МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физико-технический факультет Кафедра физики и информационных систем

УТВЕРЖДАЮ
Проректор по учебной работе, качеству образования проректор

Г.А. Хагуров

Рабочая программа по дисциплине Б1.В.04 АРХИТЕКТУРНАЯ ФИЗИКА

Направление - 07.03.01 Архитектура
Профиль — Архитектурное проектирование
Программа подготовки — академическая
Форма обучения - очная
Квалификация выпускника — бакалавр

Рабочая программа дисциплины Б1.В.04 *Архитектурная физика* составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 07.03.01. *Архитектура*, утвержденного приказом Министерства образования и науки Российской Федерации № 463 от 21 апреля 2016 г.

Программу составил: П.И. Быковский,

доцент кафедры физики и информационных систем ____

Рабочая программа дисциплины <i>Архитектурная физика</i> утверждена на заседании кафедры физики и информационных систем 6 апреля 2018 г. Протокол № 15.
Заведующий кафедрой (разработчика) Богатов Н.М.
Рабочая программа обсуждена на заседании кафедры архитектуры. Протокол №
Рабочая программа утверждена на заседании учебно-методической комиссии физико-технического факультета 12 апреля 2018г. Протокол № 10.
Председатель УМК ФТФ Богатов Н.М.

Рецензенты:

Копытов Г.Ф., заведующий кафедрой радиофизики и нанотехнологий; Григорьян Л.Р., генеральный директор ООО НПФ ''Мезон ''

1. Цели и задачи изучения дисциплины

1.1 Цель и задачи дисциплины

Цель освоения дисциплины: изучение разделов физики, являющихся основой для создания в помещениях микроклимата, удовлетворяющего требованиям комфорта.

Задачи:

- изучение основных закономерностей архитектурной светологии, акустики, строительной теплофизики;
- получение представления о фундаментальных и прикладных исследованиях в области физики, касающихся архитектуры и строительной отрасли.

1.2 Место дисциплины в структуре основной образовательной программы высшего образования

Дисциплина Б1.В.04 "Архитектурная физика" относится к вариативной части естественнонаучного цикла.

При освоении данной дисциплины необходимы знания предшествующих дисциплин:

- Математика (разделы математики),
- Основы информатики.

На данную дисциплину опираются следующие дисциплины:

- Строительная механика,
- Архитектурная экология,
- Колористика в проектировании городской среды,
- Экологическое и энергоэффективное архитектурное проектирование.
- Инженерные системы и оборудование в архитектуре,
- Проектирование инженерного оборудования в архитектуре,
- Физика среды в архитектуре.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программ

Изучение *Архитектурной физики* направлено на формирование у обучающихся следующих общепрофессиональных (ОПК) и профессиональные (ПК) компетенций:

Инд.	Содержание	В результате изуч	ения учебной дисцип	лины обучающиеся
компе	компетенции			
нции	(или её части)	знать	уметь	владеть
ОПК-	умением	основные	применять	методами
1	использовать	законы	законы	качественной
	основные законы	архитектурной	архитектурной	оценки и
	естественно- науч-	физики, методы	физики, методы	количественных
	ных дисциплин в	качественной	качественной	измерений
	профессиональной	оценки и	оценки и	параметров
	деятельности,	количественных	количественных	освещения,
	применять методы	измерений	измерений	инсоляции,
	анализа и	параметров	параметров	акустики и
	моделирования,	освещения,	освещения,	теплотехники.
	теоретического и	инсоляции,	инсоляции,	
	эксперименталь-	акустики и	акустики и	
	ного исследования	теплотехники	теплотехники	
ПК-	способностью	основные зако-	применять	навыками
5	применять знания	ны смежных и	знания смежных и	применения
	смежных и	сопутствующих	сопутствующих	знаний смежных и
	сопутствующих	дисциплин при	дисциплин при	сопутствующих

Инд.	Содержание	В результате изуче	В результате изучения учебной дисциплины обучающиеся				
компе	компетенции	должны					
нции	(или её части)	знать	уметь	владеть			
	дисциплин при	разработке про-	разработке про-	дисциплин при			
	разработке проек-	ектов, действо	ектов, действо	разработке			
	тов, действовать	вать инновацион	вать инновацион	проектов,			
	инновационно и	но и технически	но и технически	действовать			
	технически	грамотно при	грамотно при	инновационно и			
	грамотно при	использовании	использовании	технически			
	использовании	строительных	строительных	грамотно при			
	строительных	технологий,	технологий,	использовании			
	технологий,	материалов,	материалов,	строительных			
	материалов,	конструкций,	конструкций,	технологий,			
	конструкций,	систем жизне-	систем жизне-	материалов,			
	систем	обеспечения и	обеспечения и	конструкций,			
	жизнеобеспечения	информационно	информационо	систем жизне-			
	и информационно	компьютерных	компьютерных	обеспечения и			
	компьютерных	средств.	средств.	информационно			
	средств.			компьютерных			
				средств.			

2. Структура и содержание дисциплины Архитектурная физика.

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 4 зач.ед. (144 часа), их распределение по семестрам и видам работ представлено в таблице:

семестрам и видам расот представлено в таслице.					
Вид у	чебной работы	6	7	Всего	
		семестр	семестр	часов	
Контактная работа (всег	Контактная работа (всего):				
В том числе:	В том числе:				
Аудиторные занятия (все	ero):	36	36	72	
Занятия лекционного типа		18	18	36	
Лабораторные занятия		-	-	-	
Занятия семинарского тип	а (семинары, практические занятия)	18	18	36	
		-	-	-	
Иная контактная работа	•				
Контроль самостоятельной	Контроль самостоятельной работы (КСР)			8	
Промежуточная аттестаци	я (ИКР)	0,2	0,2	0,4	
Самостоятельная работа	31,8	31,8	63,6		
В том числе:					
Курсовая работа		-	-		
Проработка учебного (те	оретического) материала	10	10	20	
	ых заданий (подготовка сообщений,	15	15	30	
презентаций)		13	13		
Реферат		-	-	-	
Подготовка к текущему ко	нтролю	6,8	6,8	13,6	
Контроль:					
Подготовка к экзамену	-	-	-		
Общая трудоемкость	час.	72	72	144	
	в том числе контактная работа	40,2	40,2	80,4	
	зач. ед	2	2	4	

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины и по семестрам:

Разделы дисциплины, изучаемые в 6 семестре:

			Количество часов			
№ разд ела	Наименование разделов		Аудиторная работа			Самостоят ельная работа
			Л	П3	ЛР	
1	2	3	4	5	6	7
	1. Архитектурная светология: 1.1. Законы теплового излучения и геометрической оптики.	14	4	4	-	6
1.	1.2. Основные понятия фотометрии: световой поток, освещённость, сила света, яркость и светимость, световая отдача.	31,8	10	6	ı	15,8
	1.3. Расчёты инсоляции, естественного и искусственного освещения помещений.	22	4	8	1	10
	Итого по дисциплине:	67,8	18	18	-	31,8

Разделы дисциплины, изучаемые в 7 семестре:

	Наименование разделов		Количество часов			
№			Аудиторная работа			Самостоят ельная работа
			Л	П3	ЛР	
1	2	3	4	5	6	7
2	2. Архитектурная акустика: 2.1. Основные понятия и физические характеристики звука. 2.2. Нормирование шума и расчёт звукоизоляции ограждений.	39,8	12	10	-	17,8
3	3. Строительная теплотехника: 3.1. Основные понятия теплотехники. 3.2.Теплофизический расчёт ограждающих конструкций зданий.	30	6	8	-	14
	Итого по дисциплине:	67,8	18	18	-	31,8

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

	Наименов		Форма
$N_{\underline{0}}$	ание	Содержание	текущего
	раздела	раздела	контроля
1	2	3	4

	Архитек	Введение. Свет, зрение, архитектура. Законы теплового	Тестиро-
	турная	излучения и геометрической оптики.	вание.
1	светоло-	Основные понятия фотометрии: сила света, световой	
	гия:	поток, освещённость, яркость, светимость, световая отдача.	
		Закон Ламберта. Закон светотехнического подобия.	Защита
		Естественное освещение. Системы естественного	расчётных
		освещения помещений. Количественные и качественные	(домаш-х)
		характеристики освещения.	работ.
		Основы нормирования и светотехнического расчёта	
		естественного освещения помещений.	
		Инсоляция, её положительное и отрицательное воздействие	
		на среду и человека. Нормирование и проектирование	Блиц
		инсоляции застройки.	опрос.
		Искусственное освещение. Источники искусственного	
		освещения. Нормирование и светотехнический расчёт	
		искусственного освещения. Выбор источников света и	
		осветительных приборов.	
		Звук и слух. Основные понятия и физические	Тестиро-
2	Архитек	характеристики звука: интенсивность и уровень	вание.
	турная	интенсивности, громкость и уровень громкости. Кривые	Защита
	акусти-	равной громкости.	расчётных
	ка.	Закономерности распространения воздушного и	(домаш-х)
		структурного звука и шума.	работ.
		Нормирование шума и расчёт звукоизоляции ограждений.	_
		Акустика закрытых залов. Реверберация. Методы расчёта	Блиц-
		времени реверберации.	опрос.
		Особенности теплообмена человека с окружающей средой.	Защита
3	Строи-	Основные понятия теплотехники: тепловой поток, градиент	расчётных
	тельная	температуры, теплопроводность, сопротивление	(домаш-х)
	теплотех	теплопередаче.	работ.
	ника.	Теплофизический расчёт ограждающих конструкций	Блиц-
		зданий.	опрос.

2.3.2 Занятия семинарского типа (расчётный практикум).

	Наименован		Форма		
№	ие	Темы семинарских занятий	текущего		
	раздела	раздела			
1	2	3	4		
	Архитектур	Определение коэффициента естественного освещения (КЕО)	Защита		
	ная	помещения.	домашних		
1	светология.	Построение инсографиков и определение времени инсоляции	работ.		
		помещения.			
		Расчёт освещённости рабочего стола с учётом однократного			
		отражения от стен и потолка.	Тестирова-		
		Проектирование внутреннего освещения аудитории (жилого	ние.		
		помещения) с помощью программы DIALux.			
		Расчёт времени реверберации в аудитории (в жилой			
		комнате).	Защита		
2		Определение индекса изоляции воздушного шума акустически	домашних		
		однородными конструкциями. Работа с расчётной программой	работ.		
		"Теплотехнический калькулятор".			

	Архитектур Определение приведенного уровня ударного шума под			
	ная перекрытием.			
	акустика.			
	Строитель-	Определение необходимой толщины слоя утеплителя в	Защита	
	ная	ограждающей конструкции для зимних условий данной	домашних	
3	теплотех-	местности.	работ.	
	ника.	Работа с расчётной программой "Теплотехнический	Блицопрос.	
		калькулятор".		

- 2.3.3 Лабораторные занятия (не предусмотрены).
- 2.3.4 Примерная тематика курсовых работ (не предусмотрены).
- 2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю).

№	Наименование раздела	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1.	Архитектурная светология.	1. Архитектурная физика: учебник для вузов / под ред. Н.В. Оболенского М.: Архитектура-С, 2014 441 с. 2. Блази В. Справочник проектировщика. Строительная физика
		[Текст]: пер. с нем / В. Блази; под ред. А.К. Соловьева 2-е изд., доп М.: Техносфера, 2005 536 с. 3. DIALux 3.0 (4.9) – Программы светотехнических расчётов.
2.	Архитектурная	1. Архитектурная физика: учебник для вузов / под ред. Н.В.
	акустика.	Оболенского М.: Архитектура-С, 2014 441 с. 2. Звукоизоляция внутренних ограждающих конструкций гражданских зданий. (<i>Методические указания к курсовому и дипломному проектированию</i>). КубГТУ, Краснодар, 2005 г.
3.	Строительная теплотехника.	 Богословский В. Н. Строительная теплофизика: (теплофизические основы отопления, вентиляции и кондиционирования воздуха): учебное пособие / В. Н. Богословский. 3-е изд. СПб.: АВОК Северо-Запад, 2006. 400 с. Теплотехнический калькулятор. – Программа расчёта теплоизоляции ограждающих конструкций. НЕRZ CO., HERZ OZC. – Программы теплотехнических расчётов.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

Для освоения студентами учебной дисциплины «Архитектурная физика», получения знаний и формирования профессиональной компетенции используются следующие образовательные технологии: интерактивная доска для подготовки и проведения лекционных и семинарских занятий; в соответствии с требованиями ФГОС ВО предусматривается участие в тематических дискуссиях.

Лекции являются одной из основных форм обучения студентов.

Во время лекций студентам предоставляется возможность ознакомиться с основными научно-теоретическими положениями, получить необходимое направление и рекомендации для самостоятельной работы с учебником, монографическими работами, учебными пособиями.

При реализации учебной работы по освоению дисциплины «Архитектурная физика» используются современные образовательные технологии:

- интерактивные формы обучения;
- исследовательские методы в обучении;
- проблемное обучение.

Интерактивные технологии, используемые при изучении дисциплины:

Семестр	Вид занятия (Л, ПЗ)	Используемые интерактивные образовательные технологии	Кол- тво час.			
6	Л	Лекция с элементами педагогической эвристики,	3			
		лекция-консультация.				
	ПЗ	Беседы, разбор ситуаций, работа в малых группах в	3			
		процессе защиты практических (расчётных) работ.				
	Л	Лекция с элементами педагогической эвристики,	3			
7		лекция-консультация.				
/	ПЗ	Беседы, разбор ситуаций, работа в малых группах в	3			
		процессе защиты практических (расчётных) работ.				
	Ит ого: 1.					

Самостоятельная работа по дисциплине включает:

- самоподготовку к учебным занятиям по конспектам, учебной литературе, интернет ресурсам;
- выполнение домашних заданий (решение типовых задач и выполнение творческих заданий).

Эффективность учебной деятельности бакалавров оценивается по балльнорейтинговой системе.

В учебном процессе используются активные и интерактивные формы проведения занятий: презентация, дискуссия, разбор конкретных ситуаций, творческие задания, работа в малых группах.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

Оценка качества освоения программы включает текущий контроль по результатам выполнения домашних заданий, расчётных и контрольных работ.

Теоретический материал каждого раздела дважды закрепляется практическими расчётами: *первые расчёты* параметров делаются на примере *учебной аудитории*, *вторые* – на примере *своих комнат*.

В конце каждого раздела проводится так называемый "блиц опрос", когда студенты тут же, после номера заданного вопроса, пишут ответы (формулы и (или) определения, решают "короткие" задачи).

На лекциях и лабораторных занятиях используется презентация графических схем расчетов искусственного и естественного освещения, акустики и микроклиматических параметров.

4.1 Фонд оценочных средств для проведения текущего контроля

При проведении текущего контроля по освоению дисциплины, а также при контроле самостоятельной работы обучающегося по разделам дисциплины используется фонд тестовых заданий, заданий к домашним работам, вопросы и задачи для контрольных работ и блиц опросов.

Примеры тестов:

Tecm 1

Вопрос	Варианты ответов			
Какое изображение даёт	Всегда действительное; всегда			
рассеивающая линза?	мнимое; в зависимости от условий.			
Каким уравнением связаны коэффициенты	$\alpha + \rho = \tau$; $\alpha + \rho + \tau = 1$; $\alpha - \rho = \tau$			
поглощения (α), отражения (ρ) и пропускания (τ)?				
Какой высоты должно быть плоское зеркало (h),	h = H; $h = 2H;$ $h = H/2.$			
чтобы видеть себя в полный рост (Н)?				

Tecm 2

Bonpoc	Варианты ответов			
	1	2	3	
Световой поток измеряется в	Люксах,	люменах,	канделах	
Из закона смещения Вина следует:	$\lambda_{max}=b\cdot T$,	$b=\lambda_{max} \cdot T$,	$T = \lambda_{max} \cdot b$.	
Из закона Ламберта следует, что	$M=\pi \cdot L$,	$L=\pi \cdot M$,	$L\cdot M=\pi$.	
За Треверб. интенсивность звука слабеет в,	10 раз,	60 раз,	ииллион раз;	
а уровень интенсивности снижается на	10 дБ,	60 дБ,	ииллион дБ.	
Индекс приведённого уровня ударного шума должен	Равен -,	меньше -,	больше	
быть	нормативного индекса.			
Тепловой поток (Q), теплопроводность (L) и	$Q = L \cdot grad$	T,		
градиент температуры (grad T) связаны следующей		Q = L/grad T,		
формулой:		g	$rad T = Q \cdot L.$	

4.2 Фонд оценочных средств для проведения промежуточной аттестации. (промежуточная аттестация – зачёт в конце 6-го семестра).

При проведении промежуточной аттестации по разделам дисциплины используется фонд тестовых заданий, вопросы и задачи для контрольных работ и блиц опросов.

Пример тестового задания:

(Геометрическая оптика, построение изображений в линзах)

Дана собирающая линза с фокусным расстоянием F. Каким будет изображение предмета, если расстояние от предмета до линзы (а) меняется, как указано в таблице? (Символы, характеризующие изображение: коэффициент увеличения - \mathbf{k} , изображение прямое - \uparrow , или перевёрнутое - \downarrow , изображение действительное - $\mathbf{\mathcal{I}}$, или мнимое – $\mathbf{\mathcal{M}}$.)

Заполнить копию таблицы, т.е. поставить + там, где надо.

№ позиции	Расстояние "а"	k=1	k>1	k<1	↑	\downarrow	Д	M
1	0 < a < F							
2	F < a < 2F							
3	a > 2F							
4	a = 2F							

Пример бланка блиц опроса:

	Тема – $\pmb{Apxитектурная}$ светология (блиц опрос №1)
	3 курс, ФАД, группа Студент
1.	Законы теплового излучения. Формулы, формулировки и графики.
2.	Закон Ламберта.
3.	Закон светотехнического подобия.
4.	Что такое коэффициент естественного освещения (КЕО)?
5.	Как связаны яркость и светимость ламбертовых источников света?
	6. Основные понятия фотометрии. (Название, размерность, формула):
столе, Мощн	Определить максимальную и минимальную освещённость на своём рабочем считая настольную лампу точечным источником света. пость лампы 60 Вт. Световая отдача 20 лм/Вт. Необходимые расстояния оцените тоятельно. Сделать рисунок, поясняющий решение.

Вопросы для самоподготовки к зачёту (часть 1-я):

- 1. Основные понятия фотометрии: сила света, световой поток, освещённость, яркость, светимость, световая отдача.
- 2. Закон Ламберта.
- 3. Закон светотехнического подобия.
- 4. Системы естественного освещения помещений.
- 5. Количественные и качественные характеристики освещения.
- 6. Основы нормирования и светотехнического расчёта естественного освещения помещений.
- 7. Инсоляция, её положительное и отрицательное воздействие на среду и человека.
- 8. Нормирование и проектирование инсоляции застройки.

4.2.1 Критерии оценки при промежуточной аттестации:

Критериями устного ответа будут выступать следующие качества знаний:

- -полнота количество знаний об изучаемом объекте, входящих в программу;
- -глубина совокупность осознанных знаний об объекте;
- -конкретность умение раскрыть конкретные проявления обобщённых знаний (доказать на примерах основные положения);
- -системность представление знаний об объекте в системе, с выделением структурных её элементов, расположенных в логической последовательности;
- -развёрнутость способность развернуть знания в ряд последовательных шагов;
- -осознанность понимание связей между знаниями, умение выделить существенные и несущественные связи, познание способов и принципов получения знаний.

Критериями письменного ответа и практического отчёта будут выступать следующие качества знаний:

- -полнота количество знаний об изучаемом объекте, входящих в программу;
- -глубина совокупность осознанных знаний об объекте;
- -конкретность умение раскрыть конкретные проявления обобщённых знаний (показать на примерах основные способы качественной оценки и методы расчёта основных параметров комфорта в проектируемых жилых помещениях).

Ответ студента по вопросу дисциплины «Архитектурная физика» оценивается по двухбалльной системе (зачтено/не зачтено):

«Зачтено» ставится, если:

- дан ответ достаточной степени полноты на поставленный вопрос;
- логика и последовательность изложения не имеют нарушений или присутствуют незначительные нарушения;
- изложение теоретического материала и употребление терминов было безошибочным или допущены несущественные неточности или ошибки;
- показаны умения и навыки практического применения способов измерения и методов расчёта основных параметров освещения, акустики и теплотехники.

«**Не зачтено**» ставится, если ответы на поставленные вопросы не были даны, а также если:

- логика и последовательность изложения имеют существенные нарушения;
- допущены существенные ошибки в теоретическом материале. в ответе отсутствуют выволы:
- сформированность умений и навыков не показана.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

1. Толстенева, А. А. Архитектурная физика: учеб. пособие для академического бакалавриата / А. А. Толстенева, Л. И. Кутепова, А. А. Абрамов. — М.: Издательство Юрайт, 2018. — 175 с. — (Серия: Бакалавр. Академический курс). — ISBN 978-5-534-06714-9. https://biblio-online.ru/book/arhitekturnaya-fizika-412301

5.2 Дополнительная литература

- 1. Слукин, В.М. Проектирование световой среды интерьеров жилых и общественных зданий: учебно-методическое пособие / В.М. Слукин, Л.Н. Смирнов; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уральская государственная архитектурно-художественная академия» (ФГБОУ ВПО «УралГАХА»).
- 3-е изд., перераб. и доп. Екатеринбург : УралГАХА, 2014. 77 с. : ил. Библиогр. в кн.
- ISBN 978-5-7408-0201-5 ; То же [Электронный ресурс]. -

URL: http://biblioclub.ru/index.php?page=book&id=436742

2. Измерительные приборы : методические указания / сост. А.Г. Кочев, А.С. Сергиенко, С.С. Козлов ; Минобрнауки России и др. - Нижний Новгород : ННГАСУ, 2012. - 28 с. : схем., ил. - Библиогр. в кн. ; То же [Электронный ресурс]. -

URL: http://biblioclub.ru/index.php?page=book&id=427390

- 3. Потиенко, Н.Д. Акустическое проектирование зрительных залов : учебное пособие / Н.Д. Потиенко. Самара : Самарский государственный архитектурно-строительный университет, 2008. 162 с. ISBN 978-5-9585-0256-1 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=143906
- 4. Слукин, В.М. Проектирование естественного освещения зданий различного назначения: учебное пособие / В.М. Слукин, Л.Н. Смирнов; Министерство образования и науки Российской Федерации, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уральская государственная архитектурно-художественная академия» (ФГБОУ ВПО «УралГАХА»).
- 3-е изд., перераб. и доп. Екатеринбург: УралГАХА, 2013. 96 с.: ил. Библиогр. в кн.
- ISBN 978-5-7408-0181-0; То же [Электронный ресурс]. -

URL: http://biblioclub.ru/index.php?page=book&id=436741

5.3. Периодические издания:

1. Журнал «Энергосбережение», М.: ООО ИИП «АВОК-ПРЕСС».

6. Интернет-ресурсы:

- 1. DIALux 3.0 (4.9) Программы светотехнических расчётов.
- 2. HERZ CO., HERZ OZC. Программа теплотехнических расчётов.
- 3. Теплотехнический калькулятор. Программа теплотехнических расчётов.

7. Методические указания для обучающихся по усвоению дисциплины.

Промежуточный и итоговый контроль полученных знаний осуществляется в виде зачета. Подготовка к нему — это обобщение и укрепление знаний, их систематизация,

устранение возникших в процессе учебы пробелов в овладении учебной дисциплиной. Готовясь к зачету, студенты уточняют и дополняют многое из того, что на лекциях или при текущей самоподготовке не было в полном объеме усвоено. Кроме того, подготовка к зачету укрепляет навыки самостоятельной работы, вырабатывает умение оперативно отыскивать нужный нормативный материал, необходимую книгу, расширяя кругозор и умение пользоваться библиотекой и ее фондами.

Но подготовка к зачету не должна ограничиваться слушанием лекций и чтением конспектов. Студент, готовящийся по конспекту, вынужден заучивать краткие записи и формулировки, в связи с чем на зачетах он, как правило, дает односложные ответы, не располагая достаточными данными для обоснования и развития ответа. Успех экзаменующегося зависит от повседневной работы в течение всего семестра на лекциях, практических занятиях, консультациях, в библиотеке.

Зачет проводится в соответствии с учебной программой по данному предмету. Программа – обязательный руководящий документ, по которому можно определить объем требований, предъявляемых на зачетах, а также систему изучаемого учебного материала. Студенты вправе пользоваться программой и в процессе самих зачетов. Поэтому в ходе изучения предмета, подготовки к зачету нужно тщательно ознакомиться с программой курса. Это позволит целенаправленно изучить материал, самостоятельно проверить полученные знания. При подготовке к зачету следует побывать на групповых и индивидуальных консультациях, которые, являясь необходимым дополнением лекций, помогают глубже усвоить наиболее сложные положения изучаемого курса, устранить пробелы в знаниях. Рекомендации преподавателя содействуют правильной организации самостоятельной работы, ознакомлению с новой литературой и нормативными источниками.

Зачеты ставят перед студентами задачу самостоятельно распорядиться полученными знаниями, облечь их в надлежащую форму, подготовить логически стройный и научно обоснованный ответ.

Критерии оценки знаний – это требования (признаки), на которые следует ориентироваться при оценке знаний. Критериями могут выступать качественные характеристики знания. К объективным качествам (отражающим содержание обучения и не зависящим от субъекта) относятся полнота, глубина, оперативность, конкретность, обобшённость. систематичность, системность, развёрнутость, свёрнутость; субъективным (составляющим характеристику личности) - осознанность, гибкость и прочность. Выделенные качества знаний взаимообусловлены, каждое содержит в себе в свёрнутом виде другие качества. Важными качествами знаний выступают полнота, глубина, осознанность. Признаками сформированности умений являются гибкость (способность рационально действовать в различных ситуациях), стойкость (сохранение точности и темпа, несмотря на внешние помехи) и прочность (сохранение умения при его продолжительном неиспользовании; максимальная приближённость в выполнении к реальным условиям и задачам).

В процессе контроля знаний Архитектурной физики необходимо учитывать степень усвоения теоретического материала по устным ответам студентов, а также умения и навыки практического применения способов измерения и методов расчёта основных параметров освещения, акустики и теплотехники по отчётам и защите домашних работ.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта

между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

- 8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).
 - 8.1 Перечень необходимого программного обеспечения.
- Программы, демонстрации видео материалов (проигрыватель «Windows Media Player»).

8.2 Перечень информационных справочных систем:

- Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru).
- 9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

Для проведения занятий по дисциплине Архитектурная физика имеется необходимая материально-техническая база, соответствующая действующим санитарным и противопожарным правилам и нормам:

- специализированная лекционная аудитория, оснащённая мультимедийным проектором, экраном, интерактивной доской;
- специализированные компьютерные классы с подключенным к ним периферийным устройством и оборудованием;
- в лаборатории кафедры архитектуры имеются люксметры и шумомеры, необходимые для выполнения соответствующих контрольно-измерительных работ;
- учебно-экскурсионные объекты университета (астрофизическая обсерватория, лаборатория нанотехнологий и спецлаборатории естественных факультетов) оснащены современным оборудованием.

№	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность		
1.	Лекционные занятия	Лекционные аудитории (ком. 213, ком. 303),		
		оснащенные презентационной техникой.		
2.	Семинарские	Семинарские (практические) занятия по расчёту		
	(практические)	светотехнических, акустических и теплотехнических		
	занятия	параметров помещения проводятся как в учебных		
		аудиториях, так и в дисплейном классе (ком. 309) с		
		использованием соответствующих программ, плакатов и		
		приборов (люксметры и шумомеры).		
3.	Лабораторные занятия	Лабораторные занятия не предусмотрены.		
4.	Консультации	Аудитории 303, 213.		
5.	Текущий контроль	Аудитории 303, 213.		
6.	Самостоятельная	Кабинет для самостоятельной работы (ауд. 309),		
	работа	оснащенный компьютерной техникой с возможностью		
		подключения к сети «Интернет», программой экранного		
		увеличения и обеспеченный доступом в электронную		
		информационно-образовательную среду университета.		