Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет физико-технический

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования – первый

проректорный унив

Иванов А.Г.

2015г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.ДВ.05.02 Нелинейная оптика

(код и наименование дисциплины в соответствии с учебным планом)

Направление подготовки	
03.03.02	Физика
(код и наименование направлени	ия подготовки/специальности)
Направленность Фунд	аментальная физика
(наименование напра	вленности (профиля) специализации)
	ическая
(академическая	/прикладная)
Форма обучения	очная
(очнах	я, очно-заочная, заочная)
Квалификация (степень) выпускника	бакалавр
	(бакалаеп магистп специалист)

Рабочая программа дисциплины составлена в соответствии с федеральным государственным стандартом высшего образования (ФГОС ВО) по направлению подготовки 03.03.02 Физика (Направленность Фундаментальная физика)

Программу составил:

М. С. Коваленко, доцент

Рабочая программа дисциплины утверждена на заседании кафедры физики и информационных систем

протокол № 13 от 21 мая 2015 г.

Заведующий кафедрой (разработчика) Богатов Н.М.

Рабочая программа обсуждена на заседании кафедры физики и информационных систем протокол № 13 от 21 мая 2015 г.

Заведующий кафедрой (разработчика) Богатов Н.М.

boresto

Утверждена на заседании учебно-методической комиссии физикотехнического факультета протокол № 10 от 21 мая 2015 г.

Председатель УМК факультета Богатов Н.М.

Рецензенты:

Григорьян Л. Р., генеральный директор ООО НПФ «Мезон»

Тумаев Е. Н., д. ф.-м. н., профессор, ФГБОУ ВО «КубГУ»

1 Цели и задачи изучения дисциплины.

1.1 Цель освоения дисциплины.

Учебная дисциплина «Нелинейная оптика» ставит своей целью изучение нелинейно-оптических явлений, происходящих под воздействием мощного лазерного излучения.

1.2 Задачи дисциплины.

Основные задачи дисциплины:

- изучить условия, необходимые для проявления нелинейно оптических явлений (генерация второй гармоники, параметрическая генерация);
 - усвоить методы теоретического описания нелинейно-оптических явлений;
- ознакомление с основными методами исследования и расчета физических характеристик квантовых приборов.

1.3 Место дисциплины в структуре образовательной программы.

«Нелинейная оптика» является дисциплиной по выбору направления 03.03.02 — «физика». Изучение основных концепций нелинейной оптики базируется на знаниях студентов, полученных ранее при изучении дисциплин, входящих в цикл общей физики.

Дисциплина логически и содержательно-методически связана с дисциплинами «Физика», «Математика».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся профессиональных компетенций

No	Индекс компет	Содержание компетенции	В результате изу обуча	чения учебноі ющиеся долж	
П.П.	енции	(или её части)	знать	уметь	владеть

No	Индекс компет	Содержание компетенции	В результате изу обуча	чения учебноі ющиеся долж	
П.П.	енции	(или её части)	знать	уметь	владеть
1	ОПК-3	способностью использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач.	знать основные законы, идеи и принципы построения нелинейно-оптических приборов, их становление и развитие в исторической последовательно сти, их математическое описание, их экспериментальн ое исследование и практическое использование.	уметь осмыслива ть и интерпрети ровать основные положения нелинейно й оптики.	Навыками применения полученных знаний для решения прикладных задач нелинейной оптики.
2	ПК-2	способностью проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложного физического оборудования) и информационных технологий с учетом отечественного и зарубежного опыта.	Современные представления о нелинейной оптике и информационны е технологии, необходимые для решения задач научных исследований.	применять знания по нелинейно й оптике и информаци онные технологи и для решения задач научных исследован ий.	современным и методами сбора и представлени я данных.

2. Структура и содержание дисциплины.
2.1 Распределение трудоёмкости дисциплины по видам работ.
Общая трудоёмкость дисциплины составляет 2 зач.ед. (72 часов), их распределение по видам работ представлено в таблице (для студентов ОФО).

Вид учебной работы	Всего	Семестры			
	часов	(часы)			
		6			
Контактная работа, в том числе:	66,2	66,2			
Аудиторные занятия (всего):	64	64			
Занятия лекционного типа	32	32	-	-	-
Лабораторные занятия	32	32	-	-	-
Занятия семинарского типа (семинары,					
практические занятия)	-	_	_	_	_

		-	-	-	-	-
Иная контактная работа	:					
Контроль самостоятельной	й работы (КСР)	2	2			
Промежуточная аттестаци	я (ИКР)	0,2	0,2			
Самостоятельная работа	, в том числе:	6	6			
Проработка учебного (тео	Проработка учебного (теоретического) материала		3	-	-	-
Подготовка к текущему ко	Подготовка к текущему контролю			-	-	-
Контроль:						
Подготовка к экзамену		-	-			
Общая трудоемкость	час.	72	72	-	-	-
	в том числе контактная работа	66,2	66,2			
	зач. ед	2	2			

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в <u>6</u> семестре (очная форма)

	· · ·		Ko		тво часов	
№	Наименование разделов	Всего	Аудиторная работа			Внеаудит орная работа
			Л	ПЗ	ЛР	CPC
1	2	3	4	5	6	7
1.	Основы нелинейной оптики.	13	8		4	1
2.	Открытые резонаторы.	9	4		4	1
3.	Основные типы лазеров. 17 6 10				10	1
4.	Импульсные режимы работы лазеров.	7	2		4	1
5.	Элементы нелинейной оптики.	11	6		4	1
6.	ВКР-лазеры.	3	2			1
7.	Трименение лазеров.		4		6	
	Итого по дисциплине:	70	32	0	32	6
					_	

Примечание: Л – лекции, ПЗ – практические занятия / семинары, ЛР – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

	Наименование		Форма
No	раздела	Содержание раздела	текущего
	раздела		контроля
1	2	3	4
1.	Основы нелинейной	История развития нелинейной оптики.	К
	оптики	Спонтанные и индуцированные переходы.	
		Коэффициенты Эйнштейна. Вероятности	
		переходов. Форма спектральной линии, виды	
		уширения спектральных линий. Квантово-	
		механическое описание взаимодействия	
		излучения с веществом. Волновые функции	
		стационарных состояний. Матричный элемент	

2.	Открытые резонаторы.	оператора перехода. Усиление и генерация электромагнитного излучения. Условия возбуждения. Методы получения инверсной населенности. Лазерные среды. Продольные и поперечные моды.	К
		Дифракционные потери. Устойчивость мод. Селекция мод. Синхронизация мод.	
3.	Основные типы лазеров.	Оптические квантовые генераторы. Устройство, принцип действия. Разновидности лазеров, режимы генерации. Газовые, твердотельные, жидкостные, полупроводниковые лазеры.	K
4.	Импульсные режимы работы лазеров.	Модуляция добротности резонатора и использование ее для получения гигантских импульсов лазерного излучения. Получение сверхкоротких импульсов с использованием синхронизации мод.	К
5.	Элементы нелинейной оптики.	Нелинейное взаимодействие электромагнитного излучения с веществом. Генерация гармоник излучения. Параметрические процессы. Параметрические генераторы.	К
6.	ВКР-лазеры.	Вынужденное комбинационное рассеяние (ВКР) света и его использование для перестройки частоты лазерного излучения. ВКР - усилители.	К
7.	Применение лазеров.	Лазерные технологии. Лазерная спектроскопия. Голография.	К

2.3.2 Занятия семинарского типа. Занятия семинарского типа по данному курсу согласно учебному плану не предусмотрены.

Моделирование генерации лазера на гранате с неодимом 2.3.3 Лабораторные занятия.

		_
		Форма
$N_{\underline{0}}$	Наименование лабораторных работ	текущего
		контроля
1	3	4
1.	Исследование оптических свойств лазерных кристаллов	Отчет по
		лабораторной
		работе.
2.	Исследование параметров лазера на парах меди	Отчет по
		лабораторной
		работе.
3.	Исследование зависимости выходной мощности генерации	Отчет по
	непрерывного лазера от уровня накачки и параметров резонатора	лабораторной

		работе.
4.	Моделирование генерации лазера на гранате с неодимом	Отчет по
		лабораторной
5.	Можения оперище для опистем и опери	работе. Отчет по
٥.	Моделирование трехуровнего лазера	
		лабораторной
		работе.
6.	Моделирование лазера с активной модуляцией добротности	Отчет по
		лабораторной
		работе.
7.	Моделирование получения пикосекундных импульсов с помощью	Отчет по
	синхронизации мод	лабораторной
		работе.
8.	Моделирование четырехуровнего лазера	Отчет по
		лабораторной
		работе.
9.	Моделирование лазера с пассивной модуляцией добротности	Отчет по
		лабораторной
		работе.
10.	Моделирование открытого резонатора	Отчет по
		лабораторной
		работе.
11.	Расчет эффективности ламповой накачки лазера на стекле,	Отчет по
	активированном неодимом	лабораторной
		работе.
12.	Расчет углов первого и второго синхронизма для удвоителя частоты	Отчет по
	неодимового лазера	лабораторной
	•	работе.

2.3.4 Примерная тематика курсовых работ (проектов) Курсовые работы - не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы

обучающихся по дисциплине (модулю)

	шощимен по диецинии	
№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Изучение раздела	Контрольные вопросы по разделам учебной программы
	Основы нелинейной	
	оптики.	
2	Изучение раздела	Контрольные вопросы по разделам учебной программы
	Открытые резонаторы.	
3	Изучение раздела	Контрольные вопросы по разделам учебной программы
	Основные типы	
	лазеров	
4	Изучение раздела	Контрольные вопросы по разделам учебной программы
	Импульсные режимы	
	работы лазеров.	

5	Изучение раздела	Контрольные вопросы по разделам учебной программы
	Элементы нелинейной	
	оптики.	
6	Изучение раздела	Контрольные вопросы по разделам учебной программы
	ВКР-лазеры	
7	Изучение раздела	Контрольные вопросы по разделам учебной программы
	Применение лазеров.	

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

При реализации учебной работы по дисциплине с целью формирования и развития профессиональных навыков обучающихся и в соответствии с требованиями ФГОС ВО по направлению подготовки бакалавра реализуется компетентный подход и предусмотрено использование в учебном процессе активных и интерактивных форм проведения занятий: деловые игры, разбор конкретных ситуаций, психологические и научные тренинги, встречи с ведущими учеными физиками, организация публичных лекций, внеаудиторная работа в научной библиотеке, мастер-классы экспертов и специалистов.

Удельный вес занятий, проводимых в интерактивной форме по дисциплине составляет 30%. Занятия лекционного типа для соответствующих групп студентов составляют 50% аудиторных занятий.

Промежуточный контроль усвоения материала осуществляется через выполнение лабораторных работ, тестирование, блиц-опрос, окончательный контроль — экзамен. Требования к уровню освоения содержания курса заключается в строгом выполнении часовой нагрузки по темам путем выполнения лекционных, лабораторных занятий, написании по предложенным темам рефератов, самостоятельных работ и сдаче экзамена.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

4.1 Фонд оценочных средств для проведения текущего контроля.

Перечень контрольных вопросов.

- 1. Введение. Предмет «Нелинейная оптика». История развития квантовой электроники.
- 2. Спонтанные и индуцированные переходы. Коэффициенты Эйнштейна.
- 3. Вероятности переходов. Форма спектральной линии, виды уширения спектральных линий.
- 4. Квантово-механическое описание взаимодействия излучения с веществом.
- 5. Волновые функции стационарных состояний.
- 6. Матрица плотности. Матричный элемент оператора перехода.
- 7. Усиление и генерация электромагнитного излучения.
- 8. Условия возбуждения. Методы получения инверсной населенности.
- 9. Оптические квантовые генераторы. Устройство, принцип действия. Разновидности лазеров, режимы генерации.
- 10. Открытые резонаторы. Продольные и поперечные моды. Дифракционные потери.
- 11. Устойчивость мод. Селекция мод. Синхронизация мод.
- 12. Импульсные режимы работы лазеров.
- 13. Модуляция добротности резонатора и использование ее для получения гигантских импульсов лазерного излучения.
- 14. Получение сверхкоротких импульсов с использованием синхронизации мод.
- 15. Основные типы лазеров. Газовые, твердотельные, жидкостные, полупроводниковые, лазеры на свободных электронах.
- 16. Нелинейное взаимодействие электромагнитного излучения с веществом.
- 17. Генерация гармоник излучения. Параметрические процессы. Параметрические генераторы.
- 18. Вынужденное комбинационное рассеяние (ВКР) света и его использование для перестройки частоты лазерного излучения. ВКР усилители.
- 19. Применение приборов квантовой электроники.

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

Аттестация по защищенным лабораторным работам.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

5.1 Основная литература:

- 1. Тарасов Л.В. Физика лазера. Издательство: "Ленанд" 2014.
- 2. Волостников, В.Г. Методы анализа и синтеза когерентных световых полей [Электронный ресурс] : монография Электрон. дан. Москва : Физматлит, 2015. 256 с. Режим доступа: https://e.lanbook.com/book/91168
- 3. Тарасов Л.В. Четырнадцать лекций о лазерах, Издательство: "ЛИБРОКОМ", 2011.
- 4. Лазеры на самоограниченных переходах атомов металлов: [в 2 т.]. Т. 2 / В. М. Батенин и др. ; под общ. ред. В. М. Батенина. М. : ФИЗМАТЛИТ, 2011.
- 5. История лазера / Бертолотти, Марио ; М. Бертолотти ; пер. с англ. П. Г. Крюкова. Долгопрудный : Интеллект, 2011.
- 6. Лазеры ультракоротких импульсов и их применения : [учебное пособие] / Крюков, Петр Георгиевич ; П. Г. Крюков. Долгопрудный : Интеллект, 2012.
- 7. Лазеры и волоконная оптика в биомедицинских исследованиях / Тучин, Валерий Викторович; В. В. Тучин . Изд. 2-е, испр. и доп. М. : ФИЗМАТЛИТ : Изд-во Саратовского университета, 2010.
- 8. Лазеры. Лазерные системы / Долгих, Григорий Иванович, В. Е. Привалов; Г. И. Долгих, В. Е. Привалов; Рос. акад. наук, Дальневосточное отд-ние, Тихоокеанский океанолог. ин-т им. В. И. Ильичева, С.-Петерб. гос. политехнический ун-т; [отв. ред. Ю. Н. Кульчин]. Владивосток: Дальнаука, 2009.
- 9. Лазерная одиссея / Мейман, Теодор Г.; Т. Г. Мейман; пер. с англ. М. Н. Сапожникова; [автор предисл. К. Мейман]. М.: Печатные Традиции, 2010.
- 10. Актуальные проблемы физики лазерной резки металлов / Оришич, Анатолий Митрофанович, В. М. Фомин ; А. М. Оришич, В. М. Фомин ; отв. ред. А. М. Шалагин ; Ин-т теорет. и прикладной механики им. С. А. Христиановича СО РАН. -Новосибирск:Изд-во СО РАН, 2012.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература:

- 1. Грибковский В.П. Полупроводниковые лазеры. Минск, "Университетское",1988.
- 2. Звелто О. Принципы лазеров. Изд. 3-е, М., "Мир", 1990.
- 3. Яровой П.Н. Введение в физику лазеров. Учебное пособие. Изд. Иркутского ун-та, 1990.
- 4. Ахманов С.А., Никитин С.Ю. Физическая оптика: Учебник- М.: Изд-во Моск. унта, 1998.
- 5. Пахомов И.И., Рожков О.В., Рождествин В.Н. Оптико-электронные квантовые приборы. М. "Радио и связь", 1982.

5.3. Периодические издания:

- 1. Журнал: "Квантовая электроника" ведущий российский научный ежемесячный журнал в области лазеров и их применений, а также по связанным с ними тематикам: лазерная физика и техника, нелинейная оптика, лазерный термоядерный синтез, волоконная и интегральная оптика, воздействие лазерного излучения на вещество, лазерная плазма, оптическая обработка и передача информации, когерентность и хаос, лазерные технологии, нанотехнологии, лазерная медицина и биология(http://www.quantum-electron.ru).
- 2. Журнал: Applied Physics B: Lasers and Optics Печатный рецензируемый журнал. Тематика: лазерная физика; линейная и нелинейная оптика; сверхбыстрые явления; оптические материалы; квантовая оптика; лазерная спектроскопия (http://www.springer.com/physics/journal/340?cm_mmc=sgw-_-ps-_-journal-_-00340)

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины.

- 1. Сайт научной библиотеки сибирского федерального университета http://files.lib.sfu-kras.ru/ebibl/umkd/94/
- 2. Сайт содержащий справочные данные различных кристаллов:http://refractiveindex.info/.
 - 3. http://www.lebedev.ru.
 - 4. http://www.gpi.ru.
 - 5. http://www.polyus.msk.ru.

7. Методические указания для обучающихся по освоению дисциплины.

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал.

Сопровождение самостоятельной работы студентов организовано в следующих формах:

- оформление отчетов по лабораторным работам и подготовка к устной их защите;
- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средством изучения рекомендуемой литературы;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

8.1 Перечень информационных технологий.

Информационные технологии - не предусмотрены.

8.2 Перечень необходимого программного обеспечения.

Программный продукт	Договор/лицензия
OC MS Windows 7	Дог. № 77-АЭФ/223-Ф3/2017 от 03.11.2017
Офисное приложение MS Office 7	Дог. № 77-АЭФ/223-Ф3/2017 от 03.11.2017
Kaspersky Endpoint Security для	Контракт №69-АЭФ/223-ФЗ от 11.09.2017
бизнеса – Стандартный Russian Edition	
Adobe Acrobat Reader DC	Не требуется
Версия 2019.008.20071	

8.3 Перечень информационных справочных систем:

- 1. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
- 2. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)
- 3. Сайт, содержащий справочные данные различных кристаллов используемых для лазеров: http://refractiveindex.info/.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

№	Вид работ	Материально-техническое обеспечение дисциплины и	
		оснащенность	
1.	Лекционные занятия	Учебная аудитория для проведения занятий лекционного и	
		семинарского типа – ауд. 315С.	
2.	Лабораторные	Аудитория номер 312С с оборудованием для	
	занятия	моделирования работы элементов оптики;	
3.	Самостоятельная	Учебная аудитория 208С для самостоятельной работы,	
	работа	оснащенная компьютерной техникой с возможностью	
		подключения к сети «Интернет», программой экранного	
		увеличения и обеспеченный доступом в электронную	
		информационно-образовательную среду университета.	