АННОТАЦИЯ

дисциплины Б1.Б.21.06 «Общий физический практикум (основы ядерной физики)» Направление подготовки 09.03.02 Информационные системы и технологии, направленность (профиль) «Информационные системы и технологии». Уровень — бакалавриат

Курс 2 Семестр 4

Объем трудоемкости: 2 зачетных единиц (72 часа, из них - 32 часов аудиторной нагрузки: лабораторных 32 часов, ИКР - 0,2 часа; самостоятельной работы 39,8 часов).

Цель дисциплины:

Учебная дисциплина Б1.Б.21.06 «Общий физический практикум (основы ядерной физики)» входит в блок естественно-научных дисциплин, предназначенных для формирования у учащихся естественно-научного мировозрения о процессах и явлениях, связанных с физическими свойствами микромира и квантовыми явлениями на уровнях атомарной и субатомарной структуры вещества, а также элементарных частиц. Актуальность дисциплины «Общий физический практикум (основы атомной физики)» обусловлена применением знаний, умений и навыков, полученных в процессе ее изучения, для изучения дисциплин из других блоков и успешного освоения специальности в целом.

Учебная дисциплина «Общий физический практикум (основы атомной физики)» ставит своей целью изучение физических свойств микромира и квантовых явлений на уровнях субатомарной структуры вещества и элементарных частиц.

Задачи дисциплины:

Основные задачи освоения дисциплины:

- изучение экспериментальных и теоретических основ физики атомного ядра и элементарных частиц и рассмотрение экспериментальных принципов физики высоких энергий;
- усвоение основных понятий физики атомного ядра и элементарных частиц, фундаментальных взаимодействий между частицами микромира, классификации элементарных частиц в рамках принятых в ядерной физике моделей.

Воспитательная задача заключается в формировании у студентов профессионального отношения к проведению научно-исследовательских и прикладных работ, в развитии творческой инициативы и самостоятельности мышления.

В расширенный список общих задач дисциплины входят следующие задачи:

- обобщить и систематизировать знания по:
 - современным представлениям об атомном и субатомном строении вещества, о свойствах и структуре атомных ядер и элементарных частиц;
 - основным законам, идеям и принципам физики атомного ядра и элементарных частиц;
- научить:
 - экспериментальным и теоретическим основам физики атомного ядра и элементарных частиц, экспериментальным принципам физики высоких энергий;
 - основным понятиям и принципам физики атомного ядра и элементарных частиц, фундаментальных взаимодействий между частицами микромира, классификации элементарных частиц в рамках принятых в ядерной физике моделей;
 - с научной точки зрения осмысливать и интерпретировать основные положения субатомных явлений;
 - применять полученные знания для правильной интерпретации основных явлений физики ядра и элементарных частиц;
 - надлежащим образом оценивать порядки физических величин;
 - использовать полученные знания в различных областях физической

науки и техники;

- сформировать:
 - навыки применения основных методов физико-математического анализа для решения конкретных задач физики атома, атомных ядер и элементарных частиц;
 - навыки физико-математического моделирования;
 - умение с помощью адекватных методов оценивать точность и погрешность теоретических расчетов и экспериментальных измерений;
 - умение анализировать физический смысл полученных результатов.

Место дисциплины в структуре ООП ВО

Дисциплина Б1.Б.21.06 «Общий физический практикум (основы ядерной физики)» входит в вариативную часть Б1.Б блока 1. Дисциплины (модули) Б1 учебного плана.

Дисциплина логически и содержательно-методически связана с дисциплинами модулей «Математика», «Общая физика», «Общий физический практикум». Для освоения данной дисциплины необходимо владеть методами математического анализа, аналитической геометрии, линейной алгебры, решением алгебраических, дифференциальных и интегральных уравнений; теории функций комплексного переменного, теории вероятностей и математической статистики; знать основные физические законы; уметь применять математические методы и физические законы для решения практических задач.

В результате изучения настоящей дисциплины студенты должны получить знания, имеющие не только самостоятельное значение, но и обеспечивающие базовую подготовку для усвоения дисциплин базовой и вариативной частей блока 1 «Дисциплины (модули)» учебного плана.

Требования к уровню освоения дисциплины

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций: ОПК-2, ПК-23.

No	Индекс	Содержание	В результате изучения учебной дисциплины					
Π/	компетен-	компетенции	обучающиеся должны					
П	ции	(или её части)	знать	уметь	владеть			
1	ОПК-2	способность ис-	– современные	– с научной точ-	– методами про-			
		пользовать в	представления	ки зрения	ведения физиче-			
		профессиональ-	об атомном	осмысливать и	ских исследова-			
		ной деятельно-	строении веще-	интерпретиро-	ний и измере-			
		сти базовые	ства, основные	вать основные	ний;			
		естественнона-	законы, идеи и	положения	– навыками при-			
		учные знания,	принципы атом-	атомных явле-	менения основ-			
		включая знания	ной физики, их	ний, оценивать	ных методов фи-			
		о предмете и	становление и	порядки физиче-	зико-			
		объектах изуче-	развитие в исто-	ских величин,	математического			
		ния, методах ис-	рической после-	использовать	анализа для ре-			
		следования, со-	довательности,	полученные зна-	шения есте-			
		временных кон-	их математиче-	ния в различных	_			
		цепциях, дости-	ское описание,	областях физи-	задач;			
		жениях и огра-	теоретическое	ческой науки и	– навыками об-			
		ничениях есте-	исследование и	техники;	работки и интер-			
		ственных наук	практическое	 в практической 	претирования			
			использование;	деятельности	результатов фи-			
				применять зна-	зико-			
			ния о физиче-		математического			

				ских свойствах объектов и явлений для создания гипотез и теоретических моделей, проводить анализ границ их применимости; — применять соответствующие методы проведения физических исследований и измерений;	моделирования, теоретического расчета и экспериментального исследования;
2.	ПК-23	готовностью участвовать в постановке и проведении экспериментальных исследований	 современные методы физикоматематического моделирования и теоретического исследования явлений физики атома, методы наблюдения атомных явлений, их экспериментальное исследование и практическое использование; принципы устройства и функционирования экспериментальных приборов для исследования внутреннего строения атомов. 	 применять основные методы физикоматематического анализа для решения естественнонаучных задач и физического моделирования в производственной практике; применять имеющиеся теоретические знания для проведения и истолкования экспериментов; настраивать и эксплуатировать экспериментальные приборы для исследования внутреннего строения атомов; применять имеющиеся теоретические знание приборы для исследования внутреннего строения атомов; применять имеющиеся теоретические знания для проведения и истолкования экспериментов; с помощью адекватных методов оценивать точность и по- 	 навыками правильной эксплуатации основных приборов и оборудования современной физической лаборатории; навыками обработки и интерпретирования результатов эксперимента; навыками применения полученных теоретических знаний для решения прикладных задач.

		грешность тео-	
		ретических рас-	
		четов и измере-	
		ний, анализиро-	
		вать физический	
		смысл получен-	
		ных результатов.	

Основные разделы дисциплины:

	Наименование разделов (тем)	Количество часов					
№ п/п		Всего	Аудиторная работа			КСР	Внеауди- торная работа
			Л	ПЗ	ЛР		CPC
1	Радиоактивность	17,8			8		9,8
	Взаимодействие ядерного излучения с веществом	18			8		10
3	Эксперименты в физике высоких энергий	26			16		10
	Современные астрофизические представления. Открытые вопросы физики ядра и частиц	14			4		10
	Итого по дисциплине:	71,8			32		39,8

Курсовые работы: не предусмотрены

Форма проведения аттестации по дисциплине: зачет

Основная литература:

- 1. Основы ядерной физики: лабораторный практикум / [сост. А. П. Барков и др.]; М-во образования и науки Рос. Федерации; КубГУ. Краснодар: [Кубанский государственный университет], 2011.
- 2. Иродов И.Е. Квантовая физика. Основные законы: учебное пособие [Электронный ресурс]: учеб. пособие Электрон. дан. Москва: Издательство «Лаборатория знаний», 2017. 261 с. Режим доступа:

https://e.lanbook.com/book/94103

3. Савельев И.В. Курс физики [Электронный ресурс]: учебное пособие: в 3 т. Т. 3: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц / Савельев И.В. – СПб.: Лань, 2018. – 308 с. – Режим доступа:

https://e.lanbook.com/book/98247#authors

4. Мухин К.Н. Экспериментальная ядерная физика. В 3-х тт. Т. 1. Физика атомного ядра [Электронный ресурс]: учеб. – Электрон. дан. – Санкт-Петербург: Лань, 2009. – 384 с. – Режим доступа:

https://e.lanbook.com/book/277

5. Мухин К.Н. Экспериментальная ядерная физика. В 3-х тт. Т. 2. Физика ядерных реакций [Электронный ресурс]: учеб. – Электрон. дан. – Санкт-Петербург: Лань, 2009. – 326 с. – Режим доступа:

https://e.lanbook.com/book/279

6. Мухин К.Н. Экспериментальная ядерная физика. В 3-х тт. Т. 3. Физика элементар-

ных частиц [Электронный ресурс]: учеб. – Электрон. дан. – Санкт-Петербург: Лань, 2008. – 432 с. – Режим доступа:

https://e.lanbook.com/book/280

Автор РПД: Яковенко Н.А,