

1920

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Б1.В.ДВ.14.2 (*МЕТОДЫ ПОТЕНЦИАЛА В ЗАДАЧАХ ЕСТЕСТВОЗНАНИЯ*)

Направление подготовки/специальность 02.03.01 (Математика и компьютерные науки)

Направленность (профиль) / специализация

Математика и компьютерное моделирование

Программа подготовки академическая

Форма обучения очная

Квалификация (степень) выпускника бакалавриат

Рабочая программа дисциплины МЕТОДЫ ПОТЕНЦИАЛА В ЗАДАЧАХ ЕСТЕСТВОЗНАНИЯ составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.01 МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ

Программу составил:

А.В. Бунякин, к.ф.-м.н., доц. каф. МКМ/

Рабочая программа дисциплины утверждена на заседании кафедры математических и компьютерных методов протокол № 9 «10» апреля 2018 г. Заведующий кафедрой (разработчика) Дроботенко М. И.

Рабочая программа обсуждена на заседании кафедры математических и компьютерных методов протокол № 9 «10» апреля 2018 г. Заведующий кафедрой (выпускающей) Дроботенко М. И.

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук протокол № 2 «17» апреля 2018 г. Председатель УМК факультета Титов Г.Н — Титов Г.Н

Рецензенты:

Савенко И. В., коммерческий директор ООО «РосГлавВино»

Никитин Ю.Г., доцент кафедры теоретической физики и компьютерных технологий Φ ГБОУ ВО «Кубанский государственный университет»

1 Цели и задачи изучения дисциплины

1.1 Цель и задачи дисциплины

Цель дисциплины:

«Методы потенциала в задачах естествознания» состоит в обучении применению современных математических методов для решения задач естествознания (физике, механике жидкости и газа, теории упругости), их технических приложений, так как математические модели, в которых решение находится разложением по базисным потенциалам, являются широко распространенными. Получение высшего профессионального образования, позволяющего выпускнику успешно работать в избранной сфере деятельности с применением современных математических методов.

1.2 Задачи дисциплины:

Ознакомление студентов с методологическими подходами, позволяющими строить адекватные математические модели в задачах естествознания, использовать математическое описание физических явлений; ознакомление с некоторыми широко распространенными моделями физики (в основном механики) и основными методами исследования этих моделей.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Методы потенциала в задачах естествознания» относится κ вариативной части Блока 1 "Дисциплины (модули)" учебного плана.

Дисциплина базируется на знаниях, полученных по стандарту высшего образования, и является основой для решения исследовательских задач. Для успешного освоения дисциплины студент должен владеть обязательным минимумом содержания основных образовательных программ по математике и информатике для бакалавров.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование следующих компетенций: ОПК-2, ПК-3, 4.

No॒	Индекс	Содержание	В результате и	зучения учебной,	дисциплины
	компет	компетенции (или её	обу	чающиеся должні	Ы
п.п. енции част		части)	знать	уметь	владеть
1.	ОПК-2	Способность решать	требования	решать	применением
		стандартные задачи	информацион-	стандартные	информацион
		профессиональной	ной	задачи	но-
		деятельности на	безопасности	профессиональ	коммуникаци
		основе		ной	онных
		информационной и		деятельности	технологий
		библиографической		на основе	
		культуры с		информационн	
		применением		ой и	
		информационно-		библиографиче	
		коммуникационных		ской культуры	
		технологий и с			
		учетом основных			
		требований			
		информационной			
		безопасности			
2.	ПК-3	Способность строго	Постановки	Формулироват	Способностью
		доказать	классических	ь результат,	строго
		утверждение,	задач	видеть след-	доказать
		сформулировать	математики	ствия получен-	утверждение
		результат, увидеть		ного	
		следствия		результата	
		полученного			
		результата			
3.	ПК-4	способность	Общие правила	Составлять	Методами
		публично	доклада	план	научной
		представлять	собственных, а	публичного	риторики,
		собственные и	также известных	доклада,	материалом
		известные научные	научных	управлять	достаточно
		результаты	результатов	аудиторией	глубоко

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 2 зач. ед. (2*36=72 часа), их распределение по видам работ представлено в таблице (для студентов $O\Phi O$).

Вид учебной работы		Всего		Семе	стры	
-				(ча	сы)	
			8			
Контактная работа, в то	м числе:	50,2	50,2			
Аудиторные занятия (вс						
Занятия лекционного типа			24	1	-	-
Лабораторные занятия		24	24	1	-	-
Занятия семинарского тип	а (семинары,					
практические занятия)		-	-	1	_	-
		-	1	1	-	-
Иная контактная работа:						
Контроль самостоятельной	й работы (КСР)	2	2			
Промежуточная аттестаци	я (ИКР)	0,2	0,2			
Самостоятельная работа	, в том числе:	21,8	21,8			
Проработка учебного (тео	ретического) материала	5	5	ı	-	-
Выполнение индивидуалы сообщений, презентаций)	ных заданий (подготовка	5	5	-	-	-
Реферат		5	5	-	-	-
Подготовка к текущему ко	онтролю	6,8	6,8	-	-	-
Контроль:						
Подготовка к экзамену			-			
Общая трудоемкость час.		72	72	-	-	-
	в том числе контактная работа	50,2	50,2			
	зач. ед	2	2			

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы дисциплины, изучаемые в 8 семестре (для студентов $O\Phi O$).

No		Количество часов				
	Наименование разделов		Аудиторная			Самостоятельная
раз- дела	паименование разделов	Всего		работа		работа
дела			Л	ЛР	П3	
1	2	3			4	
1	Задачи естествознания. Математическое моделирование физических процессов. Задачи математической физики (задача распространения тепла, задачи колебаний струны или мембраны).	23	8	8		7

2	Элементы теории потенциала. Полные системы потенциалов. Постановка краевых задач. Алгоритмы решения задач математической физики.	23	8	8	7
3	Моделирование физических процессов. Стационарные и нестационарные процессы. Типы дифференциальных уравнений в частных производных второго порядка и специфика методов, применяемых для нахождения множеств их решений.	23	8	8	7,8
	Итого по дисциплине:		24	24	21,8

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

№	Наименование	Содержание раздела	Форма текущего
31⊻	раздела	содсржание раздела	контроля
1	2	3	4
1	Задачи	1.1 Математическая физика. Постановка	Опрос
	естествознания.	краевых задач. Существование и	
	Математическое	единственность решения.	
	моделирование	1.2 Корректность и некорректность.	
	физических	Обратные задачи.	
	процессов. Задачи	1.3 Классификация дифференциальных	
	математической	уравнений в частных производных.	
	физики (задача	Уравнение теплопроводности и	
	распространения	волновое уравнение. Стационарные	
	тепла, задачи	процессы и эллиптические уравнения.	
	колебаний струны		
	или мембраны).		
2	-	1.1 Интегральные операторы теории	Опрос
	потенциала.	потенциала. Фундаментальное	
	Полные системы	решение уравнения Лапласа.	
	потенциалов.	1.2 Потенциалы простого и двойного	
	Постановка	слоя, объемный потенциал.	
	-	1.3 Потенциал Робена. Интегральные	
	Алгоритмы задач	операторы.	
		1.4 Представление функций	
	физики.	потенциалами. Лемма Новикова.	
3	Моделирование	3.1 Полнота сдвигов фундаментального	Экзамен
	физических	решения уравнения Лапласа в	
	процессов.	подпространстве гармонических	
	Стационарные и	функций.	
	нестационарные	4)tim.	
	процессы. Типы	3.2 Системы потенциалов полные на	
	дифференциальных	границе области. Полнота	
	уравнений в	модифицированных систем,	
		модифицированных систем,	

частных	полученных из фундаментального	
производных	решения.	
второго порядка и		
специфика	3.3 Алгоритм задачи Робена. Внутренняя	
методов,	и внешняя задача Дирихле для	
применяемых для	уравнения Лапласа и Пуассона.	
нахождения		
множеств их	3.4 Внутренняя задача и внешняя задача	
решений.	Неймана для уравнения Лапласа и	
	уравнения Пуассона.	
	Бигармоническое уравнение.	
	-	
	3.5 Граничное управление температурой.	

2.3.2 Занятия семинарского типа УП не предусмотрены.

		1 3	_1
No	Наименование	Тематика практических занятий	Форма текущего
31⊻	раздела	(семинаров)	контроля
1	2	3	4

2.3.3 Лабораторные занятия

№ разд- дела	Наименование раздела	Наименование лабораторных работ	Форма текущего контроля
1	2	3	4
1	См. таблицу	Задачи математической физики (задача	Опрос
	2.3.1	распространения тепла, задачи колебаний	
		струны или мембраны).	
2 - 3	См. таблицу	Фундаментальное решение уравнения	Опрос
	2.3.1	Лапласа. Потенциалы простого и	
		двойного слоя, объемный потенциал.	
		Фундаментальное решение уравнения	
		теплопроводности.	
4	См. таблицу	Численные методы решения задач со	Опрос
	2.3.1	старшим оператором Лапласа,	
		гиперболические системы 2х2 первого	
		порядка, задачи, сводящиеся к	
		бигармоническому уравнению.	

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы УП не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

	No	Наименование раздела	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
Ī	1	2	3
I	1	Общие сведения о математических	Седов Л.И. Механика сплошной среды

	моделях гидромеханики и газовой	Том. 1 – список дополнительной
	динамики, физические свойства	литературы п. 5.2.1.
	жидких и газообразных сред.	
2	Прямые и обратные задачи	Седов Л.И. Механика сплошной среды
	математического моделирования в	Том. 2 – список дополнительной
	плоской гидромеханике. Сведения об	литературы п. 5.2.1.
	основных методах решения уравнений	
	движения жидкости и газа	
	(аналитические решения).	
3	Методы численного моделирования и	Бэтчелор Дж., Моффат Г., Сэффмен Ф. и
	асимптотического анализа	др. Современная гидромеханика. Успех и
	гидромеханических и	проблемы – список основной литературы
	аэродинамических моделей.	п. 5.1.1.
		Годунов С.К., Забродин А.В., Иванов
		М.Я., Крайко А.Н., Прокопов Г.П.
		Численное решение многомерных задач
		газовой динамики – список основной
		литературы п. 5.1.2.
		Слезкин Н.А. Лекции по гидромеханике –
		список основной литературы п. 5.1.3.

3. Образовательные технологии:

Разбор практических задач и примеров, моделирование ситуаций, приводящих к тем или иным ошибкам в программе, выработка навыков выявления и исправления ошибок в процессе написания программы. Построение тестовых примеров для выявления ошибок в программе и сравнения эффективности различных алгоритмов.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Используемые интерактивные образовательные технологии:

Сем	Вид занятия	Используемые интерактивные образовательные	Кол-во		
	Бид запитии				
естр		технологии	часов		
	Лабораторные	Дискуссия на тему: «Задачи математической	8		
8	занятия	физики (задача распространения тепла, задачи			
		колебаний струны или мембраны)»			
		Дискуссия на тему: «Фундаментальное решение	8		
		уравнения Лапласа. Потенциалы простого и			
		двойного слоя, объемный потенциал.			
		Фундаментальное решение уравнения			
		теплопроводности»			
		Дискуссия на тему: «Численные методы решения	8		
		задач со старшим оператором Лапласа,			
		гиперболические системы 2х2 первого порядка,			
		задачи, сводящиеся к бигармоническому			
		1			
уравнению»					
Итог	<i>o:</i>		24		

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

4.1 Фонд оценочных средств для проведения текущей аттестации *Текущие аттестации не предусматриваются*.

4.2 Фонд оценочных средств для проведения промежуточной аттестации

Контрольные вопросы (к зачету):

- 1. Задачи естествознания. Математическое моделирование физических процессов.
- 2. Математическая физика. Постановка краевых задач. Существование и единственность решения. Корректность и некорректность.
- 3. Обратные задачи. Классификация дифференциальных уравнений в частных производных.
- 4. Уравнение теплопроводности и волновое уравнение.
- 5. Стационарные процессы и эллиптические уравнения.
- 6. Элементы теории потенциала. Интегральные операторы теории потенциала
- 7. Фундаментальное решение уравнения Лапласа. Потенциалы простого и двойного слоя, объемный потенциал.
- 8. Потенциал Робена. Интегральные операторы.

Представление функций потенциалами. Лемма Новикова. Полные системы потенциалов

- 9. Полнота сдвигов фундаментального решения уравнения Лапласа в подпространстве гармонических функций.
- 10. Системы потенциалов полные на границе области. Полнота модифицированных систем, полученных из фундаментального решения.
- 11. Алгоритмы задач математической физики. Алгоритм задачи Робена.
- 12. Внутренняя и внешняя задача Дирихле для уравнения Лапласа и Пуассона.
- 13. Внутренняя задача и внешняя задача Неймана для уравнения Лапласа и уравнения Пуассона.
- 14. Граничное управление температурой. Бигармоническое уравнение.
- 15. Моделирование физических процессов. Задачи математической физики.
- 16. Примеры задач математической физики. Задача распространения тепла.
- 17. Задача колебаний струны или мембраны. Стационарные процессы.
- 18. Основные типы дифференциальных уравнений в частных производных второго порядка. Постановка краевых задач.
- 19. Алгоритмы расчета плоскопараллельных течений идеальной несжимаемой жидкости.
- 20. Алгоритмы решения задач об управлении температурой.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

- 5.1 Основная литература:
- 5.1.1. Дзержинский, Р.И. Уравнения математической физики: курс лекций / Р.И. Дзержинский, В.А. Логинов; Министерство транспорта Российской Федерации, Московская государственная академия водного транспорта. Москва: Альтаир: МГАВТ, 2015. 67 с.: ил. Библиогр. в кн.; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=429675

- 5.1.2. Динамические системы и модели биологии / А.С. Братусь, А.С. Новожилов, А.П. Платонов. М.: ФИЗМАТЛИТ, 2010. 400 с.- ISBN 978-5-9221-1192-8, 600 экз. [Электронный ресурс]. URL http://znanium.com/catalog/product/397222 (06.04.2018).
- 5.1.3. Емельянов В.М. Уравнения математической физики. Практикум по решению задач: учеб. пособие / В.М. Емельянов, Е.А. Рыбакина. Электрон. дан. Санкт-Петербург: Лань, 2016. 216 с. ISBN 978-5-8114-0863-4 [Электронный ресурс]. URL: https://e.lanbook.com/book/71748 (06.04.2018).

5.2 Дополнительная литература:

- 1. Присекин, В.Л. Основы метода конечных элементов в механике деформируемых тел: учебник / В.Л. Присекин, Г.И. Расторгуев. НГТУ, 2009. 240 с. ISBN 978-5-7782-1287-9. [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book_red&id=436040
- 2. Александров, Д.В. Введение в гидродинамику : учебное пособие / Д.В. Александров, А.Ю. Зубарев, Л.Ю. Искакова. Екатеринбург : Издательство Уральского университета, 2012. 112 с. ISBN 978-5-7996-0785-2 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=239521
- 3. Митрофанова, О.В. Гидродинамика и теплообмен закрученных потоков в каналах ядерно-электрических установок / О.В. Митрофанова. Москва : Физматлит, 2010. 286 с. ISBN 978-5-9221-1223-9 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=68969

5.3. Периодические издания:

- 1. Bunyakin A.V., Chernyshenko S.I., Stepanov G.Yu. Invisid Batchelor model flow past an airfoil with a vortex trapped in a cavity // J.Fluid Mech. 1996. Vol. 323. P. 367 376. http://dx.doi.org/10.1017/S002211209600095X
- 2. Bunyakin A.V., Chernyshenko S.I., Stepanov G.Yu. High Reynolds number Prandtl Batchelor model flow past an aerofoil with a vortex trapped in a cavity // J.Fluid Mech. 1998. Vol. 358. P. 283 297. http://dx.doi.org/10.1017/S0022112097008203
- 3. Бунякин А.В. Ламинарный пограничный слой при обтекании крылового профиля с круговой выемкой // Изв. РАН Мех. жидк. и газа 1998. №2. С. 52 57.
- 4. Бунякин А.В. Вихревая ячейка с вращающимся внутри цилиндром на поверхности крылового профиля при больших числах Рейнольдса // Изв. РАН Мех. жидк. и газа. 2001. № 4. C. 87 92.
- 5. Sandoval M., Chernyshenko S. Extension of the Prandtl Batchelor theorem to three-dimensional flows slowly varying in one direction // Journal of Fluid Mechanics 2010. V. 654. P. 351 361

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», *необходимых* для освоения дисциплины (модуля): Wikipedia

7. Методические указания для обучающихся по освоению дисциплины (модуля)

В процессе самостоятельной работы каждый обучающийся получает задания по каждому из трех разделов дисциплины (см. табл. 2.2), которые принимаются по согласованию с преподавателем (в специально назначаемое время).

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)

8.1 Перечень необходимого программного обеспечения:

Лицензированные программы не используются, а только авторские.

8.2 Перечень необходимых информационных справочных систем: Wikipedia

8.3 Перечень информационных справочных систем:

- 1. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
 - 2. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю):

No	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные занятия	Лекционная аудитория, специально оборудованные мультимедийными демонстрационными комплексами.
2.	Лабораторные занятия	Аудитория, укомплектованная специализированной мебелью и техническими средствами обучения.
3.	Текущий контроль, промежуточная аттестация	Помещение для проведения текущей и промежуточной аттестации.
4.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета.

РЕЦЕНЗИЯ

на рабочую программу дисциплины

«Методы потенциала в задачах естествознания» для категории обучающихся специальности 02.03.01 «Математика и компьютерные науки» (квалификация - бакалавр)

Рабочая программа дисциплины «Методы потенциала в задачах естествознания» для категории обучающихся специальности 02.03.01 «Математика и компьютерные науки» (квалификация - бакалавр) содержит перечень формируемых компетенций и этапы их формирования, структуру фонда оценочных средств для текущей и промежуточной аттестации, примерный перечень тем рефератов, перечень тем лабораторных работ, а также вопросы для подготовки к зачету.

Содержание рабочей программы и фонда оценочных средств (РП и ФОС) учебной дисциплины «Методы потенциала в задачах естествознания» соответствует ФГОС ВО по специальности 02.03.01 «Математика и компьютерные науки», утвержденному приказом №827 Министерства образования и науки РФ от 17.08.2015 г., ООП ВО, действующей примерной (типовой) программе по дисциплине, учебному плану специальности 02.03.01 «Математика и компьютерные науки».

Контрольные измерительные материалы и методика оценивания качества полученных знаний соответствуют поставленным задачам, а именно, приобретению учащимися требуемых компетенций. Оценка знаний студентов осуществляется на основании выполнения лабораторных работ и написания рефератов, а поэтому является достаточно объективной. Представленные в фонде оценочных средств контрольные измерительные материалы полностью соответствуют уровню обучения и сформулированным критериям оценки.

РП и ФОС является полным и адекватным отображением требований ФГОС ВО и ООП, обеспечивает решение оценочной задачи соответствия общих профессиональных и профессиональных компетенций выпускника этим требованиям.

Задания оценочных средств соответствуют требованиям профессиональных компетенций, а именно вырабатывают у учащихся способность составлять математические модели вихревых течений в гидродинамике несжимаемой среды, проводить численные расчеты с использованием их.

Считаю целесообразным утвердить РП дисциплины «Методы потенциала в задачах естествознания» в представленном виде.

Доцент кафедры теоретической физики и компьютерных технологий ФГБОУ ВО «КубГУ»

Никитин Ю.Г.

РЕЦЕНЗИЯ

на рабочую программу дисциплины «Методы потенциала в задачах естествознания» для категории обучающихся специальности 02.03.01 «Математика и компьютерные науки» (квалификация — бакалавр)

Рабочая программа дисциплины «Методы потенциала в задачах естествознания» для категории обучающихся специальности 02.03.01 «Математика и компьютерные науки» (квалификация - бакалавр) содержит перечень формируемых компетенций и этапы их формирования, структуру фонда оценочных средств для текущей и промежуточной аттестации, примерный перечень тем рефератов, перечень тем лабораторных работ, а также вопросы для подготовки к зачету.

Содержание рабочей программы и фонда оценочных средств (РП и ФОС) учебной дисциплины «Методы потенциала в задачах естествознания» соответствует ФГОС ВО по специальности 02.03.01 «Математика и компьютерные науки», утвержденному приказом №827 Министерства образования и науки РФ от 17.08.2015 г., ООП ВО, действующей примерной (типовой) программе по дисциплине, учебному плану специальности 02.03.01 «Математика и компьютерные науки».

Контрольные измерительные материалы и методика оценивания качества полученных знаний соответствуют поставленным задачам, а именно, приобретению учащимися требуемых компетенций. Оценка знаний студентов осуществляется на основании выполнения лабораторных работ и написания рефератов, а поэтому является достаточно объективной. Представленные в фонде оценочных средств контрольные измерительные материалы полностью соответствуют уровню обучения и сформулированным критериям оценки.

РП и ФОС является полным и адекватным отображением требований ФГОС ВО и ООП, обеспечивает решение оценочной задачи соответствия общих профессиональных и профессиональных компетенций выпускника этим требованиям.

Задания оценочных средств соответствуют требованиям профессиональных компетенций, а именно вырабатывают у учащихся способность составлять математические модели вихревых течений в гидродинамике несжимаемой среды, проводить численные расчеты с использованием их.

Считаю целесообразным утвердить РП дисциплины «Методы потенциала в задачах естествознания» в представленном виде.

Коммерческий директор ООО «РосГлавВино»

Савенко И. В.