Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики

УТВЕРЖДАЮ:
Проректор по учебной работе, качеству образования первый проректор

моопись

« 24 » 64 2018 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ 61.В.13 «NP-ПОЛНЫЕ ЗАДАЧИ»

Направление подготовки 02.03.02 Фундаментальная информатика и информационные технологии

Профиль Вычислительные технологии

Программа подготовки Академическая

Форма обучения Очная

Квалификация выпускника Бакалавр

Рабочая программа дисциплины «NP-полные задачи» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки (профиль) 02.03.02 Фундаментальная информатика и информационные технологии

Программу составила: О.Н. Лапина доцент кафедры вычислительных технологий,

Aug-

канд. физ.-мат. наук

Рабочая программа дисциплины утверждена на заседании кафедры вычислительных технологий от « $\underline{3}$ » апреля 2018 г. , протокол № $\underline{7}$

Заведующий кафедрой (разработчика) А.И. Миков

подпись

MA

Stall

Рабочая программа обсуждена на заседании кафедры вычислительных технологий от « $\underline{3}$ » апреля 2018 г. , протокол № $\underline{7}$

Заведующий кафедрой (выпускающей) А.И. Миков

подпись

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол № 1 от «20» апреля 2018 г.

Председатель УМК факультета Малыхин К.В.

Рецензенты:

Зайков В.П., ректор НЧОУ ВО «Кубанский институт информзащиты», доктор экономических наук., к.т.н., доцент.

Гаркуша О.В., доцент кафедры информационных технологий ФБГОУ ВО «Кубанский государственный университет», кандидат физико-математических наук, доцент.

1. Цели и задачи изучения дисциплины.

1.1. Цели освоения дисциплины.

Целью преподавания и изучения дисциплины «NP-полные задачи» является ознакомление студентов с фундаментальными понятиями теории сложности алгоритмов, с современными методами исследования алгоритмов и оценки их алгоритмической сложности.

1.2. Задачи дисциплины.

Задачи дисциплины: освоить основные понятия, положения и методы теории сложности алгоритмов; овладеть методами решения NP-полных задач для исследования различных прикладных задач.

1.3. Место дисциплины в структуре образовательной программы

Дисциплина «NP — полные задачи» относится к вариативной части цикла профессиональных дисциплин. Для изучения дисциплины необходимо знание основ теории сложности алгоритмов, основ программирования, языков программирования. Созданная теория NP-полноты имеет большое практическое значение для анализа алгоритмов. Знания, получаемые при изучении дисциплины, используются при изучении других дисциплин профессионального цикла учебного плана бакалавра, а также при работе над выпускной квалификационной работой бакалавра.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у

обучающихся компетенций:

	у тагощиле	я компетенции.			
№	Индекс компетен	Содержание компетенции (или её	1 2	е изучения учебн обучающиеся дол	
П.П.	ции	части)	знать	уметь	владеть
1.		Способностью к самоорганизации и самообразованию	ые основы теории сложности	получать новые знания в области развития теории алгоритмов; разрабатывать новые методы и алгоритмы для решения	Методами получения знаний, которые находятся на передовом рубеже достижений в теории сложности алгоритмов и задач.
2.	OHK-3	Способностью к разработке алгоритмических и программных решений в области системного и прикладного программирования, математических, информационных и	основы теории алгоритмов, классы сложности задач; приближенные алгоритмы для решения основных NP-задач	применять фундаментальны е концепции теории алгоритмов для решения научных и проектно-технологических	методами разработки и анализа алгоритмов в области прикладного программирования , а также приближенных алгоритмов для

No	Индекс	Содержание		се изучения учебн	
п.п.	компетен	' '		обучающиеся дол	
	ции	части)	знать	уметь	владеть
		имитационных моделей, созданию информационных ресурсов глобальных сетей, образовательного контента, прикладных баз данных, текстов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям.		задач.	решения задач экспоненциальной сложности.
3.		Спосооностью эффективно применять базовые математические знания и информационные технологии при решении проектно-	Основные NP- полные задачи и области их применения при решении проектно- технических и прикладных задач.	Эффективно применять базовые алгоритмы решения NP-задач и методы оценки сложности алгоритмов при решении прикладных задач	Методами оценки сложности задач, методами построения математических моделей прикладных задач.

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины составляет 4 зач.ед. (144 часов), их распределение

по видам работ представлено в таблице

Вид учебной работы			Семе	стры	
	часов	(часы)			
		7	8		
Контактная работа, в том числе:					
Аудиторные занятия (всего):					
Занятия лекционного типа	16	-	16	_	_
Лабораторные занятия	32	-	32	_	_
Занятия семинарского типа (семинары, практические					
занятия)	_	_	_	_	
	_	_	_	_	1
Иная контактная работа:					
Контроль самостоятельной работы (КСР)	6	-	6	_	1
Промежуточная аттестация (ИКР)	0,3	-	0,3	_	_
Самостоятельная работа, в том числе:	54		54		
Курсовая работа	_	_	_	_	ı
Проработка учебного (теоретического) материала	28	_	28		
Выполнение индивидуальных заданий (подготовка	26	_	26	_	_

сообщений, презентаций)						
Реферат	ı	_	_	ı		
Подготовка к текущему ког	нтролю	-	-	-	-	_
Контроль:						
Подготовка к экзамену	Подготовка к экзамену			35,7	-	_
Общая трудоёмкость	час.	144	-	144	-	_
	в том числе контактная работа	54,3	-	54,3	_	_

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 8-м семестре *(очная форма)*

$N_{\underline{0}}$	Наименование разделов			Колич	чество ч	асов
раздела		Всего	A	удитор	ная	Самостоятельная
				работа	ì	работа
			Л	ЛР	КСР	
1	2	3	4	5	6	7
1	Сложность алгоритмов и	10	2	2		6
	сложность задач					
2	NP-полные задачи	30	4	6	2	18
3	Методы решения NP-	64	10	24	4	30
	полных задач					
	ИКР	0,3				
	Контроль	35,7				
	Итого:	144	16	32	6	90

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

№ раз-	Наименование	Содержание раздела	Форма
дела	раздела		текущего
			контроля
1	2	3	4
1	Сложность	Сложность алгоритмов и сложность задач,	ЛР
	алгоритмов и	основные понятия. Задачи полиномиальной	
	сложность задач	сложности, задачи экспоненциальной сложности.	
		Класс задач NP . Гипотеза $P \neq NP$	
2	NP-полные задачи	Понятие полиномиальной сводимости. Класс задач <i>NP</i> - полные задачи, основные понятия. Задача Выполнимость. Задача к-выполнимость. Теорема Кука. Основные <i>NP</i> - полные задачи, доказательство <i>NP</i> – полноты.	ЛР
3	NP-полных задач	Основные подходы в решении NP-полных задач. Приближенные алгоритмы решения NP-полных задач (эвристические алгоритмы, жадные алгоритмы); алгоритмы с оценками точности. Вероятностные алгоритмы: алгоритмы Монте-Карло, алгоритмы Лас Вегаса, Шервудские алгоритмы. Вероятностные алгоритмы для решения NP-полных задач.	ЛР, РГЗ

2.3.2 Занятия семинарского типа.

Занятия семинарского типа – не предусмотрены.

2.3.3 Лабораторные занятия

Лабораторные работы заключаются в написании процедур (программ), реализующих приближенные методы решения NP-полных задач.

№ работы	№ раздела дисциплины	Наименование лабораторных работ	Форма текущего контроля
1	Сложность алгоритмов и сложность задач	Определить принадлежность задач Коммивояжера и поиска Гамильтонова пути к классу NP задач. Описать двухэтапный недетерминированный процесс решения задачи.	
2	NP-полные задачи	Определить принадлежность задачи коммивояжера к классу NP –полных задач. Описать преобразование задачи Коммивояжера к задаче Выполнимость.	РГ3
3	NP-полные задачи	Определить принадлежность задачи о Клике к классу NP –полных задач.	РГЗ
4	NP-полные задачи	Определить принадлежность задачи поиска Гамильтонова пути к классу NP –полных задач.	РГ3
5	Методы решения NP-полных задач	Экспоненциальный алгоритм решения задачи Коммивояжера, оценка границ размерности задачи для практического решения	РГ3
6	Методы решения NP-полных задач	Экспоненциальный алгоритм решения задачи о Клике, оценка границ размерности задачи для практического решения	РГЗ
7	Методы решения NP-полных задач	Жадный алгоритм решения задачи Коммивояжера.	РГЗ
8	Методы решения NP-полных задач	Приближенные методы решения задачи поиска Гамильтонова пути	РГЗ
9	Методы решения NP-полных задач	Приближенные методы решения задачи поиска Гамильтонова пути	РГЗ
10	Методы решения NP-полных задач	Приближенные методы решения задачи о Клике	ЬL3
11	Методы решения NP-полных задач	Приближенные методы решения задачи о Клике	РГЗ
12	Методы решения NP-полных задач	Жадный алгоритм решения задачи о Рюкзаке	ЬL3
13	Методы решения NP-полных задач	Метрическая задача Коммивояжера, методы решения.	РГЗ
14	Методы решения NP-полных задач	Эвристический алгоритм решения задачи о Расписании	РГЗ
15	Методы решения NP-полных задач	Вероятностные методы решения	
16	Методы решения NP-полных задач	Вероятностные методы решения. NP-полных задач.	

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы – не предусмотрены.

2.3.5 Расчетно-графические задания

По дисциплине студентом выполняется одно индивидуальное расчетно-графическое задание — исследование на принадлежность к классу NP-полных задач, разработка приближенного алгоритма решения и оформление письменного отчет. Темы заданий для каждого студента различны. Задача РГЗ состоит в проверке умений студента и проверки эффективности его самостоятельной работы. Общая тематика соответствует тематике лабораторных работ.

Пример расчетно-графического задания:

Требуется определить принадлежность задачи к классу NP-задач и NP –полных задач. Каждая из NP-полных задач может быть сведена к любой другой за полиномиальное время. Опишите соответствующее преобразование какой-либо NP-полной задачи к заланной:

1.Задача о клике.

Дан граф G с m вершинами и целое положительное число n. Граф называется кликой, если каждая вершина в нем связана ребром с каждой. Количество вершин в клике назовем ее мошностью.

- Задача принятия решения: Найдется ли в данном графе G клика мощности не менее, чем n?
- Задача оптимизации: найти максимальный размер клики в графе.

2.Вершинное покрытие.

Дан граф G с m вершинами и целое положительное число n. Вершинным покрытием называется подмножество вершин графа , такое, что любое ребро графа G инцидентно хотя бы одной вершине множества Z.

- Задача принятия решения: Существует ли вершинное покрытие не более, чем из п вершин.
- Задача оптимизации: найти минимальное вершинное покрытие.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Проработка учебного материала, выполнение индивидуальных заданий.	Миков А.И., Лапина О.Н. Вычислимость и сложность алгоритмов. М-во образования и науки Рос. Федерации, Кубанский гос. ун-т, Каф. вычислительных технологий Краснодар: 2013 78 с.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

Используемые интерактивные образовательные технологии:

- Компьютерные презентации и обсуждение.
- Разбор конкретных ситуаций (задач), тренинги по решению задач, компьютерные симуляции (программирование алгоритмов).

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

4.1 Фонд оценочных средств для проведения текущего контроля.

Фонд оценочных средств дисциплины состоит из средств текущего контроля выполнения лабораторных работ, средств итоговой аттестации (экзамена в 8 семестре).

Оценка успеваемости осуществляется по результатам:

- выполнения лабораторных работ;
- выполнения индивидуального расчетно-графического задания.
- ответа на экзамене (для выявления знания и понимания теоретического материала дисциплины).

4.2 Фонд оценочных средств для проведения промежуточной аттестации. Перечень вопросов, которые выносятся на экзамен.

- 1. Анализ сложности алгоритмов. Функции сложности. Сложность данных
- 2. Формальное понятие алгоритма. Детерминированные машины Тьюринга.
- 3. Разрешимые и неразрешимые задачи. Классы сложности задач.
- 4. Понятие полиномиальной сводимости. Класс задач NP.
- 5. Гипотеза *P NP*.
- 6. NP- полные задачи, основные понятия.
- 7. Примеры NP- полных задач.
- 8. Задача ВЫПОЛНИМОСТЬ. Задача к-ВЫПОЛНИМОСТЬ.
- 9. Задача ВЫПОЛНИМОСТЬ. Теорема Кука.
- 10. Методы решения NP-полных задач.
- 11. Приближенные алгоритмы для NP-полных задач. Примеры.
- 12. Приближенные алгоритмы с оценками точности.
- 13. Вероятностные алгоритмы. Вероятностные машины Тьюринга.
- 14. Вероятностные алгоритмы для NP задач.

4.2.1 Критерии оценивания к зачету

Оценка "зачтено" - практические задания выполнены в срок в объеме не менее 80%. студент демонстрирует правильные, уверенные действия по применению полученных знаний на практике, грамотное и логически стройное изложение материала при аргументации ответов на вопросы при защите лабораторных.

Оценка «не зачтено» - практические задания не выполнены либо предоставлены не в срок в объеме менее 60%, студент демонстрирует наличие грубых ошибок в ответе, непонимание сущности излагаемого вопроса, неумение применять знания на практике, неуверенность и неточность ответов на дополнительные и наводящие вопросы.

4.2.2 Критерии оценивания к экзамену

Оценка «отлично»: грамотное и логически стройное изложение материала при ответе, точные формулировки определений, теорем и правильные доказательства; правильные, уверенные действия по применению полученных знаний на практике, усвоение основной и знакомство с дополнительной литературой.

Оценка «хорошо»: четкое изложение материала, допускаются отдельные логические и стилистические погрешности либо при ответе на один вопрос даны точные формулировки определений, теорем и правильные доказательства; при ответе на второй вопрос имеются неточности формулировки определений, теорем или пробелы в правильных доказательствах; правильные действия по применению знаний на практике.

Оценка «удовлетворительно»: при ответе на оба вопроса имеются неточности формулировки определений, теорем или пробелы в правильных доказательствах; изложение ответов с отдельными ошибками, уверенно исправленными после дополнительных вопросов; правильные в целом действия по применению знаний на практике.

Оценка «неудовлетворительно»: отсутствует ответ хотя бы на один из вопросов или имеются существенные неточности в формулировках определений, теорем, приведены неправильные доказательства; неумение применять знания на практике.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

- 1. Королев Л.Н., Миков А.И. Информатика. Введение в компьютерные науки. М.: Абрис, 2012. (112 экземпляров в библиотеке КубГУ)
- 2. Миков А.И., Лапина О.Н. Вычислимость и сложность алгоритмов. М-во образования и науки Рос. Федерации, Кубанский гос. ун-т, Каф. вычислительных технологий. Краснодар: 2013. 78 с. (65 экземпляров в библиотеке КубГУ)

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература

- 1. Судоплатов, С. В. Математическая логика и теория алгоритмов: учебник и практикум для академического бакалавриата / С. В. Судоплатов, Е. В. Овчинникова. 5-е изд., стер. М.: Издательство Юрайт, 2018. 255 с. . Режим доступа: https://biblio-online.ru/book/4A10DE4E-50A1-4D31-943A-6F5BD68B635B
- 2. Глухов, М.М. Математическая логика. Дискретные функции. Теория алгоритмов [Электронный ресурс] : учебное пособие / М.М. Глухов, А.Б. Шишков. Электрон. дан. Санкт-Петербург: Лань, 2012. 416 с. Режим доступа: https://e.lanbook.com/book/4041.
- 3. Н. К. Верещагин, А. Шень. Языки и исчисления: Лекции по математической логике и теории алгоритмов. М.: МЦНМО, 2002 г., 285с. (48 экземпляров в библиотеке КубГУ)
- 4. Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. М., 1979. (45 экземпляров в библиотеке КубГУ)

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля).

1. Российское образование, федеральный портал [Официальный сайт] — $\underline{\text{URL:}}$ $\underline{\text{http://www.edu.ru}}$

7. Методические указания для обучающихся по освоению дисциплины (модуля).

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал, лабораторных работ, выполнении расчетнографической работы и экзамена.

Важнейшим этапом курса является самостоятельная работа по дисциплине с использованием указанных литературных источников и методических указаний автора курса.

Виды и формы СР, сроки выполнения, формы контроля приведены выше в данном документе.

Для лучшего освоения дисциплины при защите ЛР студент должен ответить на несколько вопросов из лекционной части курса.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

8.1 Перечень информационных технологий.

- Проверка домашних заданий и консультирование посредством электронной почты.
 - Использование электронных презентаций при проведении практических занятий.

8.2 Перечень необходимого программного обеспечения.

- Программы для демонстрации и создания презентаций («Microsoft Power Point»).
- математические пакеты (Maple, MatLab).
- среда программирования на языке высокого уровня (TPascal, Delphi, C, C++).

8.3 Перечень информационных справочных систем:

1. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)/

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

_	T	·
No॒	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные занятия	Лекционная аудитория, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук) и соответствующим программным обеспечением (ПО) PowerPoint. ayд. 129, 131, A305.
2.	Лабораторные занятия	Лаборатория, укомплектованная специализированными техническими средствами обучения — компьютерный класс, с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета (лаб. 102-106.).
3.	Групповые (индивидуальные) консультации	Аудитория, (кабинет) – компьютерный класс
4.	Текущий контроль, промежуточная аттестация	Аудитория, приспособленная для письменного ответа при промежуточной аттестации.
5.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета.