Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» Физико-технический факультет

УТВЕРЖДАЮ на учебной работе, проректор по учебной работе, качеству образования— и проректор Иванов А.Г. 101» ию я 2016 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.Б.14 Физика

(код и наименование дисциплины в соответствии с учебным планом)

Направление подготовки/специальность_27.03.03 Системный анализ и управление

(код и наименование направления подготовки/специальности)

Направленность (профиль экономическими процесса) / специализация <u>Системный анализ и управление</u> ми
(наименование направленност	
Программа подготовки	академическая
(ak	адемическия /прикладная)
Форма обучения	очная
(очная, очно-заочная, заочная)
Квалификация (степень) в	ыпускника <u>бакалавр</u> (бакалавр, магистр, специалист)

1 Цели и задачи изучения дисциплины

1.1 Цель и задачи дисциплины

Целями освоения дисциплины «Физика» являются: формирование у студентов представления об основных принципах и закономерностях, которые определяют физические явления, изучаемые современной физикой и умение представлять физическую теорию как обобщение наблюдений, практического опыта и эксперимента.

- изучение физических понятий, фундаментальных законов и теорий, их математическое выражение;
- изучение физических явлений, методов их наблюдения и экспериментального исследования;

1.2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Физика» относится к базовой части Блока 1 "Дисциплины (модули)" учебного плана.

Для освоения дисциплины используются знания, умения и виды деятельности, сформированные в процессе изучения предметов «Физика», «Математика», «Информатика и ИКТ» на предыдущем уровне образования. Освоение данной дисциплины является базой для последующего изучения дисциплин: Б1.Б.12 «Концепция современного естествознания», Б1.Б.15 «Теоретическая механика».

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучаю-

щихся общепрофессиональных и профессиональных компетенций (ОПК/ПК)

No	Индекс		В результате изу	•	•
П.П	компе-	Содержание компе-	Ч	нощиеся должн	Ы
	тенции	тенции (или её части)	знать	уметь	владеть (иметь представление)
1.	ОПК-1	готовностью применять методы математики, физики, химии, системного анализа, теории управления, теории знаний, теории и технологии программирования, а также методов гуманитарных, экономических и социальных наук	основные законы механики, термодинамики, электромагнетизма, оптики, теорию гравитации, и механических взаимодействий в различных средах;	пользовать- ся законами физики для анализа фи- зической су- ти изучае- мых явле- ний;	методами решения задач классической механики, оптики, молекулярной физики и электромагнетизма
2.	ОПК-3	способностью пред- ставлять современную научную картину ми- ра на основе знаний основных положений, законов и методов естественных наук и математики	принципы работы механических и электрических систем, пределы применения физических закономерностей	определять параметры и ограниче- ния, приме- няемые в современ- ных техно- сферных систем	понятийным и математическим аппаратом для описания механических, электромагнитных, термодинамических взаимодействий, а так же основными законами оптики
3.	ПК-1	способностью прини-	основные законы	системати-	принципами оп-

No	Индекс		В результате изу	чения учебной,	дисциплины обу-		
П.П	компе-	Содержание компетенции (или её части)	чающиеся должны				
	тенции		знать	уметь	владеть (иметь представление)		
		мать научно- обоснованные решения на основе математики, физики, химии, информатики, экологии, методов системного анализа и теории управления, теории знаний, осуществлять постановку и выполнять эксперименты по проверке их корректности и эффективности	механики, термодинамики, электромагнетизма, оптики, теорию гравитации, и механических взаимодействий в различных средах;	зировать физические параметры сложных техногенных и энергетических систем	ределения начальных и граничных условий при создании математических моделей реальных техногенных систем		

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ Общая трудоёмкость дисциплины составляет 4 зач. ед. (144 часа), их распределение по видам работ представлено в таблице (для студентов ОФО).

Вид учеб	Вид учебной работы			еместры
			2	часы)
Контактная работа, в т	ом инсле•	72,3	72,3	-
	Аудиторные занятия (всего):			
Аудиториые запятия (в		68	68	-
Занятия лекционного тип	a	34	34	-
Лабораторные занятия		34	34	-
Занятия семинарского ти ские занятия)	па (семинары, практиче-	-	-	-
Иная контактная работ	a:	4,3	4,3	
Контроль самостоятельно	ой работы (КСР)	4	4	
Промежуточная аттестац	ия (ИКР)	0,3	0,3	
Самостоятельная работ	а, в том числе:	45	45	
Проработка учебного (те	оретического) материала	45	45	-
Выполнение индивидуал сообщений, презентаций	ьных заданий (подготовка)	-	-	-
Реферат		-	-	-
Подготовка к текущему в	онтролю	-	-	-
Контроль:	Контроль:			
Подготовка к экзамену	26,7	26,7		
Общая трудоемкость	час.	144	144	-
	в том числе контактная работа	72,3	72,3	
	зач. ед	4	4	

2.2 Структура дисциплины: Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 1 семестре

	Разделы дисциплины, изучаемые	Количество часов				В
№ разде- ла	Наименование разделов	Аудиторная Всего Работа			Самостоятельная работа	
			Л	ПЗ	ЛР	
1.	Динамика материальной точки и системы точек	9	3	-	2	5
2.	Неинерциальные системы координат. Работа и энергия. Движение твердого тела	11	3	-	4	5
3.	Колебания и волны. Кинематика колебаний. Динамика колебаний	12	4	-	4	5
4.	Молекулярно-кинетическая теория Основное уравнение МКТ Газовые законы	12	4	-	4	5
5.	Первое начало термодинамики Второе начало термодинамики Реальные газы	12	4	-	4	5
6.	Электродинамика Электростатическое поле Проводники в электрическом поле Диэлектрики в электрическом поле Постоянный электрический ток	12	4	-	4	5
7.	Магнитное поле Электромагнитная индукция Электромагнитное поле	12	4	-	4	5
8.	Оптика Элементы геометрической оптики Интерференция света Дифракция света Поляризация света	12	4	-	4	5
9.	Взаимодействие света с веществом Строение атома и атомного ядра Строение и свойства ядер	12	4	-	4	5
	Всего:	113	34	-	34	45

2.3 Содержание разделов дисциплины

2.3.1 Занятия лекционного типа

No	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
1.	Механика	Динамика материальной точки и системы точек, законы Ньютона. Силы в механике: сила трения, сила упругости, гравитационная сила.	Т, ЛР, Р
2.		Неинерциальные системы отсчета. Сила Кориолиса. Механическая работа, мощность,	Т, ЛР, Р

		энергия. Законы сохранения.	
3.	Механика	Колебания и волны. Кинематика колебания. Динамика колебаний. Математический, пружинный, физический маятники. Основное уравнение динамики. Механические волны.	Т, ЛР, Р
4.	Молекулярная физика	Молекулярно-кинетическая теория. Основное уравнение МКТ. Газовые законы. Реальные газы. Фазовые переходы.	Т, ЛР, Р
5.	Молекулярная физика	Первое начало термодинамики. Второе начало термодинамики. Тепловые машины. Цикл Карно. КПД.	Т, ЛР, Р
6.	Электричество и магнетизм	Электродинамика. Электростатическое поле. Проводники в электрическом поле. Диэлектрики в электрическом поле. Постоянный электрический ток.	Т, ЛР, Р
7.	Электричество и магнетизм	Магнитное поле. Электромагнитная индукция. Электромагнитное поле. Опыты Фарадея.	Т, ЛР, Р
8.	Оптика	Оптика. Элементы геометрической оптики. Интерференция света. Дифракция света. Поляризация света.	Т, ЛР, Р
9.	Оптика	Взаимодействие света с веществом. Строение атома и атомного ядра. Строение и свойства ядер.	Т, ЛР, Р

2.3.2 Занятия семинарского типа Занятия семинарского типа учебным планом не предусмотрены. 2.3.3 Лабораторные занятия

№	$\mathcal{N}_{\underline{0}}$		Форма
п/п	раздела	Наименование лабораторных работ	текущего
11/11	дисциплины		контроля
1	Механика	Вычисление объемов и определение плотности тел	ЛР
		Изучение законов вращательного движения	
		Определение ускорения свободного падения с помощью	
		оборотного маятника	
		Определение момента инерции тела методом крутильных	
		колебаний	
		Определения ускорения свободного падения при помощи	
		математического маятника	
		Проверка теоремы Штейнера	
		Определение динамического модуля сдвига	
2	Молекулярная	Определение коэффициента внутреннего трения жидкости по	ЛР
	физика	методу Стокса	
		Определение универсальной газовой постоянной и	
		механического эквивалента тепла методом изобарного	
		расширения	
		Определение коэффициента поверхностного натяжения	
		жидкости по методу максимального давления в пузырьке	
		Определение влажности воздуха	
		Определение отношения удельных теплоемкостей газов	
		методом Клемана и Дезорма	
		Определение радиуса капилляров	

3	Электричество	Изучение резонанса напряжений в цепи переменного тока.	ЛР
	и магнетизм	Измерение электрических сопротивлений	
		Измерения Cosф в цепи переменного тока	
		Измерение электродвижущей силы источника методом	
		компенсации.	
		Определение относительной магнитной проницаемости	
		магнетиков с помощью моста Максвелла	
		Изучение работы электронной лампы	
		Исследование полупроводниковых выпрямителей	
4	Оптика	Определение длины световой волны при помощи	ЛР
		дифракционной решетки.	
		Определение главного фокусного расстояния оптических	
		систем	
		Проверка законов обратных квадратов с помощью	
		фотоэлемента	
		Определение показателя преломления стекла с помощью	
		микроскопа	
		Изучение внешнего фотоэффекта. Снятие вольтамперной	
		характеристики газонаполненного фотоэлемента.	
		Измерение поглощения света. Снятие спектральных	
		характеристик цветных стекол с помощью фотометра	
		Изучение спектров с помощью спектроскопа	
		Изучение оптической трубы	
		Измерение показателей преломления жидких и твердых тел с	
	22411	помощью рефрактометра Аббе	

2.3.4 Примерная тематика курсовых работ Курсовые работы не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Наименование раздела	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	Механика	1. Савельев, И.В. Курс физики (в 3 тт.). Том 1. Механи-
2	Молекулярная физика	ка. Молекулярная физика [Электронный ресурс] : учеб-
3	Электричество и магнетизм	ное пособие / И.В. Савельев. — Электрон. дан. — Санкт-
4	Оптика	Петербург: Лань, 2018. — 356 с. — Режим доступа: https://e.lanbook.com/book/106894 2. Кузнецов С.И. Курс лекций по физике. Электростатика. Постоянный ток. Электромагнетизм. Колебания и волны: учебное пособие / С.И. Кузнецов, Л.И. Семкина, К.И. Рогозин Томск: Издательство Томского политехнического университета, 2016 290 с URL: http://biblioclub.ru/index.php?page=book&id=442116 3. Савельев, И.В. Курс физики (в 3 тт.). Том 3. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц [Электронный ресурс]: учебное пособие / И.В. Савельев. — Электрон. дан. — Санкт-Петербург: Лань, 2018. — 308 с. — Ре-
		жим доступа: https://e.lanbook.com/book/98247

3. Образовательные технологии

При реализации учебной работы по дисциплине «физика» с целью формирования и развития профессиональных навыков обучающихся и в соответствии с требованиями ФГОС ВО по направлению подготовки бакалавра реализуется компетентный подход и предусмотрено использование в учебном процессе активных и интерактивных форм проведения занятий: деловые игры, разбор конкретных ситуаций, психологические и научные тренинги, встречи с ведущими учеными физиками, организация публичных лекций, внеаудиторная работа в научной библиотеке, мастер-классы экспертов и специалистов.

Удельный вес занятий, проводимых в интерактивной форме по дисциплине «Физика» составляет 30%. Занятия лекционного типа для соответствующих групп студентов составляют 40% аудиторных занятий.

Промежуточный контроль усвоения материала осуществляется через выполнение практических и самостоятельных работ, тестирование, блицопрос, окончательный контроль — экзамен/зачет. Требования к уровню освоения содержания курса заключается в строгом выполнении часовой нагрузки по темам путем выполнения лекционных, лабораторных занятий, написании по предложенным темам рефератов, самостоятельных работ.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

4.1 Фонд оценочных средств для проведения текущей аттестации

- 1. Что такое спектры излучения и поглощения. Какие они бывают?
- 2. Перечислите спектры атома водорода и указать соответствующие диапазоны воли.
- 3. Что такое правило частот?
- 4. Напишите и объясните формулу Планка.
- 5. Объясните постулаты Бора и теорию атома водорода по Бору. Что такое первый боровский радиус? Чему он равен?
- 6. Напишите формулу полной энергии атома водорода в стационарном состоянии. Что такое главное квантовое число?
- 7. Что такое постоянная Ридберга? Напишите формулу.
- 8. Каково устройство призменного спектроскопа? Какое физическое явление положено в основу его работы?
- 9. Какое физическое явление происходит в спектральных трубках?
- 10. Где применяются спектральный анализ?

4.2 Фонд оценочных средств для проведения промежуточной аттестации

- 1. Основные закон механики для вращающегося тела. Теорема Штейнера.
- 2. Законы Ньютона в дифференциальной форме.
- 3. Законы сохранения в механике.
- 4. Момент силы. Правило моментов.
- 5. Движение тел в поле тяготения.
- 6. Характеристики колебательного движения.
- 7. Движение груза на пружине. Решение дифференциального уравнения.
- 8. Влажность воздуха. Точка росы.
- 9. Экспериментальные газовые законы.
- 10. Основное уравнение МКТ и его формулы.
- 11. Распределение Больцмана и Максвелла.
- 12. Первое начало термодинамики и его приложение к изопроцессам.
- 13. II и III законы термодинамики.
- 14. Реальные газы. Критические состояния.
- 15. Законы переноса.
- 16. Уравнение Ван-дер-Ваальса.
- 17. Электрические заряды. Два рода электрических зарядов. Эксперименты,

- подтверждающие существование свободных зарядов.
- 18. Понятие об электрическом поле. Напряжённость электрического поля точечного заряда.
- 19. Теорема Гаусса. Поток вектора напряжённости. Примеры расчёта напряжённости электрических полей.
- 20. Потенциал как энергетическая характеристика электрического поля. Работа электростатических сил в электрическом поле.
- 21. Электроёмкость тел. Конденсаторы.
- 22. Постоянный электрический ток. Характеристики квазистационарного электрического тока.
- 23. Закон Ома для участка электрической цепи в дифференциальной форме.
- 24. Э.Д.С. источника тока. Сторонние силы.
- 25. Закон Джоуля-Ленца.
- 26. Закон Ома для полной цепи с несколькими источниками тока.
- 27. Магнитное поле и его характеристики.
- 28. Сила Лоренца. Следствия.
- 29. Явление электромагнитной индукции. Опыт Фарадея.
- 30. Поток вектора магнитной индукции. Закон электромагнитной индукции. Правило Ленца
- 31. Явление самоиндукции. Коэффициент самоиндукции.
- 32. Основные законы геометрической оптики.
- 33. Волновая и корпускулярная природа света. Эксперименты, подтверждающие квантовую и волновую природу света.
- 34. Взаимодействие света с веществом. Нормальная и аномальная дисперсия.
- 35. Интерференция света. Когерентные источники.
- 36. Опыт Юнга и Френеля.
- 37. Явление двойного лучепреломления.
- 38. Кольца Ньютона как пример интерференции в отражённом и проходящем свете.
- 39. Интерференция в тонких плёнках.
- 40. Дифракция света. Условие возникновения дифракционных картин.
- 41. Дифракция Френеля.
- 42. Дифракция Фраунгофера.
- 43. Явление поляризации света. Естественный и поляризованный свет. Закон Малюса.
- 44. Внешний и внутренний фотоэффект. Уравнение Эйнштейна.
- 45. Эксперименты, доказывающие существование электрического заряда внугри атома.
- 46. Модели атома по Томсону и Резерфорду.
- 47. Квантовые постулаты Бора.
- 48. Гипотеза де Бройля. Волновые свойства частиц вещества.
- 49. Энергия связи частиц в ядре.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

- 1. Савельев, И.В. Курс физики (в 3 тт.). Том 1. Механика. Молекулярная физика [Электронный ресурс]: учебное пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург: Лань, 2018. 356 с. Режим доступа: https://e.lanbook.com/book/106894
- 2. Кузнецов С.И. Курс лекций по физике. Электростатика. Постоянный ток. Электромагнетизм. Колебания и волны: учебное пособие / С.И. Кузнецов, Л.И. Семкина, К.И. Рогозин. Томск: Издательство Томского политехнического университета, 2016. 290 с. URL: http://biblioclub.ru/index.php?page=book&id=442116
- 3. Савельев, И.В. Курс физики (в 3 тт.). Том 3. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц [Электронный ре-

сурс]: учебное пособие / И.В. Савельев. — Электрон. дан. — Санкт-Петербург: Лань, 2018. — 308 с. — Режим доступа: https://e.lanbook.com/book/98247

5.2 Дополнительная литература:

- 1. Грабовский Р. И. Курс физики: учебное пособие. 11-е изд., стер. СПб.: Издательство «Лань», 2013.
- 2. Савельев И.В. Курс общей физики: учеб. пособие для вузов: в 5 кн. /- М.: Астрель: АСТ, 2014.
- 3.. Трофимова Т.И. Курс физики: учеб. пособие [для вузов] / Т.И. Трофимова. М.: Академия, 2014.

5.3. Периодические издания:

Периодические издания не предусмотрены.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. Электронные ресурсы ФГБОУ ВПО «Кубанский государственный университет»: http://www.kubsu.ru/node/1145
- 2. Информационная система «Единое окно доступа к образовательным ресурсам»: http://window.edu.ru/window
- 3. Федеральный образовательный портал:

http://www.edu.ru/db/portal/sites/res_page.htm

4. Большая научная библиотека:

http://www.sci-lib.com/

7. Методические указания для обучающихся по освоению дисциплины (модуля)

На самостоятельную работу студентов, согласно требованиям Φ ГОС ВО по направлению 27.03.03 Системный анализ и управление (профиль: «Системный анализ и управление экономическими процессами»), отводится около 40 % времени от общей трудоемкости дисциплины. Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов;
- проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе различных способов взаимодействия.

Контроль может осуществляться также посредством тестирования студентов по окончании изучения тем учебной дисциплины.

По итогам выполнения каждой лабораторной работы студент составляет подробный отчет, опираясь на который должен в беседе с преподавателем продемонстрировать знание теоретического и экспериментального материала, относящегося к работе. Проверка знаний студента основана на контрольных и дополнительных вопросах, касающихся соответствующих разделов основной дисциплины «Физика». После завершения лабораторной работы студент предоставляет откорректированный в ходе защиты отчет о ней.

Дополнительная форма контроля эффективности усвоения материала и приобретения практических навыков заключается в открытой интерактивной защите работы на устном выступлении перед аудиторией сокурсников. В этом случае защита проходит в режиме краткого доклада.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)

8.1 Перечень необходимого программного обеспечения

- 1. Операционная система MS Windows.
- 2. Интегрированное офисное приложение MS Office.
- 3. Интегрированное офисное приложение MS Excel.
- 4. Специализированное ПО для проведения виртуального лабораторного эксперимента.

8.2 Перечень необходимых информационных справочных систем Информационные справочные системы не предусмотрены.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Для проведения занятий по дисциплине имеется необходимая материальнотехническая база, соответствующая действующим санитарным и противопожарным правилам и нормам:

- специализированная лекционная аудитория физико-технического факультета (201), оснащенная мультимедийным проектором, экраном, интерактивной доской
- специализированная лаборатория по общей физике (219c), оснащенная лабораторным оборудованием

9.1. Материально-техническая база, необходимая для осуществления инклюзивного образовательного процесса

Данный раздел составлен на основе и с учетом следующих нормативно-правовых актов:

- 1. Федерального закона от 29.12.2012 № 273-ФЗ "Об образовании в Российской Федерации";
- 2. Конвенции о правах инвалидов. Принята Резолюцией 61/106 Генеральной Ассамблеи ООН от 13 декабря 2006 г.;
- 3. Федерального закона от 03.05.2012 № 46-ФЗ "О ратификации Конвенции о правах инвалидов":
- 4. Федерального закона от 01.12.2014 № 419-ФЗ "О внесении изменений в отдельные законодательные акты Российской Федерации по вопросам социальной защиты инвалидов в связи с ратификацией Конвенции о правах инвалидов";
- 5. Приказа Минобрнауки России от 19.11.2013 № 1258 "Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам ординатуры";
- 6. Приказа Минобрнауки России от 09.11.2015 № 1309 "Об утверждении Порядка обеспечения условий доступности для инвалидов объектов и предоставляемых услуг в сфере образования, а также оказания им при этом необходимой помощи";
- 7. Приказа Минобрнауки России от 19.12.2013 № 1367 "Об утверждении Порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры";
 - 8. Устава ФГБОУ ВО «Кубанский государственный университет»

С целью обеспечения инклюзивного обучения инвалидов и лиц с ОВЗ по программам высшего образования на территории и в здании ФГБОУ ВО «Кубанский государственный университет» создана безбарьерная архитектурная среда, учитывающая потребности инвалидов и лиц с ОВЗ с учетом различных нозологий и обеспечивающая возможность беспрепятственного доступа обучающихся в учебные помещения, столовые, туалетные и другие помещения организации, а также пребывания в указанных помещениях

(пандусы, поручни, расширенные дверные проемы, лифт, локальное понижение стоекбарьеров; специальные кресла и другие приспособлений). Для слабовидящих справочная информация о расписании учебных занятий выполнена крупным рельефно-контрастным шрифтом на белом фоне и продублирована шрифтом Брайля. Для инвалидов и лиц с ограниченными возможностями здоровья по слуху установлен монитор с возможностью трансляции субтитров, на котором дублируется справочная информации о расписании учебных занятий.

Учебная аудитория, в которой обучаются студенты с нарушением слуха, оборудована звукоусиливающей аппаратурой, компьютерной техникой, видеотехникой, электронной доской, мультимедийной системой.

Для студентов с нарушениями зрения используются компьютерные тифлотехнологии. Комплекс программных средств обеспечивает преобразование компьютерной информации в доступные для незрячих и слабовидящих формы, и позволяет им самостоятельно работать на обычном персональном компьютере. Для слабовидящих студентов в лекционных аудиториях предусмотрена возможность просмотра удаленных объектов (слайда на экране) при помощи видеоувеличителей для удаленного просмотра. В университете имеется также брайлевская компьютерная техника (дисплеи), электронные лупы, программы невизуального доступа к информации, программы-синтезаторы речи. В ФГБОУ ВО «Куб-ГУ» разработана и функционирует альтернативная версия официального сайта университета в сети "Интернет" для слабовидящих.

Для студентов с нарушениями опорно-двигательного аппарата предназначены специальные устройства для ввода информации и другие технические средства приемапередачи учебной информации. Используется большая программируемая клавиатура IntelliKeysUSB – специальная клавиатура, которая предназначена пользователям с серьезными нарушениями моторики. Она соединяет в себе функции как обычной клавиатуры, так и компьютерной мыши. Клавиши на этой клавиатуре больше, чем на стандартной, поэтому она может использоваться людьми с ограниченными возможностями зрения.