Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики

УТВЕРЖДАЮ:
Проректор по учебной работе, качеству образования – первый проректор Ванов А.Г.

« 10 3 2017г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.Б.07 ОСНОВЫ ПРОГРАММИРОВАНИЯ

Направление подготовки/специальность 02.03.03 «Математическое обеспечение и администрирование информационных систем»

Направленность (профиль) / специализация «Технология программирования»

Программа подготовки академическая

Форма обучения очная

Квалификация (степень) выпускника бакалавр

Рабочая программа дисциплины Основы программирования составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.03 «Математическое обеспечение и администрирование информационных систем»

Программу составил(и):

доцент кафедры информационных технологий КубГУ, к.ф.-м.н., доцент

Кольцов Ю.В.

доцент кафедры информационных технологий КубГУ, к.п.н., доцент

Добровольская Н.Ю.

Рабочая программа дисциплины Основы программирования утверждена на заседании кафедры информационных технологий протокол № 16 «28» июня 2017г.

Заведующий кафедрой (разработчика)

Кольцов Ю.В.

Рабочая программа обсуждена на заседании кафедры интеллектуальных информационных систем, протокол № 8 «29» июня 2017г.

Заведующий кафедрой (выпускающей)

Костенко К.И.

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол № 4 «29» июня 2017г.

Председатель УМК факультета

B

Малыхин К.В.

Рецензенты:

доцент кафедры математического моделирования ФГБОУ «КубГУ»

Рубцов С. Е.

заведующий кафедрой СГЕНД СКФ ФГБОУ ВО «Российский государственный университет правосудия»

Бегларян М. Е.

.

1 Цели и задачи изучения дисциплины.

1.1 Цель освоения дисциплины.

В рамках изучения дисциплины «Основы программирования» даются начальные представления об основных профессиональных инструментах: языке программирования высокого уровня и системе программирования, его реализующего. На протяжении всего курса студенты работают в технологии структурного программирования, как наиболее хорошо разработанной, естественной и простой.

Использование этой технологии поможет будущему специалисту найти правильный подход к решению любой практической задачи на самом начальном этапе.

1.2 Задачи дисциплины.

Основные задачи курса на основе системного подхода:

- изучение простейших алгоритмов обработки данных;
- изучение более сложных данных: структур (в том числе динамических), файловые потоки;
 - осваивается модульный принцип построения программ;
- основные принципы алгоритмизации и приемы программирования изучаются на основе языка Паскаль, вырабатывая у начинающего хороший стиль и технику программирования и ориентируя студентов на профессиональный стиль программирования.

Содержательное наполнение дисциплины обусловлено общими задачами в подготовке бакалавра.

Научной основой для построения программы данной дисциплины является теоретико-прагматический подход в обучении.

1.3 Место дисциплины в структуре образовательной программы.

Дисциплина «Основы программирования» относится к базовой части Блока1 "Дисциплины (модули)" учебного плана.

Дисциплина «Основы программирования» является логически и содержательно-методически связана с такими дисциплинами как «Теория автоматов и формальных грамматик», «Структуры и алгоритмы компьютерной обработки данных», «Технология разработки программного обеспечения». Данная дисциплина позволяет заложить основу для изучения программистских дисциплин профессионального цикла, предшествует таким дисциплинам как «Структуры и алгоритмы компьютерной обработки данных», «Технология разработки программного обеспечения». Является логически связанной с математическими дисциплинами, рассматривает объекты таких дисциплин как «Теория автоматов и формальных грамматик» с точки зрения программирования.

Входными знаниями для освоения данной дисциплины являются знания, умения и опыт, накопленный студентами в процессе подготовки ЕГЭ и изучения дисциплины «Информатика и ИКТ» в рамках обучения в школе. Обучающийся должен:

- -уметь представлять число в различных системах счисления и выполнять арифметические действия в них;
 - -уметь строить элементарные линейные алгоритмы и блок-схемы алгоритмов;
 - -уметь кодировать информацию;
 - -уметь решать логические задачи.

1.4 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся *общепрофессиональных* компетенций (*ОПК*)

		ощепрофессиональных Солотический	,		
$N_{\underline{0}}$	Индекс	Содержание	В результате изучения учебной дисциплины обучающиеся должны		
п.п.	компет	компетенции (или её		ĺ	
1	енции	части)	знать	уметь	владеть
1.	ОПК-7	способностью	1) основн	7) применять	12) методами,
		использовать знания	ые	на практике	способами и
		основных	концептуальн	современные	средствами
		концептуальных	ые положения	технологии	разработки
		положений	функциональн	разработки	программ
		функционального,	ого,	алгоритмов и	функциональн
		логического,	логического,	программ,	ого,
		объектно-	объектно-	языки	логического,
		ориентированного и	ориентирован	программиров	объектно-
		визуального	ного и	ания, методы	ориентирован
		направлений	визуального	тестирования,	ного и
		программирования,	направлений	отладки и	визуального
		методов, способов и	программиров	решения задач	направлений
		средств разработки	ания	на ЭВМ;	программиров
		программ в рамках	2)	8) работать с	ания;
		этих направлений	понятие	современными	13) навыками
			алгоритма и	системами	работы с
			классификаци	программиров	языками
			Ю	ания;	процедурного
			алгоритмическ	9)	программиров
			их языков и	программиров	ания;
			систем	ать базовые	14) навыками
			программиров	алгоритмы на	разработки и
			ания;	языке	отладки
			2) основные	высокого	программ не
			стадии	уровня.	менее, чем на
			жизненного	10)	одном из
			цикла	разрабатывать	алгоритмическ
			программного	программы в	ИХ
			обеспечения	соответствии с	процедурных
			3)	выбранной	языков
			представление	моделью	программиров
			о других (не	жизненного	ания высокого
			процедурных)	цикла	уровня
			языках	11)	15) навыками
			программиров	использовать	управления
			ания;	функции	ресурсами
			4)	программного интерфейса	вычислительн ой системы
			возможности		ои системы
			современных	операционных систем для	
			операционных систем;		
			5) технологию	управления	
			разработки	ресурсами	
			алгоритмов и		
			•		
			программ,		
I			методы		

No	Индекс	Содержание	В результате изучения учебной дисциплин		
п.п.	компет	компетенции (или её	00	учающиеся долж	НЫ
11.11.	енции	части)	знать	уметь	владеть
			отладки и решения задач на ЭВМ в различных режимах; 6) язык программиров ания высокого уровня - Си;		

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины составляет 7 зач.ед. (252 часов), их распределение по видам работ представлено в таблице

 $(\partial$ ля cmv ∂ ентов $O\Phi O$).

Вид учебной работы				Семестры		
,					сы)	
		1	2			
Контактная работа, в то	м числе:					
Аудиторные занятия (все	его):	144	144			
Занятия лекционного типа		72	72		-	-
Лабораторные занятия		72	72		-	-
Занятия семинарского тип	а (семинары,					
практические занятия)		-	_		_	-
		-	-		-	-
Иная контактная работа	:					
Контроль самостоятельной	й работы (КСР)	6	6			
Промежуточная аттестаци	я (ИКР)	0,5	0,5			
Самостоятельная работа	, в том числе:					
Курсовая работа		-	-		-	-
Проработка учебного (те	оретического) материала	26	26		-	-
Выполнение индивидуальн	ых заданий (коллоквиум,	34	34			
индивидуальные задания, н	контрольные работы)	34	34		_	-
Реферат		-	-		-	-
Подготовка к текущему ко	5,8	5,8		-	-	
Контроль:						
Подготовка к экзамену	35,7	35,7				
Общая трудоемкость	час.	252	252		-	-
	в том числе контактная	150,5	150,			
	работа		5			
	зач. ед	7	7			

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 1 семестре (очная форма)

			Количество часов				
			Аудит	орная	Внеаудиторная		
No	Наименование разделов	D	рабо	та	pa	бота	
		Всего	Л	ЛР	CPC	контрол	
			71	311	CI C	Ь	
1	2	3	4	5	6	7	
1.	Обзор языков программирования	34	8	8	12	6	
	высокого уровня.						
2.	Основы алгоритмизации	34	8	8	12	6	
3.	Основные типы данных	76	30	28	12	6	
4.	Информационные структуры	54	18	18	12	6	
5.	Доказательство правильности программ	34	8	8	12	6	
6.	Обзор изученного материала и прием зачета	13,5	-	2	5,8	5,7	
7.	Контроль самостоятельной работы (КСР)	6					
8.	Промежуточная аттестация (ИКР)	0,5					
	Итого по дисциплине:	252	72	72	65,8	35,7	

| Итого по дисциплине: | 252 | 72 | 72 | 65,8 | 35,7 | Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

No	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
1	Обзор языков программирования высокого уровня.	Этапы решения задач на ЭВМ. Способы записи и требования к алгоритмам, базовые структуры. Теорема структуры и структурное программирование. Программы на ЯВУ: жизненный цикл программы, постановка задачи и спецификация программы; анализ программ; утверждения о программах; корректность программ; способы конструирования и верификации программ; правила вывода для основных	К
2	Основы алгоритмизации.	Разработка алгоритмов линейных и разветвляющихся вычислительных процессов. Разработка алгоритмов циклических вычислительных процессов. Разработка алгоритмов решения линейных и разветвляющихся вычислительных процессов. Разработка алгоритмов решения циклических вычислительных процессов. Разработка алгоритмов решения циклических вычислительных процессов. Знакомство с интегрированной средой разработки программ.	К
3	Основные типы данных	Структура программы на Си. Простые типы данных. Функции ввода и вывода в стиле Си, спецификации преобразования. Ввод и вывод. Операции в Си, приоритеты операций.	К

		Программирование линейных и	
		разветвляющихся вычислительных	
		процессов на языке Си. Операторы языка Си:	
		выражение, пустой, составной, условные,	
		циклические. Линейная программа. Простые	
		типы данных.Программирование	
		разветвляющихся процессов. Массивы:	
		определение, инициализация. Примеры работы	
		c	
		одномерными и многомерными массивами.	
		Программирование типовых алгоритмов	
		обработки двумерных массивов. Строки:	
		определение, инициализация, функции для	
		работы со строками. Обработка строковых	
		данных в программах на языке Си.	
4	Информационные	Указатели: описание, инициализация,	К
	структуры	операции с указателями, многоуровневые	
		указатели, динамическое выделение памяти.	
		Связь массивов и указателей. Динамическое	
		выделение памяти под одно- и двумерные	
		массивы. Организация линейных списков:	
		односвязный и двусвязный списки, стеки, деки.	
		Обработка данных в динамических списках на	
		языке Си.	
5	Доказательство	Основы доказательства правильности	K
	правильности	программ. Архитектура и возможности	
	программ	семейства языков программирования высокого	
		уровня.	

К – коллоквиум

2.3.2 Занятия семинарского типа. Заятия семинарского типа не предусмотрены.

2.3.3 Лабораторные занятия.

№	Наименование лабораторных работ	Форма текущего контроля
1	2	3
1.	Вычислительные алгоритмы	Решение задач, отчет по лабораторной работе
2.	Одномерные массивы	Решение задач, отчет по лабораторной работе
3.	Матрицы	Решение задач, отчет по лабораторной работе
4.	Подпрограммы. Рекурсия	Решение задач, отчет по лабораторной работе
5.	Модули	Решение задач, отчет по лабораторной работе
6.	Файлы	Решение задач, отчет по лабораторной работе
7.	Динамические списки	Решение задач, отчет по лабораторной работе

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Решение	Стандарты оформления исходного кода программ и
		современные интегрированные среды разработки
		программного обеспечения: учебметод.пособие/
		Ю.В.Кольцов [и др.]. – Краснодар:Кубанский гос.ун-т, 2015
		111с., утвержденные кафедрой информационных
		технологий, протокол № 7 от 09.04.2015 г.
2	Отчет по лабораторной	Стандарты оформления исходного кода программ и
	работе	современные интегрированные среды разработки
		программного обеспечения: учебметод.пособие/
		Ю.В.Кольцов [и др.]. – Краснодар:Кубанский гос.ун-т, 2015
		111с., утвержденные кафедрой информационных технологий
		протокол № 7 от 09.04.2015 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

Применяются следующие образовательные технологии.

Проблемные лекции «Рекурсивные алгоритмы», «Преимущества модулей».

На лабораторных занятиях используется метод малых групп, разбор практических задач и кейсов, технология фасетного построения учебных задач.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

Перечень экзаменационных вопросов

1. Алгоритм и его свойства.

- 2. Машинный язык. Трансляция
- 3. Функции языков программирования. Основные свойства языков программирования.
- 4. Основные аспекты изучения языков программирования
- 5. Метаязыки описания языков программирования
- 6. Виртуальная машина
- 7. Типы ошибок, распознаваемые ВМ
- 8. Структура программы
- 9. Понятие типа. Структура типов языка
- 10. Целочисленные типы.
- 11. Символьный тип
- 12. Булевский (логический) тип
- 13. Вещественные типы.
- 14. Описание переменных и констант
- 15. Арифметические операции
- 16. Условная операция. Выражения
- 17. Поразрядные операции языка
- 18. Операторы языка. Оператор присваивания
- 19. Средства ввода-вывода
- 20. Условный оператор. Вложенность условных операторов
- 21. Оператор выбора
- 22. Операторы цикла
- 23. Операторы перехода
- 24. Обработка последовательностей. Программирование арифметических циклов
- 25. Обработка последовательностей. Итерационные циклы
- 26. Программирование вложенных циклов
- 27. Конструируемые типы
- 28. Регулярные типы
- 29. Обработка одномерных массивов
- 30. Классы задач по обработке массивов
- 31. Задачи 1-ого класса. Обоснование выбора структуры данных
- 32. Задачи 2-ого класса
- 33. Задачи 3-ого класса
- 34. Задачи 4-ого класса
- 35. Методы сортировки. Общая постановка задачи
- 36. Оценивание алгоритма
- 37. Метод поиска с обменом (сортировка посредством выбора)
- 38. Алгоритм «Пузырька»
- 39. Челночная сортировка (сортировка вставками)
- 40. Метод подсчета
- 41. Метод парных сравнений
- 42. Двумерные массивы
- 43. Функции
- 44. Прототип функции
- 45. Параметры функции. Передача по значению
- 46. Передача фактических параметров по адресу
- 47. Локальные и глобальные переменные. Область видимости переменных
- 48. Параметры со значениями по умолчанию (необязательные параметры)
- 49. Перегрузка функций
- 50. Рекурсия
- 51. Быстрая сортировка
- 52. Шаблоны функций
- 53. Указатели

- 54. Динамические переменные
- 55. Операции с указателями
- 56. Ссылки
- 57. Динамические массивы
- 58. Передача массивов как параметров в функцию
- 59. Конструируемые типы
- 60. Перечисляемые типы
- 61. Структуры
- 62. Объединения

Перечень компетенций, проверяемых оценочным средством: ОПК-7 — способность использовать знания основных концептуальных положений функционального, логического, объектно-ориентированного и визуального направлений программирования, методов, способов и средств разработки программ в рамках этих направлений

Задачи к экзаменационным билетам

Задача 1 15

Сформировать из тех элементов файла f, у которых значение совпадает с порядковым номером (порядковый номер начинается с нуля) однонаправленный список L и затем вставить перед каждым элементом со значением кратным четырем, новый элемент со значением k. Оформить вывод результата. Исходный файл данных заполнить с клавиатуры.

Задача 2 15

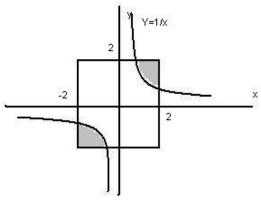
Сформировать из положительных элементов массива А однонаправленный список L, занося в поле Info значение элемента, а в поле Index его индекс. Затем удалить из списка все элементы с четным значением поля Index. Оформить вывод результата. Исходный массив А (число элементов в нем равно Lim) задается с клавиатуры.

Задача 3 15

Сформировать из элементов массива a, значение которых принадлежит отрезку [1..10] двунаправленный список L и затем удалить из списка все не кратные трем элементы. Оформить вывод результата. Исходный массив задается с клавиатуры.

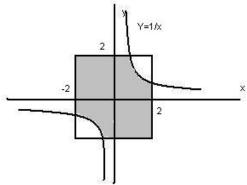
Задача 4 15

Сформировать из элементов массива *а*, оканчивающихся на 15, двунаправленный список L и затем вставить между двумя равными элементами новый, со значением 1. Оформить вывод результата. Исходный массив задается с клавиатуры.


Перечень компетенций, проверяемых оценочным средством: ОПК-7 — способность использовать знания основных концептуальных положений функционального, логического, объектно-ориентированного и визуального направлений программирования, методов, способов и средств разработки программ в рамках этих направлений

Вопросы для коллоквиумов

по дисциплине <u>Основы программирования</u> Вариант 1


- 1. Понятие мета-языка. БНФ. Примеры
- 2. Оператор выбора. Примеры.
- 3. Дана квадратная матрица вещественных чисел nxn. Найти наибольший по модулю элемент среди элементов, лежащих на побочной диагонали.
- 4. Дана последовательность целых чисел, оканчивающаяся нулем. Найти количество чисел, сумма цифр которых четна.

- 5. Дан массив символов. Является ли он симметричным массивом цифр?
- 6. Пусть (x, y) координаты точки на плоскости. Составить булевское выражение, которое принимает значение true тогда и только тогда, когда точка принадлежит заштрихованной области.

Вариант 2

- 1. Числовые типы.
- 2. Оператор цикла с постусловием. Синтаксис, семантика. Примеры
- 3. Дана квадратная матрица целых чисел nxn. Заменить нулем элементы с последней цифрой равной 2 среди элементов, лежащих на главной диагонали.
- 4. Дана последовательность целых чисел, оканчивающаяся -1. Найти среднее арифметическое чисел, количество цифр в которых четно.
- 5. Дан массив целых чисел. Является ли он упорядоченным по убыванию и содержащим только положительные кратные 3 числа?
- 6. Пусть (x, y) координаты точки на плоскости. Составить булевское выражение, которое принимает значение true тогда и только тогда, когда точка принадлежит заштрихованной области.

Перечень компетенций, проверяемых оценочным средством: ОПК-7 — способность использовать знания основных концептуальных положений функционального, логического, объектно-ориентированного и визуального направлений программирования, методов, способов и средств разработки программ в рамках этих направлений

Комплект заданий для контрольной работы по дисциплине Основы программирования

1. Тема Обработка последовательности чисел Вариант 1.

- 1. Дана последовательность целых чисел, оканчивающаяся числом -801. Найти сумму чисел, количество четных цифр в записи которых не кратно 3, а за такими числами следует отрицательное число.
- 2. Дан массив целых чисел. Если он не упорядочен по убыванию, то заменить элементы, с индексами кратными 3, на значение максимального элемента.
- 3. Дана квадратная матрица вещественных чисел. Увеличить элементы, лежащие выше главной диагонали, на сумму положительных элементов побочной диагонали.
- 4. Дана матрица NxM целых чисел. Сформировать массив, каждый элемент которого равен сумме модулей отрицательных элементов соответствующей строки.

2. Тема Обработка массивов

Вариант 1

- 1. Дан массив целых чисел. Найти произведение элементов, в записи которых ровно две цифры 2. Оформить логическую функцию, проверяющую наличие двух цифр 2 в числе. Наличие основной программы обязательно.
- 2. Дан массив целых чисел. Заменить отрицательные элементы массива на сумму индексов положительных элементов. Оформить рекурсивную функцию вычисления суммы. Оформить рекурсивную процедуру замены элемента на некоторый параметр. Наличие основной программы обязательно.
- 3. Дан массив строк. Вывести номера несимметричных строк, начинающихся с буквы.
- 4. Дан массив информации о сотрудниках: фамилия, стаж, зарплата. Найти фамилии сотрудников, заканчивающиеся на «ов», стаж которых число большее заданного числа К, а зарплата трехзначное число.

Перечень компетенций, проверяемых оценочным средством: ОПК-7 — способность использовать знания основных концептуальных положений функционального, логического, объектно-ориентированного и визуального направлений программирования, методов, способов и средств разработки программ в рамках этих направлений

Комплект разноуровневых задач (заданий)

по дисциплине Основы программирования

1.Условный оператор

- 1. Даны x, y, z, t. Найти max(x+y+z, xyz)+min(x,y,z,t).
- 2.Даны x, y. Если x и y отрицательны, то каждое значение заменить его модулем, если отрицательное число только одно из них, то оба значения увеличить на 0,5, если оба значения неотрицательны, то оба значения увеличить в 10 раз.
 - 3.Дано натуральное n (n<=99). Выяснить, верно ли, что n² равно кубу суммы цифр числа n.
 - 4. Является ли натуральное четырехзначное число п палиндромом.
- 5. Даны действительные числа a, b, c. Выяснить, имеет ли уравнение $ax^2+bx+c=0$ действительные корни.
- 6. Дано два четырехзначных числа. Верно ли, что сумма цифр первого числа равна произведению средних цифр второго числа.
- 7. Даны действительные числа x_1 , x_2 , x_3 , y_1 , y_2 , y_3 . Принадлежит ли начало координат треугольнику с вершинами (x_1 , y_1), (x_2 , y_2), (x_3 , y_3).

2.Операторы цикла

- 1. Дана непустая последовательность различных натуральных чисел, за которой следует ноль. Определить порядковый номер наименьшего из них (while).
- 2. Дана последовательность из n целых чисел. Определить, со скольких отрицательных чисел она начинается (for, while).

3. Дано действительное х. Вычислить приближенное значение бесконечной суммы (сумму первых п слагаемых):

$$x + \frac{x^2}{2} + \frac{x^3}{3} + \dots$$
 (abs(x)<1).

- 4. Дано: натуральное число n, действительные числа a_1 , ..., a_n . В последовательности a_1 , ..., a_n определить число соседств двух чисел разного знака.
 - 5. Дано число п. Определить, является ли оно простым.
- 6. Дано п чисел. Определить, сколько из них больше предыдущего и последующих чисел.
- 7. Дана непустая последовательность натуральных чисел, за которой следует 0. Вычислить сумму тех из них, порядковые номера которых числа Фибоначчи.

3. Одномерные массивы

- 1. Даны действительные числа a_1 , a_2 , ..., a_n . Если в результате замены отрицательных элементов последовательности a_1 , a_2 , ..., a_n их квадратами элементы будут образовывать неубывающую последовательность, то получить сумму элементов исходной последовательности, в противном случае каждый пятый элемент заменить средним арифметическим отрицательных чисел.
- 2. Дан массив целых чисел. Найти среднее арифметическое простых элементов массива.
- 3. Даны числа a_1, a_2, \ldots, a_n . Переставить элементы последовательности a_1, a_2, \ldots, a_n так, чтобы сначала расположились все неотрицательные элементы, а потом все отрицательные. Порядок как среди неотрицательных элементов, так и среди отрицательных, должен быть сохранен прежним. Затем переставить элементы так, чтобы сначала шли четные элементы, затем нечетные.
- 4. Даны действительные числа a_1 , a_2 , ..., a_n . Оставить без изменения последовательность a_1 , a_2 , ..., a_n , если она упорядочена по не убыванию или по не возрастанию, в противном случае удалить из последовательности те элементы, порядковые номера которых кратны четырем, сохранив прежним порядок оставленных элементов.
- 5. Дано: действительные числа a_1 , ..., a_n , p, натуральное число k ($a_1 <= a_2 <= ... <= a_n$, k < n). Удалить из a_1 , ..., a_n элемент с номером k (т.е. a_k) и вставить элемент, равный p, чтобы не нарушилась упорядоченность.
- 6. Даны действительные числа $c_1, \ldots, c_p, d_1, \ldots, d_q$ ($c_1 <= c_2 <= \ldots < c_p, d_1 <= d_2 <= \ldots <= d_q$). Внести единую упорядоченность в $c_1, \ldots, c_p, d_1, \ldots, d_q$, получив $f_1, f_2, \ldots, f_{p+q}$ такие, что $f_1 <= f_2 <= \ldots <= f_{p+q}$. Число сравнений не должно превосходить p+q.
- 7. Пусть дан массив a_1 , ..., a_n . Требуется переставить a_1 , ..., a_n так, чтобы вначале массива шла группа элементов, больших того элемента, который в исходном массиве располагался на первом месте, затем сам этот элемент, потом группа элементов, меньших или равных ему.

4. Регулярные типы. Матрицы

- 1. Получить целочисленную квадратную матрицу порядка 7, элементами которой являются числа 1, 2, ..., 49, расположенные в ней по спирали.
- 2. В действительной квадратной матрице порядка п найти наибольший по модулю элемент. Получить квадратную матрицу порядка n-1 путем выбрасывания из исходной матрицы строки и столбца, на пересечении которых находится найденный элемент.
- 3. Дана действительная матрица размером nxm, в которой не все элементы равны нулю. Получить новую матрицу путем уменьшения всех элементов данной матрицы на ее наибольший элемент.

- 4. Дано: натуральное число m, целые числа a_1 , ..., a_m и целочисленная квадратная матрица порядка m. Строку с номером i матрицы назовем отмеченной, если $a_i > 0$, и неотмеченной в противном случае. Требуется все элементы, расположенные в отмеченных строках матрицы, преобразовать по правилу: отрицательные элементы заменить на -1, положительные на 1, а нулевые оставить без изменения.
- 5. Дана действительная матрица порядка п. Заменить нулями все ее элементы, расположенные на главной диагонали и выше нее. Найти среднее арифметическое положительных элементов, расположенных ниже главной диагонали.
- 6. Дана действительная матрица размера m x n. Найти значение наибольшего по модулю элемента матрицы, а также определить есть ли в матрице хотя бы один простой элемент.
- 7. В данной действительной матрице размера mxn поменять местами строку с наибольшим значением, со строкой, содержащей элемент с наименьшим значением. Предполагается, что эти элементы единственны.

5. Регулярные типы. Строки

- 1. Дан текст. Для первого слова указать, сколько раз оно встречается среди всех слов, образованных символами данного текста.
- 2. Дан текст. Найти все слова, содержащие наибольшее количество гласных латинских букв (a, e, i, o, u).
- 3. Дан текст. В тех словах, которые оканчиваются сочетанием букв ing, заменить это окончание на wend.
- 4. Дан текст. Выяснить, встречается ли в данном тексте группа букв one, до и после которой следует не менее двух цифр, группы разделяются пробелами.
- 5. Дан текст. Выяснить, верно ли, что в данном тексте больше групп букв, чем групп знаков (+* -), группы разделяются пробелами.
- 6. Дан текст. Если в данном тексте имеется не менее двух групп букв, то каждый знак '+', встречающийся между двумя первыми по порядку группами букв, заменить цифрой 1, знак '-' заменить цифрой 2, а знак '*' цифрой 3. Иначе оставить текст без изменений, группы разделяются пробелами.
- 7. Дан текст. Подсчитать число вхождений буквы f в первые три группы букв, в группе должны быть только буквы, группы разделяются пробелами.

6.Подпрограммы

- 1. Дано: натуральное n, целые неотрицательные a₁, ..., a_n. Рассмотреть отрезки последовательности a₁, ..., a_n (подпоследовательности идущих подряд членов), состоящие из степеней пятерки (описать соответствующую процедуру). Получить наибольшую из длин рассматриваемых отрезков.
- 2. Дано: натуральное n, целые неотрицательные a₁, ..., a_n. Рассмотреть отрезки последовательности a₁, ..., a_n (подпоследовательности идущих подряд членов), состоящие из простых чисел (описать соответствующую процедуру). Получить наибольшую из длин рассматриваемых отрезков.
- 3. Дано: натуральное n, целые неотрицательные a_1, \ldots, a_n . Рассмотреть отрезки последовательности a_1, \ldots, a_n (подпоследовательности идущих подряд членов), состоящие из совершенных чисел (описать соответствующую процедуру). Получить наибольшую из длин рассматриваемых отрезков.
- 4. Даны три массива. Если два из них упорядочены, то увеличить каждый их элемент на максимальный элемент неупорядоченного массива. Если все массивы не упорядочены, то заменить нулем в них каждый третий элемент. Описать логическую функцию проверки на упорядоченность и процедуру замены.
- 5. Дано: действительные числа s, t, a_0 , ..., a_{12} . Получить $p(1)-p(t)+p^2(s--t)+p^3(1)$, где $p(x)=a_{12}x^{12}+a_{11}x^{11}+...+a_0$.

- 6. Дано натуральное п. Выяснить, имеются ли среди чисел n, n+1, ..., 2n простые числа, разность между которыми равна 2.
- 7. Описать логическую функцию, проверяющую является ли симметричной часть строки, начинающаяся і-м и кончающаяся і-м ее элементом.

Перечень компетенций, проверяемых оценочным средством: ОПК-7 — способность использовать знания основных концептуальных положений функционального, логического, объектно-ориентированного и визуального направлений программирования, методов, способов и средств разработки программ в рамках этих направлений

Компонентом текущего контроля по дисциплине «Основы программирования» являются две контрольные работы в виде письменного решения комплексных задач, предусматривающих знание структур данных.

На контрольной работе каждому студенту дается 4 комплексных задач. Максимальное количество баллов, которое студенты могут получить за правильное решение комплексной задачи на контрольной работе, составляет 2 балла.

Ступени	Вид задания	Количество
уровней		баллов
освоения		
компетенций		
Пороговый	Контрольная работа №1 Обработка последовательности	4
	чисел	
	Контрольная работа №2 Обработка массивов	
Базовый	Контрольная работа №1 Обработка последовательности	5-6
	чисел	
	Контрольная работа №2 Обработка массивов	
Продвинутый	Контрольная работа №1 Обработка последовательности	6-8
	чисел	
	Контрольная работа №2 Обработка массивов	

Каждое решение задачи контрольной работы оценивается в соответствии со следующей таблицей.

Описание	Баллы
Предоставлен работоспособный программный код, студент может пояснить	2
ход решения, знает назначение команд, может изменить некоторые условия по	
просьбе преподавателя.	
Программный код может быть не работоспособен, однако алгоритм решения	1
задачи корректный, студент может пояснить ход решения, знает назначение	
некоторых команд	
Программный код не работает, алгоритм решения не верный, студент не знает	0
назначения отдельных команд	

Критерии оценки:

- оценка «зачтено»: студент владеет теоретическими знаниями по структурам данных языка программирования, знает основные алгоритмические конструкции, допускает незначительные ошибки; студент умеет правильно объяснять решение задач.
- оценка «не зачтено»: материал не усвоен или усвоен частично, студент затрудняется привести примеры по базовым структурам данных, довольно ограниченный объем знаний по алгоритмическим конструкциям языка программирования, допускает более 4 грубых ошибок при алгоритмическом решении задач.

\sim				
()	TT	еı	IL	ഘ
· 、 ,		v		١a

Незачет	Зачтено
• студент получил менее 7 баллов за все	• студент получил не менее 7 баллов за
контрольные работы	все контрольные работы
• менее 1 балла хотя бы за одну из	• не менее 1 балла за каждую из
индивидуальных задач	индивидуальных задач;

Форма проведения экзамена: устно, письменно.

Экзаменатору предоставляется право задавать студентам дополнительные вопросы по всей учебной программе дисциплины.

Результат сдачи экзамена заноситься преподавателем в экзаменационную ведомость и зачетную книжку.

Критерии оценки:

Оценка					
He	Удовлетворительно	Хорошо	Отлично		
удовлетворительно					
• Не выполнено	• индивидуальное	• достаточно полно	• индивидуальное задание		
индивидуальное	задание выполнено	ответил на два вопроса	выполнено полностью и		
задание и не ответил	не полностью	• индивидуальное	полно ответил на вопросы		
ни на один вопрос	• частично	задание выполнено	• индивидуальное задание		
билета	ответил на два	полностью	выполнено полностью, не		
• непонимание	вопроса	• индивидуальное	полно ответил на вопросы,		
сущности	• достаточно	задание выполнено не	ответил верно на		
излагаемых	полно ответил хотя	полностью и	дополнительные вопросы		
вопросов, 3 грубые бы на один во		достаточно полно	• глубокие		
ошибки в ответе,	• знание и	ответил хотя бы на	исчерпывающие знания		
неуверенные и	понимание	один вопрос	всего программного		
неточные ответы на	основных вопросов	• твёрдые и	материала, логически		
дополнительные	программы,	достаточно полные	последовательные, полные,		
вопросы	наличие 3 ошибок	знания всего	грамматически правильные		
экзаменаторов.	при недостаточной	программного	и конкретные ответы на		
	способности их	материала,	вопросы экзаменационного		
	корректировки,	последовательные,	билета и дополнительные		
	наличие	правильные,	вопросы; использование в		
	определенного	конкретные ответы на	необходимой мере в ответах		
	количества (не	поставленные вопросы	учебного материала,		
	более 50%) ошибок	при свободном	представленного в		
	в освещении	реагировании на	рекомендуемых учебных		
	отдельных	замечания по	пособиях и дополнительной		
вопросов билета		отдельным вопросам	литературе.		

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

5.1 Основная литература:

- 1. Лукин, С.Н. Турбо-Паскаль 7.0: самоучитель для начинающих / С.Н. Лукин. 2-е изд.. испр. и доп. Москва : Диалог-МИФИ, 2015. 384 с. : табл. Библиогр.: с. 372. ISBN 5-86404-122-х ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=89076
- 2. Комарова, Е.С. Практикум по программированию на языке Паскаль: учебное пособие / Е.С. Комарова. Москва; Берлин: Директ-Медиа, 2015. Ч. 2. 123 с.: ил. Библиогр. в кн. ISBN 978-5-4475-4915-2; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=426943
- 3. Комарова, Е.С. Практикум по программированию на языке Паскаль: учебное пособие / Е.С. Комарова. Москва; Берлин: Директ-Медиа, 2015. Ч. 1. 85 с.: ил., схем., табл. Библиогр. в кн. ISBN 978-5-4475-4914-5; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=426942
- 4. Седжвик, Р. Алгоритмы на С++ / Р. Седжвик. 2-е изд., испр. Москва : Национальный Открытый Университет «ИНТУИТ», 2016. 1773 с. : ил. Библиогр. в кн. ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=429164
- 5. Синицын, С.В. Основы разработки программного обеспечения на примере языка С / С.В. Синицын, О.И. Хлытчиев. 2-е изд., испр. Москва: Национальный Открытый Университет «ИНТУИТ», 2016. 212 с.: схем., ил. Библиогр. в кн.; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=429186
- 6. Белоцерковская, И.Е. Алгоритмизация. Введение в язык программирования С++ / И.Е. Белоцерковская, Н.В. Галина, Л.Ю. Катаева. 2-е изд., испр. Москва : Национальный Открытый Университет «ИНТУИТ», 2016. 197 с. : ил. ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=428935
- 7. Лубашева, Т.В. Основы алгоритмизации и программирования : учебное пособие / Т.В. Лубашева, Б.А. Железко. Минск : РИПО, 2016. 378 с. : ил. Библиогр. в кн. ISBN 978-985-503-625-9 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=463632

5.2 Дополнительная литература:

1. Таланов, А.В. Графы и алгоритмы / А.В. Таланов, В.Е. Алексеев. - 2-е изд., испр. - Москва: Национальный Открытый Университет «ИНТУИТ», 2016. - 154 с.: ил. - Библиогр. в кн. - ISBN 5-9556-0066-3; То же [Электронный ресурс]. - URL: http://biblioclub.ru/index.php?page=book&id=428827

- 2. Мейер, Б. Инструменты, алгоритмы и структуры данных / Б. Мейер. 2-е изд., испр. Москва : Национальный Открытый Университет «ИНТУИТ», 2016. 543 с. : схем., ил. Библиогр. в кн. ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=429033
- 3. Теория алгоритмов: лабораторный практикум / Министерство образования и науки РФ, Федеральное государственное автономное образовательное учреждение высшего образования «Северо-Кавказский федеральный университет»; сост. А.А. Брыкалова. Ставрополь: СКФУ, 2016. 134 с. Библиогр. в кн.; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=467401
- 4. Информатика и программирование : учебное пособие / Р.Ю. Царев, А.Н. Пупков, В.В. Самарин, Е.В. Мыльникова ; Министерство образования и науки Российской Федерации, Сибирский Федеральный университет. Красноярск : Сибирский федеральный университет, 2014. 132 с. : ил., табл., схем. Библиогр. в кн.. ISBN 978-5-7638-3008-8 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=364538

5.3. Периодические издания:

- 1. Прикладная информатика
- 2. Проблемы передачи информации
- 3. Программные продукты и системы
- 4. Программирование
- 5. COMPUTATIONAL NANOTECHNOLOGY (ВЫЧИСЛИТЕЛЬНЫЕ НАНОТЕХНОЛОГИИ)
 - 6. COMPUTERWORLD РОССИЯ
 - 7. WINDOWS IT PRO / RE

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. Основы программирования на языке C++: Учебное пособие/ Сост. С.М. Наместников http://sernam.ru/lect c.php
 - 2. Основы C++. E. Линский. https://www.lektorium.tv/course/22825

7. Методические указания для обучающихся по освоению дисциплины.

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал; лабораторных занятий, на которых приводятся примеры решений задач по основным учебным темам, выполняются на компьютере с использованием компилятора Microsoft Visual Studio C++задачи и упражнения, соответствующие разделам лекционного курса.

Важнейшим этапом курса является самостоятельная работа по дисциплине «Основы программирования».

При самостоятельной работе студентов необходимо изучить литературу, приведенную в перечнях выше, для осмысления вводимых понятий, анализа предложенных подходов и методов разработки программ. Разрабатывая решение новой задачи, студент должен уметь выбрать эффективные и надежные структуры данных для представления информации, подобрать соответствующие алгоритмы для их обработки, учесть специфику языка программирования, на котором будет выполнена реализация. Студент должен уметь выполнять тестирование и отладку алгоритмов решения задач с целью обнаружения и устранения в них ошибок.

В качестве систем программирования для решения задач и изучения методов и алгоритмов, приведенных в лекциях, рекомендуется использовать на практических занятиях и при самостоятельной работе компилятор Microsoft Visual Studio C++. Для эффективного программирования рекомендуется использовать встроенные отладчики.

Раздел дисциплины	Форма СР	Сроки	Формы
		выполнения	контроля
Обзор языков	Проработка теоретического	До 20.10	Коллоквиум
программирования	материала		
высокого уровня.			
Основы	Решение индивидуальных задач	(1)15.09	Коллоквиум
алгоритмизации	по темам: Вычислительные	(2)1.10	Сдача
	алгоритмы (1), Одномерные		индивидуальных
	массивы (2)		задач
Основные типы	Решение индивидуальных задач	(3)10.10	Сдача
данных	по темам: Матрицы (3),	(4)1.11	индивидуальных
	Подпрограммы. Рекурсия (4),	(5)15.11	задач
	Модули (5)		
Информационные	Решение индивидуальных задач	(6)1.12	Сдача
структуры	по темам: Файлы (6),		индивидуальных
	Динамические списки (7)		задач
Доказательство	Проработка теоретического	До 15.12	Экзамен
правильности	материала		
программ			

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

8.1 Перечень информационных технологий.

- Проверка домашних заданий и консультирование посредством электронной почты.
 - Использование электронных презентаций при проведении лекционных занятий.

8.2 Перечень необходимого программного обеспечения.

- Компилятор Microsoft Visual Studio C++, для разработки программ

8.3 Перечень информационных справочных систем:

1. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине.

No	Вид работ	Материально-техническое обеспечение дисциплины и оснащенность
1.	Лекционные занятия	Лекционная аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО), доска

2.	Лабораторные	Лаборатория, укомплектованная техническими
	занятия	средствами обучения – компьютерами с
		соответствующим программным обеспечением,
		маркерная доска.
3.	Групповые	Аудитория, укомплектованная маркерной доской и
	(индивидуальные)	оснащенная компьютером.
	консультации	
4.	Текущий контроль,	Аудитория, укомплектованная техническими средствами
	промежуточная	обучения – компьютерами с соответствующим
	аттестация	программным обеспечением
<i>5</i> .	Самостоятельная	Кабинет для самостоятельной работы, оснащенный
	работа	компьютерной техникой с возможностью подключения к
		сети «Интернет», программой экранного увеличения и
		обеспеченный доступом в электронную информационно-
		образовательную среду университета.