического применения теоретического материала. «**Не зачтено**» ставится, если:
- ответы на поставленные вопросы не были даны, а также если
- логика и последовательность изложения имеют существенные нарушения;
- допущены существенные ошибки в теоретическом материале;
- в ответе отсутствуют выводы;
- сформированность умений и навыков не показана.

Критерии оценки знаний студентов на экзамене.

Оценки **«отлично»** заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка **«отлично»** выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

Оценки **«хорошо»** заслуживает студент обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка **«хорошо»** выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

Оценки **«удовлетворительно»** заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка **«удовлетворительно»** выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

Оценка «неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля):

5.1 Основная литература:

- 1. Бордовский, Г. А. Общая физика в 2 т. Том 1: учебное пособие для академического бакалавриата / Г. А. Бордовский, Э. В. Бурсиан. 2-е изд., испр. и доп. М.: Издательство Юрайт, 2018. 242 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-534-05451-4. Режим доступа: www.biblio-online.ru/book/E018BF05-1609-4A2A-93C4-959CE18CE185.
- 2. Трофимова Т.И. Курс физики: учеб. пособие [для вузов] / Т.И. Трофимова. М.: Академия, 2014.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2. Дополнительная литература:

- 1. Трофимова Т.И. Сборник задач по курсу физики с решениями: учеб. пособие для вузов / Т.И. Трофимова, З.Г. Павлова. М.: Высшая школа, 2004.
- 2. Волькенштейн В.С. Сборник задач по общему курсу физики / В.С. Волькенштейн. СПб.: Книжный мир: [Профессия], 2006.
- 6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля):

1. Электронные учебники и пособия по физике.

www.knigafund.ru/products/17

Учебная литература по физике и ее разделам в электронном виде. Раздел содержит издания по механике, термодинамике, оптике, электродинамике,

2. Электронные учебники. Физика.

www.curator.ru/e-books/physics.html

Электромагнетизм. Оптика. Квантовая физика. Более 80 компьютерных экспериментов, учебное пособие, видеозаписи экспериментов.

3. Электронные ресурсы по физике

metodist.lbz.ru > УМК - БИНОМ

Электронные образовательные ресурсы по физике. ... Сегодня наш сайт – это более 2000 файлов: учебники, лабораторные и контрольные работы.

4. Физика - Единое окно доступа к образовательным программам.

window.edu.ru/catalog/resources/uchebnik-fizika-dlya-vuzov

5. <u>Электронный учебник физики — PhysBook</u>.

www.physbook.ru/

Указанная основная литература имеется в библиотеке КубГУ в достаточном количестве.

7. Методические указания для обучающихся по освоению дисциплины.

На самостоятельную работу студентов отводится 35 % времени от общей трудоемкости дисциплины. Сопровождение самостоятельной работы студентов организовано в следующих формах:

Самостоятельная работа	
в том числе:	
Курсовая работа	-
Проработка учебного (теоретического) материала	20
Выполнение индивидуальных заданий (подготовка сообщений, презентаций)	10
Реферат	-
Подготовка к текущему контролю	

Изучение теоретических основ и методических указаний, изложенных в каждой лабораторной работе.

По итогам выполнения каждой лабораторной работы студент составляет технический отчёт, опираясь на который должен в беседе с преподавателем продемонстрировать знание теоретического и экспериментального материала, относящегося к работе. Проверка знаний студента основана на контрольных вопросах, приведенных в описании работы и дополнительных вопросах, касающихся соответствующих разделов дисциплины;

- выполнение домашних заданий по практическим занятиям;
- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний, получаемых по средствам изучения рекомендуемой литературы;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

Успешное освоение дисциплины предполагает активное, творческое участие студента путём планомерной, повседневной работы.

Общие рекомендации

Изучение дисциплины следует начинать с проработки рабочей программы, уделяя особое внимание целям и задачам, структуре и содержанию курса.

Работа с конспектом лекций

Просмотрите конспект сразу после лекции; отметьте материал, который вызывает затруднения для понимания. Попытайтесь найти ответы, используя рекомендуемую литературу и интернет ресурсы. Если самостоятельно не удалось разобраться в материале, формулируйте вопросы и обращайтесь к преподавателю на консультации или ближайшей лекции.

Регулярно отводите время для повторения пройденного материала, проверяя свои знания, умения и навыки по контрольным вопросам.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

- 8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).
 - 8.1 Перечень информационных технологий.
- Компьютерное тестирование по итогам изучения разделов дисциплины.
- Проверка домашних заданий и консультирование посредством электронной почты.
 - 8.2 Перечень необходимого программного обеспечения.
- Программы, демонстрации видео материалов (проигрыватель «Windows Media Player»).

8.3 Перечень информационных справочных систем:

- Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
- 9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

No	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные занятия	Лекционная аудитория (201 С и др.), оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук,) и соответствующим программным обеспечением (ПО). специализированные демонстрационные стенды по различным разделам общей физики (ком. 200 С).
2.	Семинарские занятия	Семинарские занятия - (не предусмотрены)
3.	Лабораторные занятия	Лаборатория (ком. 219 C), укомплектованная оборудованием для измерения механических и термодинамических параметров тел и систем:

		 Микрометры, штангенциркули и секундомеры. Психрометры, термометры и гигрометры. Маятники: математический, физический, крутильный и маятник Обербека. Установки для измерения теплоёмкости, коэффициента вязкости и модуля сдвига.
4.	Курсовое проектирование	Курсовое проектирование - (не предусмотрено)
5.	Групповые (индивидуальные) консультации	Аудитории 234 С, 320 С, 332 С; кабинет 232 С.
6.	Текущий контроль, промежуточная аттестация	Аудитории 234 С, 332 С; кабинет 232 С.
7.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета.

Учебно-экскурсионные объекты университета (астрофизическая обсерватория, спецлаборатории естественных факультетов и лаборатория нанотехнологий) оснащены современнейшим оборудованием.