Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Физико-технический факультет Кафедра физики и информационных систем

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования – первый

проректор

Иванов А.Г.

2017г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.05 Радиационная физика и радиобиология. Микродозиметрия

Направление подготовки 03.04.02 Физика

Направленность (профиль) Медицинская физика

Программа подготовки академическая

Форма обучения очная

Квалификация (степень) выпускника магистр

Краснодар 2017 Рабочая программа дисциплины составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 03.04.02 Физика (профиль Медицинская физика)

Программу составил(и): Захаров Ю.Б., доцент и.о. Фамилия, должность

Рабочая программа дисциплины утверждена на заседании кафедры физики и информационных систем

протокол № 16 «4» мая 2017г. Заведующий кафедрой физики и

информационных систем Богатов Н.М.

фамилия, инициалы

Рабочая программа обсуждена на заседании кафедры физики и информационных систем

протокол № 16 «4» мая 2017г. Заведующий кафедрой физики и

информационных систем Богатов Н.М.

фамилия, инициалы

oraf6

Утверждена на заседании учебно-методической комиссии физико-технического факультета

протокол № 6 «4» мая 2017г.

Председатель УМК факультета Богатов Н.М.

фамилия, инициалы

подпис

Рецензенты:

Григорьян Л.Р., к. ф.-м. н., директор ООО НПФ "Мезон"

Абушкевич В.Г., д.м.н., профессор кафедры нормальной физиологии ФГБОУ ВО «КГМУ»

1. Цели и задачи освоения дисциплины

Целью дисциплины является развитие у студентов личностных качеств, а также формирование общекультурных и профессиональных компетенций в области исследования, разработки, внедрения и сопровождения информационных технологий и систем в соответствии с требованиями ФГОС ВО по данному направлению подготовки. В частности данная дисциплина ставит своей целью ознакомить студентов с кругом задач, связанных с ядерной медициной, с её физико-техническими и физико-математическими аспектами.

1.1 Цели дисциплины

- удовлетворение потребности личности в профессиональном образовании, интеллектуальном, нравственном и культурном развитии;
- получение новых знаний в области информационных систем и технологий посредством развития фундаментальных и прикладных научных исследований, в том числе, по проблемам образования;
- сохранение и приумножение своего потенциала на основе интеграции образовательной деятельности с научными исследованиями;
- обеспечение инновационного характера своей образовательной, научной и социокультурной деятельности;
- создание условий для систематического обновления содержания образования в духе новаторства, созидательности и профессионализма;
- обеспечение конкурентоспособности на мировых рынках научных разработок и образовательных услуг;
- создание условий для максимально полной реализации личностного и профессионального потенциала каждого работника;
- воспитание личностей, способных к самоорганизации, самосовершенствованию и сотрудничеству, умеющих вести конструктивный диалог, искать и находить содержательные компромиссы, руководствующихся в своей деятельности профессионально-этическими нормами;
- обеспечение кадрами потребностей экономики и социальной сферы Краснодарского края и Юга России.

1.2 Задачи дисциплины:

- изучение использования технических средств в условиях медико-биологических организаций;
- изучение технического обеспечения лечебно-диагностического процесса;

- изучение вопросов взаимодействия ионизирующего излучения с веществом (в том числе с биологическими структурами и организмом человека), радиационной защиты и дозиметрии;
- детальное изучение современных аппаратных средств ядерной медицины;
- отдельно рассмотреть последствия облучения и защита от ионизирующих излучений;
- ознакомление студентов с основными нормативными и правовыми документами,
 регламентирующими деятельность специалистов в области ядерной медицины и радиационной безопасности,
- изучение организация диагностических исследований;
- изучение принципов работы диагностических приборов и систем;
- изучение диагностических комплексов и систем;
- изучение классификации методов и средств для терапии;
- изучение терапевтических аппаратов и систем;
- изучение аппаратов и систем для воздействий ионизирующими излучениями.

1.3 Место дисциплины в структуре основной образовательной программы высшего профессионального образования

Дисциплина «Радиационная физика и радиобиология. Микродозиметрия» к дисциплинам, включенным в вариативную часть, обязательные дисциплинам образовательного цикла основной профессиональной образовательной программы профессионального образования по специальности 03.04.02 Физика (Медицинская физика) и всего на ее изучение отводится 52 часов аудиторной работы. В соответствии с учебным планом, занятия проводятся в 1, 2 семестре.

Знания, полученные в этом курсе, используются в последующей профессиональной деятельности.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций:

№	Индекс	Содержание	В результате изучения учебной дисциплины		
п.п	компет	компетенции (или	обучающиеся должны		
	енции	ее части)	знать	уметь	владеть

No	Индекс	Содержание	В результате изучения учебной дисциплины				
П.П	компет	компетенции (или	обучающиеся должны	_			
	енции	ее части)	знать	уметь	владеть		
1.	ОПК-6	способностью использовать знания современных проблем и новейших достижений физики в научно-исследовательской работе	физику ионизирующего излучения, определения и методы дозиметрии; источники ионизирующего излучения; физику взаимодействия ионизирующего излучения с веществом; механизмы воздействия ионизирующего излучения на биологические объекты;	проводить оценку воздействия ионизирующего излучения на физические и биофизические объекты; демонстрировать углубленные знания в области ядерной медицины;	методами исследовани й в области физики взаимодейст вия ионизирующ их излучений с веществом		
2.	ПК-1	способностью самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта	параметры и функциональные возможности современных установок для ядерной медицины; обладать знаниями по применению ионизирующего излучения для медицинских целей, включая медицинские приборы и аппараты, использующие источники ионизирующего излучения; знать радиобиологические основы лечебного применения ионизирующих излучений	ставить конкретные задачи научных исследований в области ядерной медицины; проводить свою исследовательскую деятельность с использованием новейшего российского и зарубежного опыт	Методами расчета параметров, характеризу ющих взаимодейст вие излучения с веществом, при решении конкретных задач радионуклид ной диагностики с использован ием новейшего российского и зарубежного опыта		

- 2. Содержание и структура дисциплины «Радиационная физика и радиобиология. Микродозиметрия. Микродозиметрия»
 - 2.1 Распределение трудоемкости дисциплины по видам работ

Вид учебной работы				Семе	стры	
				(ча	сы)	
			9	Α		
Контактная работа, в то	м числе:	68,5	28,2	40,3		
Аудиторные занятия (все	52	28	24			
Занятия лекционного типа		26	14	12	-	-
Лабораторные занятия		26	14	12	-	-
Занятия семинарского тип	а (семинары,					
практические занятия)		-	_	_	_	-
		-	-	-	-	-
Иная контактная работа	•					
Контроль самостоятельной	и́ работы (КСР)	16	-	16		
Промежуточная аттестаци	я (ИКР)	0,5	0,2	0,3		
Самостоятельная работа	Самостоятельная работа, в том числе:			41,8		
Проработка учебного (теој	ретического) материала	24	8	16	-	-
Выполнение индивидуалы	ных заданий (подготовка	36	18	18		
сообщений, презентаций)		30	10	10	_	_
Подготовка к текущему ко	нтролю	15,8	8	7,8	-	-
Контроль:	•					
Подготовка к экзамену				35,7		
Общая трудоемкость час.		35,7 180	117, 8	62,2	-	-
	в том числе контактная работа	68,5	28,2	40,3		
	зач. ед	5	2	3		

2.2 Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 1, 2 семестрах

$N_{\underline{0}}$	Наименование разделов			Количество ча	асов
раздела		Всего	Ауди	торная работа	Самостоятельная
					работа
			Л	ЛР	
1	2	3	4	6	7
1	Лучевая диагностика	10	2	2	6
2	Компьютерная рентгеновская томография	10	2	2	6
3	Радионуклидная диагностика	14	4	4	6
4	Ядерная диагностика в клинике	8	2	2	4
5	Позитронная эмиссионная томография	10	2	2	6
6	Позитронно-эмиссионная томография в диагностике заболеваний	10	2	2	6
7	Лучевая терапия	14	2	2	10
8	Дозиметрия в ядерной медицине	18	4	4	10

9	Биологическое действие	19,8	4	4	11,8
	излучений				
10	Радонотерапия	14	2	2	10
	Итого	127,8	26	26	75,8

Разделы дисциплины, изучаемые в 1 семестре

No	Наименование разделов		Количество часов			
раздела		Всего	Ауди	торная работа	Самостоятельная	
					работа	
			Л	ЛР		
1	2	3	4	6	7	
1	Лучевая диагностика	10	2	2	6	
2	Компьютерная	10	2	2	6	
	рентгеновская					
	томография					
3	Радионуклидная	14	4	4	6	
	диагностика					
4	Ядерная диагностика в	8	2	2	4	
	клинике					
5	Позитронная	10	2	2	6	
	эмиссионная томография					
6	Позитронно-эмиссионная	10	2	2	6	
	томография в					
	диагностике заболеваний					
	Итого	62	14	14	34	

Разделы дисциплины, изучаемые во 2 семестре

No	Наименование разделов		Количество часов		
раздела		Всего	Ауди	торная работа	Самостоятельная
					работа
			Л	ЛР	
1	2	3	4	6	7
7	Лучевая терапия	14	2	2	10
8	Дозиметрия в ядерной	18	4	4	10
	медицине				
9	Биологическое действие	19,8	4	4	11,8
	излучений				
10	Радонотерапия	14	2	2	10
	Итого	65,8	12	12	41,8

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

№	Наименование	Содержание раздела	Форма текущего
п/п	раздела		контроля

	1		T
1	Лучевая диагностика	Терминология ядерной медицины: основные понятия, определения и термины. Законодательная и нормативная база, этические и правовые аспекты в области ядерной медицины и обеспечения радиационной безопасности. Медицинская радиология. Основные радиологические методы диагностики, терапии и хирургии. Аппаратура для лучевой диагностики и терапии. Ультразвуковая диагностика, рентгеновская диагностика, ЯМР томография, позитронно-эмиссионная томография (ПЭТ), сцинтиграфия.	Контрольные вопросы, защита курсового проекта в интерактивной форме
2	Комплотерия		Контрольна
2	Компьютерная рентгеновская томография	Ренттенология. Рентгенодиагностика, методы рентгенодиагностики. Рентгеноконтрастные средства. Рентгеновское излучение, источники рентгеновского излучения. Дозы при рентгеновской и радионуклидной диагностике. Компьютерная медицинская томография. Принцип компьютерной томографии. Многосрезовая компьютерная томография. Рентгеновские компьютерные томографы. Компьютерная обработка изображений.	Контрольные вопросы, защита курсового проекта в интерактивной форме
3	Радионуклидная	Особенности радионуклидной	Контрольные
	диагностика	диагностики. Радиоактивные нуклиды и ради офармап реп араты. Критерии выбора радионуклида. Изотопы и радиофармпрепараты для радионуклидной диагностики. Изотопы и препараты для позитронной эмиссионной томографии. Производство радиоизотопов. Изотопные генераторы. Циклотрон. Биосинтез радиопрепаратов. Получение изображений с помощью радиоизотопов. Аппаратура для радионуклидной диагностики. Сцинтилляционные детекторы. Гамма- камера. Ядерномедицинские аппараты.	вопросы, защита курсового проекта в интерактивной форме
4	Ядерная диагностика в клинике	Отделение радионуклидной диагностики. Клинические методы радионуклидной диагностики.	Контрольные вопросы, защита курсового проекта

		Γ_	T
		Радионуклидные методы оценки	в интерактивной
		функционального состояния органа.	форме
		Радионуклидная визуализация.	
		Радиоиммунологический анализ.	
		Радионуклидная диагностика	
		заболеваний. Диагностика	
		заболеваний щитовидной железы.	
		Изучение состояния печени.	
		Диагностика патологии лёгких.	
		Диагностика заболеваний почек и	
		мочевыводящих путей.	
		Радионуклидная диагностика в	
		кардиологии. Радионуклидная	
		диагностика в онкологии.	
		Динамическая гамма-сцинтиграфия	
		селезёнки при хирургической	
		патологии. Диагностика болезней	
	П	костей.	T/
5	Позитронная	Принцип ПЭТ. Аппаратура для	Контрольные
	ЭМИССИОННАЯ	компьютерной томографии.	вопросы, защита
	томография	Клинический позитронно-	курсового проекта
		эмиссионный томограф.	в интерактивной
		Компьютерная обработка	форме
		результатов. Программное	
		обеспечение сбора данных и	
		передача информации. Аппаратные артефакты. Артефакты сбора данных.	
		Ошибки обработчика. Пакеты	
		прикладных программ	
		вычислительной томографии. Анализ	
		данных ПЭТ.	
6	Позитронно-	Методы ПЭТ. Кинетическое	Контрольные
0	эмиссионная	сканирование. Распределение меток	вопросы, защита
	томография в	в головном мозге по времени.	курсового проекта
	диагностике	Распределение меток в сердечной	в интерактивной
	заболеваний	мышце по времени. Анализ зон	форме
		интереса. ПЭТ в кардиологии.	1 · F
		Сцинтиграфическая визуализация	
		селезёнки. Сцинтиграфия головного	
		мозга. Однофотонная эмиссионная	
		компьютерная томография головного	
		мозга. ПЭТ в онкологии.	
		Визуализация злокачественных	
		новообразований (ЗНО).	
7	Лучевая терапия	Радиотерапия. Основные принципы	Контрольные
		лучевой терапии. Радикальное,	вопросы, защита
		паллиативное и симптоматическое	курсового проекта
		лечение ЗНО. Дистанционное и	в интерактивной
		контактное облучение. Этапы	форме
		планирования лучевой терапии.	
		Модификаторы пучка.	
		Фракционирование. Гипертермия.	
		Методы лучевой терапии:	
		дистанционные, контактные,	

		сочетанные. Комбинированные методы лечения ЗНО. Компьютерная	
		томография в планировании лучевой	
		терапии. Источники излучения в	
		терапии. Сравнительная	
		характеристика ускорителей и	
		изотопных установок. Линейный	
		ускоритель. Источники нейтронов.	
		Лучевая хирургия. Гамма-нож.	
		Протонно-лучевая терапия.	
		Брахитерапия. Нейтронная терапия.	
		Радиационные дозы в лучевой	
		терапии. Экспозиционная и	
		поглощенная доза ионизирующего	
		излучения. Распределение дозы при	
		воздействии излучений высокой	
		энергии.	
		энергии. Примеры. Рак предстательной	
		железы. Комплексная терапия ЗНО.	
		Нетрадиционное фракционирование	
		дозы. Гипертермия как	
		универсальный	
		радиосенсибилизатор. Химическая	
		радиосенсибилизация ЗНО.	
		Использование радиопротекторов в	
		лучевой терапии онкологических	
		больных. Интраоперационная	
		лучевая терапия ЗНО. Открытые	
		источники излучения в лечении	
		заболеваний щитовидной железы и	
		опорно-двигательного аппарата.	
8	Дозиметрия в ядерной	Особенности дозиметрии в	Контрольные
	медицине	клинической практике ядерной	вопросы, защита
		медицины. Дозы и единицы их	курсового проекта
		измерения. Взвешивающие	в интерактивной
		коэффициенты. Гигиеническое	форме
		нормирование. Нормы радиационной	
		безопасности. Коэффициенты	
		радиационного риска. Предельно	
		допустимые и летальные дозы.	
		Взаимодействие ионизирующих	
		излучений с живыми тканями.	
		Концепция беспороговой линейной	
		зависимости доза-эффект.	
		Поглощенные дозы в медицине.	
		Дозы в лучевой терапии. Дозы в	
		радионуклидной диагностике. Дозы	
		населения от компонентов ядерной	
		медицины. Методы снижения	
		медицинских дозовых нагрузок на	
		население. Дозы облучения	
	Γ	медицинского персонала.	T/
9	Биологическое	Медицинская радиобиология:	Контрольные
	действие излучений	краткая история развития, основные	вопросы, защита

		понятия и термины. Прикладное	курсового проекта
		значение радиобиологических	в интерактивной
		исследований. Управление	форме
		радиобиологическим эффектом.	Форто
		Радиомодификация.	
		Радиопротекторы. Радиозащитные	
		средства. Пищевые и химические	
		вещества, выводящие из организма	
		радионуклиды. Изменение	
		эндогенного фона	
		радиорезистентности.	
		Радиозащитное действие гипоксии.	
		Лучевые поражения. Радиационные	
		эффекты облучения человека.	
		Молекулярный уровень воздействия.	
		Влияние радиоактивного облучения	
		на молекулу ДНК. Клеточный	
		уровень воздействия.	
		Репродуктивная гибель клеток.	
		Интерфазная гибель.	
		Злокачественное перерождение	
		клетки. Организменный уровень	
		воздействия. Классификация	
		последствий облучения.	
		Соматические детерминированные	
		эффекты. Стохастические эффекты.	
		Лучевая болезнь. Клинические	
		формы и степени тяжести.	
		Вероятность заболевания раком.	
		Радиационная генетика и общие	
		принципы действия радиации на	
		человека. Радиационный гормезис.	
10	Радонотерапия	Бальнеолечение. Физиотерапия.	Контрольные
		Методы радонотерапии. Радоновые	вопросы, защита
		ванны. Питьевая практика.	курсового проекта
		Ингаляции. Аппликаторы.	в интерактивной
		Применение радона в лечебных	форме
		целях и методика лечения.	
		Механизмы лечебного действия	
		радона. Ограничения радоновой	
		терапии. Гормезис. Радоновые	
		курорты в России и за рубежом.	

2.3.2 Занятия лабораторного типа

No	Наименование	Содержание раздела	Форма
Π/Π	раздела		текущего
			контроля
1	Лучевая диагностика	Основные лучевые методы	Защита
		диагностики, терапии и хирургии.	лабораторного
		Аппаратура для лучевой диагностики и	задания в
		терапии. Особенности лучевой	форме беседы
		диагностики.	

	l rc		n
2	Компьютерная	Терминология ядерной медицины:	Защита
	рентгеновская	основные понятия, определения и	лабораторного
	томография	термины. Законодательная и	задания в
		нормативная база, этические и правовые аспекты в области ядерной	форме беседы
		медицины и обеспечения	
		радиационной безопасности.	
		Медицинская радиология. Основные	
		радиологические методы диагностики,	
		терапии и хирургии. Аппаратура для	
		лучевой диагностики и терапии.	
		Ультразвуковая диагностика,	
		рентгеновская диагностика, ЯМР	
		томография, позитронно-эмиссионная	
		томография (ПЭТ), сцинтиграфия.	
3	Радионуклидная	Ренттенология. Рентгенодиагностика,	Защита
	диагностика	методы рентгенодиагностики.	лабораторного
		Рентгено- контрастные средства.	задания в
		Рентгеновское излучение, источники	форме беседы
		рентгеновского излучения. Дозы при	
		рентгеновской и радионуклидной	
		диагностике.	
		Компьютерная медицинская	
		томография. Принцип компьютерной	
		томографии. Многосрезовая	
		компьютерная томография.	
		Рентгеновские компьютерные	
		томографы. Компьютерная обработка	
4	Отольно технология	изображений.	20222200
4	Ядерная диагностика в	Особенности радионуклидной диагностики. Радиоактивные нуклиды	Защита
	клинике	и ради офармап реп араты. Критерии	лабораторного
		выбора радионуклида. Изотопы и	задания в форме беседы
		радиофармпрепараты для	форме осседы
		радиофармиренараты для радионуклидной диагностики.	
		Изотопы и препараты для позитронной	
		эмиссионной томографии.	
		Производство радиоизотопов.	
		Изотопные генераторы. Циклотрон.	
		Биосинтез радиопрепаратов.	
		Получение изображений с помощью	
		радиоизотопов.	
		Аппаратура для радионуклидной	
		диагностики. Сцинтилляционные	
		детекторы. Гамма- камера. Ядерно-	
		медицинские аппараты.	
5	Позитронная	Отделение радионуклидной	Защита
	эмиссионная томография	диагностики. Клинические методы	лабораторного
		радионуклидной диагностики.	задания в
		Радионуклидные методы оценки	форме беседы
		функционального состояния органа.	
		Радионуклидная визуализация.	
		Радиоиммунологический анализ.	
•	İ	Радионуклидная диагностика	I

	<u></u>	T	!
		заболеваний. Диагностика заболеваний	
		щитовидной железы. Изучение	
		состояния печени. Диагностика	
		патологии лёгких. Диагностика	
		заболеваний почек и мочевыводящих	
		путей. Радионуклидная диагностика в	
		кардиологии. Радионуклидная	
		диагностика в онкологии.	
		Динамическая гамма-сцинтиграфия	
		селезёнки при хирургической	
		патологии. Диагностика болезней	
		костей.	
6	Позитронно-эмиссионная	Принцип ПЭТ. Аппаратура для	Защита
0	<u> </u>	=	
	томография в	компьютерной томографии.	лабораторного
	диагностике заболеваний	Клинический позитронно-	задания в
		эмиссионный томограф.	форме беседы
		Компьютерная обработка результатов.	
		Программное обеспечение сбора	
		данных и передача информации.	
		Аппаратные артефакты. Артефакты	
		сбора данных. Ошибки обработчика.	
		Пакеты прикладных программ	
		вычислительной томографии. Анализ	
		данных ПЭТ.	
7	Лучевая терапия	Методы ПЭТ. Кинетическое	Защита
		сканирование. Распределение меток в	лабораторного
		головном мозге по времени.	задания в
		Распределение меток в сердечной	форме беседы
		мышце по времени. Анализ зон	
		интереса. ПЭТ в кардиологии.	
		Сцинтиграфическая визуализация	
		селезёнки. Сцинтиграфия головного	
		мозга. Однофотонная эмиссионная	
		компьютерная томография головного	
		мозга. ПЭТ в онкологии. Визуализация	
		злокачественных новообразований	
		(ЗНО).	
8	Дозиметрия в ядерной	Радиотерапия. Основные принципы	Защита
	медицине	лучевой терапии. Радикальное,	лабораторного
	модиципо	паллиативное и симптоматическое	задания в
		лечение ЗНО. Дистанционное и	форме беседы
			формс осседы
		контактное облучение. Этапы	
		планирования лучевой терапии.	
		Модификаторы пучка.	
		Фракционирование. Гипертермия.	
		Методы лучевой терапии:	
		дистанционные, контактные,	
		сочетанные. Комбинированные методы	
		лечения ЗНО. Компьютерная	
		томография в планировании лучевой	
		терапии. Источники излучения в	
		терапии. Сравнительная	
		характеристика ускорителей и	
1		изотопных установок. Линейный	

		ускоритель. Источники нейтронов.	
		Лучевая хирургия. Гамма-нож.	
		Протонно-лучевая терапия.	
		Брахитерапия. Нейтронная терапия.	
		Радиационные дозы в лучевой терапии.	
		Экспозиционная и поглощенная доза	
		ионизирующего излучения.	
		Распределение дозы при воздействии	
		излучений высокой энергии.	
		Примеры. Рак предстательной железы.	
		Комплексная терапия ЗНО.	
		Нетрадиционное фракционирование	
		дозы. Гипертермия как универсальный	
		радиосенсибилизатор. Химическая	
		радиосенсибилизация ЗНО.	
		Использование радиопротекторов в	
		лучевой терапии онкологических	
		больных. Интраоперационная лучевая	
		терапия ЗНО. Открытые источники	
		излучения в лечении заболеваний	
		щитовидной железы и опорно-	
		двигательного аппарата.	
9	Биологическое действие	Особенности дозиметрии в	Защита
	излучений	клинической практике ядерной	лабораторного
		медицины. Дозы и единицы их	задания в
		измерения. Взвешивающие	форме беседы
		коэффициенты. Гигиеническое	
		нормирование. Нормы радиационной	
		безопасности. Коэффициенты	
		радиационного риска. Предельно	
		допустимые и летальные дозы.	
		Взаимодействие ионизирующих	
		излучений с живыми тканями.	
		Концепция беспороговой линейной	
		зависимости доза-эффект.	
		Поглощенные дозы в медицине. Дозы в	
		лучевой терапии. Дозы в	
		радионуклидной диагностике. Дозы	
		населения от компонентов ядерной	
		медицины. Методы снижения	
		медицинских дозовых нагрузок на	
		население. Дозы облучения	
		медицинского персонала.	
10	Радонотерапия	Медицинская радиобиология: краткая	Защита
		история развития, основные понятия и	лабораторного
		термины. Прикладное значение	задания в
		радиобиологических исследований.	форме беседы
		Управление радиобиологическим	
		эффектом. Радиомодификация.	
		Радиопротекторы. Радиозащитные	
		средства. Пищевые и химические	
		вещества, выводящие из организма	
		радионуклиды. Изменение эндогенного	
		фона радиорезистентности.	

_	
Радиозащитное действие гипоксии.	
Лучевые поражения. Радиационные	
эффекты облучения человека.	
Молекулярный уровень воздействия.	
Влияние радиоактивного облучения на	
молекулу ДНК. Клеточный уровень	
воздействия. Репродуктивная гибель	
клеток. Интерфазная гибель.	
Злокачественное перерождение клетки.	
Организменный уровень воздействия.	
Классификация последствий	
облучения. Соматические	
детерминированные эффекты.	
Стохастические эффекты. Лучевая	
болезнь. Клинические формы и	
степени тяжести. Вероятность	
заболевания раком.	
Радиационная генетика и общие	
принципы действия радиации на	
человека. Радиационный гормезис.	

2.4 Самостоятельное изучение разделов дисциплины

Рекомендуется следующий график и календарный план самостоятельной работы студентов по учебным неделям:

№ уч. недели	Темы учебной дисциплины, рекомендуемые для обязательного изучения	Темы учебной дисциплины, рекомендуемые для самостоятельного изучения
1	современный уровень развития ядерной медицины физические принципы построения и особенности применения детекторов различных типов	параметры и функциональные возможности современных установок для ядерной медицины
16	ионизирующее излучение и основах дозиметрии, источники ионизирующего излучения и взаимодействия ионизирующего излучения с веществом	механизм воздействия ионизирующего излучения на биологические объекты;
24	применению ионизирующего излучения для медицинских целей, включая медицинские приборы и аппараты, использующие источники ионизирующего излучения	радиобиологические основы лечебного применения ионизирующих излучений
28	требования нормативных документов, этические и правовые аспекты в области ядерной медицины	методы генерации радиоактивных изотопов и синтеза меченых фармпрепаратов
34	Знакомство и изучение установок радиационного облучения в онкологии	Изучение принципов работы рентгеновских пушек и гамма- пушек с кобальтом-60

No॒	Наименование	Переч	ень учебно-методического обеспечения дисциплины по
J1≌	раздела	выпол	нению самостоятельной работы
1	2	3	
1.	Введение.	1.	Болоздыня, Александр Иванович, Ободовский, Илья
2.	Кинематические		Михайлович Детекторы ионизирующих частиц и излучений:
	волны в		принципы и применения : [учебное пособие] /А. И. Болоздыня,
	неподвижных и		И. М. Ободовский -Долгопрудный: Интеллект, 2012.
	движущихся		
3.	средах. Описание	2.	Ободовский, Илья Михайлович Основы радиационной и
J.	акустических		химической безопасности: [учебное пособие] /И. М.
	явлений в		Ободовский 2-е издДолгопрудный: Интеллект, 2015.
	движущихся	_	
	средах.	3.	Кудряшов, Ю.Б. Радиационная биофизика: радиочастотные и
4.	Описание полей в		микроволновые электромагнитные излучения [Электронный
	окрестности		ресурс] : учеб. / Ю.Б. Кудряшов, Ю.Ф. Перов, А.Б. Рубин. —
	волнового		Электрон. дан. — Москва : Физматлит, 2008. — 184 с. —
	фронта.		Режим доступа: https://e.lanbook.com/book/2221
5.	Обтекание тел.		,
6.	Волны на	4.	Кудряшов, Ю.Б. Радиационная биофизика (ионизирующие
	поверхности		излучения) [Электронный ресурс] : учеб. — Электрон. дан. —
	стационарного		Москва : Физматлит, 2003. — 422 с. — Режим доступа:
	потока.		https://e.lanbook.com/book/2379
7.	Пограничный		•
	слой.	5.	Тарасенко, Ю.Н. Ионизационные методы дозиметрии
8.	Движущийся		высокоинтенсивного ионизирующего излучения / Ю.Н.
0	источник звука.		Тарасенко Москва: Техносфера, 2013 264 с ISBN 978-5-
9.	Возбуждение		94836-349-3 ; То же [Электронный ресурс] URL:
10	звука потоком.		http://biblioclub.ru/index.php?page=book&id=233732
10.	Подобие и		k
	моделирование.	6.	Методические рекомендации по выполнения курсового
			проекта. Приняты ученым советом ФТФ ФГБОУ ВО «КубГУ».
			-

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

3. Образовательные технологии

Большая часть лекций и практические занятия проводятся с использованием доски и справочных материалов. Для проведения меньшей части лекционных занятий используются

мультимедийные средства воспроизведения активного содержимого, позволяющего слушателю воспринимать особенности изучаемой профессии, зачастую играющие решающую роль в понимании и восприятии, а так же формировании профессиональных компетенций.

По изучаемой дисциплине студентам предоставляется возможность открыто пользоваться (в том числе копировать на личные носители информации) подготовленными ведущим данную дисциплину лектором материалами в виде электронного комплекса сопровождения, включающего в себя: электронные конспекты лекций; электронные варианты учебнометодическогих пособий для выполнения лабораторных заданий; списки контрольных вопросов к каждой теме изучаемого курса.

При реализации учебной работы по освоению курса «Радиационная физика и радиобиология.

Микродозиметрия» используются современные образовательные технологии:

- информационно-коммуникационные технологии;
- проектные методы обучения;
- исследовательские методы в обучении;

Успешное освоение материала курса предполагает большую самостоятельную работу бакалавров и руководство этой работой со стороны преподавателей.

Самостоятельная работа студентов является неотъемлемой частью процесса подготовки. Под самостоятельной работой понимается часть учебной планируемой работы, которая выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия.

Самостоятельная работа направлена на усвоение системы научных и профессиональных знаний, формирования умений и навыков, приобретение опыта самостоятельной творческой деятельности. СРС помогает формировать культуру мышления студентов, расширять познавательную деятельность.

Виды самостоятельной работы по курсу:

а)по целям: подготовка к лекциям, к итоговому контролю.

- б) по характеру работы: изучение литературы, конспекта лекций; поиск литературы в библиотеке; конспектирование рекомендуемой для самостоятельного изучения научной литературы; решение задач, тестов.
- В течение семестра студенты выполняют задания, указанные преподавателем.

В ходе лекционных и лабораторных занятий предполагается использование компьютерных технологий (презентации по некоторым темам курса).

В учебном процессе используются активные и интерактивные формы проведения занятий: метод проектов, метод поиска быстрых решений в группе, мозговой штурм.

Интерактивные технологии, используемые при изучении дисциплины

Семестр	Вид занятия	Используемые интерактивные	Количество
	$(\Pi, \Pi P, \Pi P)$	образовательные технологии	часов

7	Л	метод проектов	1
	ЛР	метод поиска быстрых решений в группе,	1
		мозговой штурм, беседа	
Итого:			2

Интерактивность подачи материала предполагает не только взаимодействия вида «преподаватель - студент» и «студент - преподаватель», но и «студент - студент».

К инновационным технологиям, используемым в преподавании дисциплины, относятся следующие технологии:

3.1. Дискуссия

Возможность дискуссии предполагает умение высказать собственную идею, предложить свой путь решения, аргументировано отстаивать свою точку зрения, связно излагать мысли. Полезны следующие задания: составление плана решения задачи, поиск другого способа решения, проведение выкладок в обратном порядке, рассмотрение задач с лишними и недостающими данными, реферативные или творческие доклады студентов: фрагмент теоретического материала, интересный пример, нестандартная задача. Студентам предлагается сравнить и проанализировать варианты решения, обсудить доклад, высказать своё мнение, задать вопросы.

Вопросы, вынесенные на дискуссию:

- 1. Составление плана и поиск решения задачи.
- 2. Решение задач различными способами.
- 3. Взаимная и самопроверка знаний и обсуждение полученных результатов.
- 4. Самостоятельное составление задач по указанной теме.
- 5. Овладение приемами и методами самоконтроля при обучении математики.

3.2 Интерактивные методы обучения

Существенную помощь оказывают специально составленные задания (методические разработки, рабочие тетради) по курсу, в которых дается краткое изложение теоретической части, приводятся решения типовых примеров, предлагаются задания для самостоятельной работы разного уровня сложности. Студент имеет возможность ознакомиться с теоретическим материалом, разобраться в предложенном решении типового примера, затем самостоятельно решить задачи. Все это:

- позволяет каждому студенту перейти от деятельности под руководством преподавателя к самостоятельной и дает возможность проведения самоконтроля;
- повышает эффективность и качество обучения;
- обеспечивает мотивы к самостоятельной познавательной деятельности;
- способствует углублению межпредметных связей за счет интеграции информационной и предметной подготовки.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации 4.1 Фонд оценочных средств для текущего контроля.

Обязательными при изучении дисциплины являются следующие виды самостоятельной работы:

- разбор теоретического материала по пособиям и конспектам лекций;
- самостоятельное изучение указанных теоретических вопросов;
- беседа по теме курсового проекта.

Предлагаемые темы курсовых проектов

- 1. Моделирование системы саморегуляции в организме
- 2. Определение поглощенной дозы в гетерогенных средах с помощью современных алгоритмов трехмерного моделирования
- 3. Классификация и особенности работы визиографов
- 4. Влияние магнитных полей на механизмы смещения эритроцитов в кровеносном русле
- 5. Моделирование диффузии под действием ультразвука
- 6. Воздействие ультрафиолетового излучения на биоткань
- 7. Расчет и проектировка устройства для создания вращающегося магнитного поля в целях педиатрии
- 8. Анализ тепловых процессов в организме человека
- 9. Планирование дистанционной лучевой терапии с учетом динамики формы и положения мишени
- 10. Исследование механизмов фотоинактивации антибиотикорезистентных бактерий излучением диапазона 275-470 нм

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

Контрольные вопросы по разделам учебной программы

- 1. Радионуклидная диагностика. Метод меченых атомов.
- 2. Однофотонная эмиссионная компьютерная томография. Преимущества метода ОФЭКТ.
- **3.** Позитронная эмиссионная томография (ПЭТ), преимущества и основные области применения ПЭТ
- **4.** Компьютерная томография (КТ). Технология совмещенных изображений ОФЭКТ/КТ и ПЭТ/КТ системы.
- 5. Магнитно-резонансная томография.
- 6. Радионуклидная и лучевая терапия.

- 7. Лучевая терапия рентгеновским излучением высокой энергии.
- **8.** Гамма-терапия. Терапия быстрыми электронами, протонами, нейтронами. Нейтронзахватная терапия.
- **9.** Контактная лучевая терапия. Виды контактной терапии аппликационная, внутриполостная. внутритканевая. Преимущества контактной терапии.
- 10. Способы производства радионуклидов для ядерной медицины и области их применения.
- **11.** Генераторы радионуклидов. Ускорители заряженных частиц для производства изотопов и лучевой терапии.
- 12. Закон накопления радионуклидов при облучении.

Промежуточная аттестация проводится по результатам текущего контроля. В некоторых случаях в качестве оценочных средств используется устное собеседование по темам, охватывающим материалы всего курса.

Форма промежуточной аттестации – зачет в семестре 9, экзамен, защита курсового проекта в семестре А.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей:

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Итоговый контроль:

- зачет(1 семестр), экзамен (2 семестр).

Перечень вопросов, выносимых на экзамен

- 1. История развития и основные достижения медицинской физики и ядерной медицины.
 - Сравнительная характеристика широко используемых методов лучевой диагностики.
- 2. Компьютерная медицинская томография: принцип, аппаратура, обработка изображений.

- **3.** Радиоактивные нуклиды и фармпрепараты в ядерной медицине. Производство радиоизотопов.
- **4.** Особенности радионуклидной диагностики: принцип, аппаратура, получение изображений.
- 5. Клинические методы радионуклидной диагностики.
- **6.** Радионуклидная диагностика некоторых заболеваний: щитовидная железа, печень, лёгкие, почки, сердце, 3HO, селезёнка.
- **7.** Позитронная эмиссионная томография: принцип, аппаратура, компьютерная обработка результатов.
- **8.** Позитронно-эмиссионная томография в функциональной диагностике: сердце, селезёнка, головной мозг, 3HO.
- 9. Основные принципы и методы лучевой терапии. Примеры.
- 10. Источники излучения и радиационные дозы в лучевой терапии.
- Дозы радиационного облучения в медицине. Нормы радиационной безопасности.
 Стратегия снижения дозовых нагрузок.
- **12.** Взаимодействие ионизирующих излучений с живыми тканями. Лучевые поражения и последствия облучения.
- Прикладное значение радиобиологических исследований. Радиационная гигиена.
 Управление радиобиологическим эффектом.
- 14. Радиационный гормезис. Радонотерапия и саноторно-курортное лечение.

Учебная деятельность проходит в соответствии с графиком учебного процесса. Процесс самостоятельной работы контролируется во время аудиторных занятий и индивидуальных консультаций.

Оценочными средствами дисциплины являются средства текущего контроля (ответ у доски, тестирование и проверка домашних заданий) и итоговая аттестация (экзамен).

Оценка успеваемости осуществляется по результатам устного опроса, ответа, в ходе которого выявляются уровень знаний и понимания теоретического материала.

Важным элементом образовательной технологии является самостоятельная работа студента, включающая выполнение индивидуальных заданий.

Критерий оценивания усвоенных знаний обучающихся

Оценка **«отлично»** - выставляется студенту, показавшему всесторонние, систематизированные, глубокие знания учебной программы дисциплины и умение уверенно применять их на практике при решении конкретных задач;

Оценка **«хорошо»** - выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или в решении задач некоторые неточности;

Оценка **«удовлетворительно»** - выставляется студенту, показавшему разрозненный характер знаний, недостаточно правильные формулировки базовых понятий, нарушения логической последовательности в изложении программного материала, но при этом он владеет основными разделами учебной программы в некотором объеме, необходимом для дальнейшего обучения и может применять полученные знания по образцу в стандартной ситуации;

Оценка **«неудовлетворительно»** - выставляется студенту, который не знает большей части основного содержания учебной программы дисциплины, допускает грубые ошибки в формулировках основных понятий дисциплины и не умеет использовать полученные знания при решении типовых практических задач.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

Основная литература:

- 1. Кудряшов, Ю.Б. Радиационная биофизика: радиочастотные и микроволновые электромагнитные излучения [Электронный ресурс]: учеб. / Ю.Б. Кудряшов, Ю.Ф. Перов, А.Б. Рубин. Электрон. дан. Москва: Физматлит, 2008. 184 с. Режим доступа: https://e.lanbook.com/book/2221
- 2. Кудряшов, Ю.Б. Радиационная биофизика (ионизирующие излучения) [Электронный ресурс] : учеб. Электрон. дан. Москва : Физматлит, 2003. 422 с. Режим доступа: https://e.lanbook.com/book/2379
- 3. Тарасенко, Ю.Н. Ионизационные методы дозиметрии высокоинтенсивного ионизирующего излучения / Ю.Н. Тарасенко. Москва: Техносфера, 2013. 264 с. ISBN 978-5-94836-349-3; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=233732
- 4. Тарасенко, Ю.Н. Вторичные эталоны единиц измерений ионизирующих излучений : монография / Ю.Н. Тарасенко. Москва : РИЦ "Техносфера", 2011. 460 с. ISBN 978-5-94836-277-9 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=214290
- 5. Радиационный контроль при проведении рентгенологических исследований: учебник / В. Канюков, В. Макаренко, А. Стрекаловская и др.; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет». Оренбург: ОГУ, 2011. 134 с. Библиогр. в кн.; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=259345
- 6. Ободовский, Илья Михайлович. Основы радиационной и химической безопасности [Текст] : [учебное пособие] / И. М. Ободовский. 2-е изд. Долгопрудный : Интеллект, 2015. 300 с. : ил. Библиогр.: с. 282-300. ISBN 9785915591959 : 1144.00

5.1 Дополнительная литература:

1. Болоздыня, Александр Иванович. Детекторы ионизирующих частиц и излучений [Текст]: принципы и применения: [учебное пособие] / А. И. Болоздыня, И. М. Ободовский. - Долгопрудный: Интеллект, 2012. - 204 с.: ил. - Библиогр.: с. 202-204. - ISBN 9785915591058: 1270.50.

- 2. Чиженкова, Рогнеда Александровна Динамика нейрофизиологических исследований действия неионизирующей радиации во второй половине XX-го века: [Текст]: [монография] / Р. А. Чиженкова. Москва: [Академия Естествознания], 2012. 87 с.: ил. Библиогр.: с. 77-84. ISBN 9785913271686: 50.00.
- 3. Щеголев, Игорь Фомич. Элементы статистической механики, термодинамики и кинетики [Текст] : [учебное пособие] / И. Ф. Щеголев. 2-е, испр. изд. Долгопрудный : Интеллект, 2008. 207 с. : ил. (Физтеховский учебник). ISBN 9785915590068 : 397.49.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- **1.** http://www.kubsu.ru/node/1145 Информационно-образовательный комплекс (портал) КубГУ.
- **2.** http://e.lanbook.com Электронно-библиотечная система издательства «Лань». Доступ: свободный (из локальной сети КубГУ); авторизованный (из внешней сети).
- **3.** http://elibrary.ru/defaultx.asp Научная электронная библиотека eLIBRARY.RU. Доступ: авторизованный (свободная онлайн регистрация).
- **4.** http://biblioclub.ru Электронно-библиотечная система «Университетская библиотека онлайн». Доступ: свободный (из локальной сети КубГУ); авторизованный (из внешней сети).
- **5.** http://www.netbook.perm.ru/soj.html -образовательный журнал на сайте www.issep.rssi.ru;

7. Методические указания для обучающихся по освоению дисциплины (модуля)

Студенту необходимо ознакомиться с теоретическим материалом, разобраться с предложенным решением типовых примеров, затем самостоятельно решить приведённые задачи. Если студент не смог понять приведенный в указанных задачниках разбор типовых примеров в той степени, чтобы самостоятельно использовать предложенный алгоритм для решения задания, то он может получить консультацию преподавателя.

- 8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)
- **8.1 Перечень необходимого программного обеспечения** Не требуется.

8.2 Перечень необходимых информационных справочных систем

$N_{\underline{0}}$	Ссылка	Пояснение
---------------------	--------	-----------

п/п		
		BOOK.ru – электронная библиотечная система (ЭБС)
1.	http://www.book.ru	современной учебной и научной литературы. Библиотека BOOK.ru содержит актуальную литературу по всем отраслям знаний, коллекция пополняется электронными книгами раньше издания печатной версии.
2.	http://www.ibooks.ru	Айбукс.ру — электронная библиотечная система учебной и научной литературы. В электронную коллекцию включены современные учебники и пособия ведущих издательств России.
3.	http://www.sciencedirect.com	Платформа ScienceDirect обеспечивает всесторонний охват литературы из всех областей науки, предоставляя доступ к более чем 2500 наименований журналов и более 11000 книг из коллекции издательства «Эльзевир», а также огромному числу журналов, опубликованных престижными научными сообществами. Полнотекстовая база данных ScienceDirect является непревзойденным Интернетресурсом научно-технической и медицинской информации и содержит 25% мирового рынка научных публикаций.
4.	http://www.scopus.com	База данных Scopus индексирует более 18 тыс. наименований журналов от 5 тыс. международных издательств, включая более 300 российских журналов. Непревзойденная поддержка в поиске научных публикаций и предоставлении ссылок на все вышедшие рефераты из обширного объема доступных статей. Возможность получения информации о том, сколько раз ссылались другие авторы на интересующую Вас статью, предоставляется список этих статей. Отслеживание своих публикаций с помощью авторских профилей, а так же работы своих соавторов и соперников.
5.	http://www.scirus.com	Scirus – бесплатная поисковая система для поиска
6.	http://www.elibrary.ru	научной информации. Научная электронная библиотека (НЭБ) содержит полнотекстовые версии научных изданий ведущих зарубежных и отечественных издательств.
7.	http://diss.rsl.ru	«Электронная библиотека диссертаций» Российской Государственной Библиотеки (РГБ) в настоящее время содержит более 400 000 полных текстов наиболее часто запрашиваемых читателями диссертаций. Ежегодное оцифровывание от 25000 до 30000 диссертаций.

9. Материально-техническая база, необходимая для осуществления образовательногопроцесса по дисциплине

Для проведения занятий имеется необходимая материально-техническая база, соответствующая действующим санитарным и противопожарным правилам и нормам:

– лекционная аудитория, оснащенная мультимедийными проекторами с возможностью подключения к Wi-Fi, документ-камерой, маркерными досками для демонстрации учебного материала;

- специализированные компьютерные классы с подключенным к ним периферийным устройством и оборудованием;
- аппаратурное и программное обеспечение (и соответствующие методические материалы) для проведения самостоятельной работы по дисциплине.

No	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные занятия	Учебная аудитория для проведения занятий лекционного типа ауд 148С, оснащенная презентационной техникой (проектор, экран, ноутбук) и соответствующим программным обеспечением (ПО).
2.	Практические занятия	Учебная аудитория для проведения лабораторных работ ауд. 314С, оснащенное лабораторным оборудованием.
3.	Групповые (индивидуальные) консультации	Аудитория № 209С
4.	Текущий контроль, промежуточная аттестация	Аудитория № 209С
5.	Самостоятельная работа	Кабинет для самостоятельной работы 208С, 204С, 205С оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета.