АННОТАЦИЯ ДИСЦИПЛИНЫ Б1. Б.15 ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

для направления подготовки: 03.03.03 Радиофизика профиль подготовки:

Радиофизические методы по областям применения (биофизика) Курс 2. Семестр 4. Количество з.е 3.

Цель дисциплины — формирование у студентов представлений о фундаментальных понятиях теории вероятностей и математической статистике, теоретическое и практическое освоение математических методов исследования, необходимых при изучении общих и специальных учебных дисциплин различного содержания, а также для приложения этих методов к построению и анализу математических моделей физических процессов.

Задачи дисциплины:

Задачи освоения дисциплины состоят в обучении студентов основным математическим методам, необходимым для построения и анализа математических моделей различных процессов при поиске оптимальных решений и выборе наилучших способов реализации этих решений.

- формирование умений и навыков построения математических моделей случайных явлений;
- формирование знаний о вероятностных законах для последовательностей независимых испытаний (закон больших чисел, закон редких событий (теорема Пуассона), локальная и интегральная предельные теоремы Муавра-Лапласа) и навыков их применения для решения задач в рамках схемы последовательности независимых испытаний;
- формирование знаний о законах распределения случайных величин, их вероятностных характеристиках (математическое ожидание, дисперсия, моменты), свойствах характеристик и навыков их вычислений;
- формирование знаний о методе характеристических функций и навыков его применения;
- формирование знаний о различных видах сходимости последовательностей случайных величин, предельных теоремах теории вероятностей (закон больших чисел, центральная предельная теорема) и навыков их применения.
- овладение различными приемами статистического наблюдения и анализа статистических данных;

Место дисциплины в структуре ООП ВО:

Дисциплина «Теория вероятностей и математическая статистика» относится к базовой части профессионального Блока1 для направления **03.03.03 Радиофизика**, являющегося структурным элементом ООП ВО.

Для изучения дисциплины требуются знания из курса математического анализа в объеме, включающем математический анализ функций одного и нескольких переменных (теорию пределов, непрерывность и дифференцируемость функций одного и нескольких переменных, определенный икратные интегралы, функциональные ряды, ряды Фурье, элементы функционального анализа (мера и интеграл Лебега, интеграл Лебега-Стилтьеса) и курса высшей алгебры.

Результаты обучения (знания, умения, опыт, компетенции)

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций ОПК-1

No	Индекс	Содержание	В результате изучения учебной дисциплины обучающиеся		
п.п	компе-	компетенции	должны		
	тенции	(или её части)	знать	уметь	владеть

1.	ОПК-1	способность к	•основные понятия ком-	• строить модели типо-
		овладению ба-	бинаторики;	вых случайных явле-
		зовыми знани-	• понятия случайного	ний;
		ями в области	события и свойства опе-	• вычислять значения
		математики и	раций над событиями;	вероятности, используя
		естественных	• понятие частоты собы-	классическое, геомет-
		наук, их ис-	гия, вероятности собы-	рическое определение
		пользованию в	гия; пространства эле-	вероятности;
		профессио-	ментарных событий;	• строить математиче-
		нальной дея-	• понятие дискретного	ские модели типовых
		тельности	вероятностного про-	случайных явлений;
			странства, классическое	•вычислять значения
			определение вероятно-	вероятности и условной
			сти.	вероятности появления
			• понятие непрерывного	событий, используя
			вероятностного про-	классическое и геомет-
			странства. Геометриче-	рическое определение
			ское определение вероят-	вероятности, понятие
			ности;	независимости собы-
			•теоремы сложения и	тий, формулу полной
			умножения вероятностей;	вероятности, формулы
			• понятие условной веро-	Байеса;
			ятности, независимости	• применять закон
			событий;	больших чисел, закон
			• формулы полной веро-	редких событий (тео-
			ятности и Байеса;	рему Пуассона), ло-
			• понятие случайной ве-	кальную и интеграль-
			личины (дискретной и	ную предельные теоре-
			непрерывной), функции	мы Муавра-Лапласа) к
			распределения и ее свой-	решению типовых ве-
			ства;	роятностных задач для
			•основные законы рас-	последовательностей
			пределения дискретных	независимых испыта-
			случайных величин (би-	ний;
			номиальный, закон рас-	•вычислять вероят-
			пределения Пуассона;	ностные характеристи-
			геометрический, гипер-	ки случайных величин
			геометрический);	(математическое ожи-
			• предельные теоремы в	дание, дисперсию, мо-
			схеме Бернулли: теорему	менты), ковариацию и
			Пуассона, локальную и	коэффициент корреля-
			инте- гральную теоремы	ции пары случайных
			Муавра- Лапласа), их	величин;
			применения;	•применять централь-
			• основные законы рас-	ную предельную тео-
			пределения непрерывных	рему для оценки рас-
			случайных величин: по-	пределений сумм неза-
			казательный, равномер-	висимых случайных
			ный,	величин;
			нормальный;	• графически представ-
			•числовые характеристи-	лять вариационные ря-
			ки случайных величин:	ды и

Математическими методами теории вероятностей и математической статистики для постановки и создания вероятностных моделей типовых профессиональных задач;

	T T	
математическое ожида-	вычислять их числовые	
ние, дисперсия, их свой-	характеристики;	
ства.	• применять метод мо-	
•характеристические	ментов и метод	
функции случайных ве-	наибольшего правдо-	
личин, их свойства;	подобия для получения	
• понятие о предельных	точечных оценок ха-	
теоремах теории вероят-	рактеристик случайной	
ностей (закон больших	величины;	
чисел, центральная пре-	• вычислять довери-	
дельная теорема);	тельные интервалы для	
• основные выборочные	параметров нормально-	
характеристики;	го распределения;	
• точечные и интерваль-	• осуществлять провер-	
ные оценки параметров	ку гипотезы о распре-	
распределения.	делении генеральной	
• понятия статистических	совокупности по кри-	
гипотез, проверки стати-	терию согласия Пирсо-	
стических гипотез	на.	
• основные понятия тео-		
рии корреляции.		

Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

	Количество часов				7	
	Наименование разде-		Аудиторная			Самостоя-
	лов	сего	работа			тельная работа
			Л	П3	ЛР	CPC
1	. 2		4	5	6	4
1	Основные понятия и тео-	19	6	3		10
	ремы теории вероятно-					
	стей					
2	Последовательность не-	17	6	3		8
	зависимых испытаний.					
3	Случайные величины.	21	6	3		12
4	Закон больших чисел.	14	4	2		8
5	Элементы математиче-	32,8	10	5		17,8
	ской статистики					
	Итого по дисциплине:		32	16		55,8

Примечание: Π – лекции, Π 3 – практические занятия, семинары, Π 7 – лабораторные занятия, Π 8 – самостоятельная работа студента

Курсовые проекты или работы: не предусмотрены

Вид аттестации: зачет в четвертом семестре.

Основная литература:

- 1. Кремер Н.Ш. Теория вероятностей и математическая статистика. Учебник. М.:ЮНИТИ-ДАНА, 2009. 551 с.
- 2. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 2008. 479 с.
- 3. Чистяков В.П. Курс теории вероятностей. М. Дрофа, 2007г.

- 5. Кремер, Н. Ш. Теория вероятностей: учебник и практикум для академического бакалавриата. М.: Юрайт, 2018. 271 с. https://biblio-online.ru/book/6052874A-FA4D-4581-911F-7698CB974AD4.
- 6. Зубков А.М., Севастьянов Б.А., Чистяков В.П. Сборник задач по теории вероятностей. СПб.: Лань, 2009. 320 с. https://e.lanbook.com/book/154#authors

Автор РПД доцент, канд. физ.-мат. наук

th

Л.А. Яременко