Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет математики и компьютерных наук

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.12.02 МОДЕЛИРОВАНИЕ В ЗАДАЧАХ ЭЛЕКТРОХИМИИ

Направление подготовки /специальность

02.03.01 МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ

Направленность (профиль) /специализация

МАТЕМАТИЧЕСКОЕ И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

Программа подготовки

АКАДЕМИЧЕСКАЯ

Форма обучения

РЕМИРО

Квалификация выпускника

(степень)

БАКАЛАВР

Краснодар 2016

Рабочая программа дисциплины «Моделирование в задачах электрохимии» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 02.03.01 МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ

Программу составил:

Дроботенко М.И., зав. кафедрой математических и компьютерных методов, к. ф.-м. н., доц.

Рабочая программа дисциплины «Моделирование в задачах электрохимии» утверждена на заседании кафедры математических и компьютерных методов

протокол № 1 «31» августа 2016 г.

Заведующий кафедрой (разработчика)

Дроботенко М.И.

Рабочая программа обсуждена на заседании кафедры математических и компьютерных методов

протокол № 1 «31» августа 2016 г.

Заведующий кафедрой (выпускающей)

Дроботенко М.И.

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук

протокол № 1 «01» сентября 2016 г.

Председатель УМК факультета

Титов Г.Н.

Trumol

Рецензенты:

Бунякин А.В., доцент кафедры оборудования нефтегазовых промыслов ФГБОУ ВО «КубГТУ»

Никитин Ю.Г., доцент кафедры теоретической физики и компьютерных технологий ФГБОУ ВО «Кубанский государственный университет»

1.1 Цели и задачи освоения дисциплины

Цель дисциплины: освоение студентами основных механизмов, методов, принципов моделирования электрохимических систем. Освоение научного подхода при решении задач, связанных с практическим применением электрохимических систем.

Программа курса включает в себя ознакомление с такими ключевыми понятиями электрохимии как: основные соотношения термодинамики растворов электролитов, электростатическая теория Дебая и Хюккеля, радиус ионной атмосферы, предельный закон Дебая-Хюккеля, закон разбавления Оствальда.

1.2 Задачи дисциплины

Задачи дисциплины: состоят в освоение профессиональных знаний, получении профессиональных навыков в области электрохимии и физической химии:

- 1. Ознакомление студентов с традиционными курсами электрохимии;
- 2. Выработка практических навыков при решении примеров с использованием количественных соотношений электрохимической термодинамики и кинетики для описания и прогнозирования свойств реальных систем;
- 3. Ознакомление с последними достижениями в области разработки новых материалов для электрохимических систем;
- 4. Обучение студентов использованию полученных знаний при моделировании электрохимических процессов, свойств межфазных границ и электродных материалов.

1.3 Место дисциплины (модуля) в структуре ООП ВО

Дисциплина «Моделирование в задачах электрохимии» является дисциплиной по выбору вариативной части блока дисциплин (модулей) учебного плана по направлению подготовки 02.03.01 «Математика и компьютерные науки», профиля Математическое и компьютерное моделирование. Эта дисциплина логически и содержательно-методически взаимосвязана с другими частями ООП, обеспечивает преемственность и гармонизацию освоения курса.

Рабочая программа дисциплины «Моделирование в задачах электрохимии» предназначена для студентов четвёртого курса факультета математики и компьютерных наук и соответствует компетентностному подходу в образовании.

Для освоения дисциплины «Моделирование в задачах электрохимии» студенты должны владеть знаниями, умениями, навыками и компетенциями, приобретенными в результате изучения таких предшествующих дисциплин, как: задачи и алгоритмы гидродинамики, нестационарные задачи математической физики, физика и др.

Дисциплина «Моделирование в задачах электрохимии» позволяет эффективно формировать общекультурные и профессиональные

компетенции, способствует всестороннему развитию личности студентов и гарантирует качество их подготовки.

Знания, умения, навыки и компетенции, полученные студентами в результате освоения данной дисциплины, необходимы для освоения ряда других частей ООП: «Задачи и алгоритмы вихревой гидродинамики», «Методы потенциала в задачах естествознания» и др.

Предполагается, что по завершении курса студенты смогут читать современную литературу по электрохимии и физической химии в целом, писать рефераты и исследовательские работы по соответствующей курсу, тематике.

1.4. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

В процессе освоения данной дисциплины формируются и демонстрируются следующие общекультурные и профессиональные компетенции:

No	Индекс	Содержание	В результате	е изучения учебно	ой дисциплины
	компет	компетенции (или её	o	бучающиеся долх	кны
П.П.	енции	части)	знать	уметь	владеть
1.	ОПК-1	готовность использовать фундаментальные знания в области математического анализа, комплексного и функционального анализа, алгебры, аналитической геометрии, дифференциальной геометрии и топологии, дифференциальных уравнений, дискретной математической логики, теории вероятностей, математической статистики и случайных процессов, численных методов, теоретической механики в будущей профессиональной деятельности.	- основные понятия электрохимии.	- применять стандартные термодинамичес-кие функции при решении задач электрохимии.	- основными понятиями физической химии.
2	ПК-2	способность математически корректно ставить естественнонаучные задачи, знание постановок классических задач математики.	- равновесный и стандартный электродные потенциалы; - электродный потенциал.	- отличать проводники первого и второго рода; - моделировать процессы диссоциации.	- математическим аппаратом построения многослойных электролитов (электрод-раствор).
3.	ПК-3	способность строго доказать утверждение, сформулировать результат, увидеть	- строение двойного электрического слоя на границе	- определять кислотность (рН) растворов; - применять	- практическими навыками применения теорем основных

№	Индекс	Содержание	В результате	е изучения учебно	ой дисциплины
	компет	компетенции (или её	0	бучающиеся долх	КНЫ
П.П.	енции	части)	знать	уметь	владеть
		следствия полученного	электрод-	законы Фарадея.	соотношений
		результата.	раствор;		термодинамики
			- закон		растворов
			разведения		электролитов.
			Оствальда;		
			- классификацию		
			обратимых		
			электродов.		

2. Структура и содержание дисциплины 2.1 Распределение трудоёмкости дисциплины по видам работ Общая трудоемкость дисциплины составляет 72 часа (2 ЗЕТ).

Вид учебн	ой работы	Всего	Семестры
		часов	8
Контактная работа, в том	числе:	50,2	50,2
Аудиторные занятия (всег	0)	48	48
Занятия лекционного типа		24	24
Занятия семинарского типа (семинары, практические			
занятия)			
Лабораторные занятия		24	24
Иная контактная работа:		2,2	2,2
Контроль самостоятельной	работы (КСР)	2	2
Промежуточная аттестация	(ИКР)	0,2	0,2
Самостоятельная работа,	в том числе:		
Проработка учебного (теоре	тического) материала	21,8	21,8
Подготовка к текущему кон	тролю		
Общая трудоемкость	час.	72	72
	в том числе контактная работа	50,2	50,2
	зач. ед	2	2

2.2 Структура дисциплины Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы дисциплины, изучаемые в 8-м семестре.

NC-				Колич	нество ча	асов		
№ pa3-	Наименование разделов	Всего	Количество часов Аудиторная работа Внеаудиторная работа Л ПЗ ЛР СР КСР КР 4 5 6 7 8 9 4 4 4 4 4					
дела			Л	П3	ЛР	CP	КСР	КР
1	2	3	4	5	6	7	8	9
1.	Основные понятия электрохимии	12	4		4	4		
2.	Закон разведения Оствальда	12	4		4	4		

),c				Колич	нество ча	асов			
№ paз-	Наименование разделов	Всего	A	Аудиторная работа			Внеаудиторная работа		
дела			Л	П3	ЛР	СР	КСР	КР	
3.	Основные соотношения термодинамики растворов электролитов	12	4		4	3		1	
4.	Ионная сила	12	4		4	4			
5.	Основные понятия электростатической теории растворов сильных электролитов Дебая-Хюккеля	12	4		4	4			
6.	Концентрационные цепи	12	4		4	2,8+ 0,2		1	
	Итого:	72	24		24	23,8 +0,2			

2.3 Содержание разделов дисциплины: 2.3.1 Занятия лекционного типа.

No	Наименование	Содержание раздела	Форма
	раздела	a	
			контроля
1	2	3	4
1	Основные	1) Проводники первого рода	
	понятия	2) Проводники второго рода	
	электрохимии	3) Исследования электролитов	
2	Закон	4) Степень диссоциации	
		5) Константа диссоциации	
	разведения Оствальда	6) Общий вид закона распределения	
	Оствальда	Освальда	
3		7) Исследования сильных электролитов	К
	Основные	8) Средняя активность ионов	
	соотношения	электролита	
	термодинамики	9) Средняя моляльность ионов	
	растворов	электролитов	
	электролитов	10) Первое и второе стандартные	
		состояния	
4		11) Понятие ионной силы	
	Ионная сила	12) Правило ионной силы о	
		разбавленных растворах	
5	Основные	13) Электростатическая теория Дебая и	
	понятия	Хюккеля	
	электростатичес	14) Радиус ионной атмосферы	
	кой теории	15) Предельный закон Дебая-Хюккеля	
	растворов	15) предельный закон деоал-жоккеля	

	сильных		
	электролитов		
	Дебая-Хюккеля		
6		16) Три группы концентрационных	К
	Концентрационн	цепей без переноса ионов	
	ые цепи	17) Концентрационные цепи с	
		переносом ионов	

В данном подразделе, в табличной форме приводится описание содержания дисциплины, структурированное по разделам, с указанием по каждому разделу формы текущего контроля: коллоквиум (К).

2.3.2 Занятия семинарского типа. Занятия семинарского типа учебным планом не предусмотрены.

2.3.3 Лабораторные типа.

№	Наименование пазлела	Тематика практических занятий (семинаров)	Форма текущего
	раздела (семинаров) 2 3		контроля
1	2	3	4
1		1) Исследования проводников	ЛР
	Основные понятия	первого рода	
	электрохимии	2) Исследования проводников	
	электрохимии	второго рода	
		3) Исследования электролитов	
2		4) Вычисления степени	ЛР
	Закон разведения	диссоциации	
	Оствальда	5) Применение общего вида	
		закона распределения Освальда	
3	Основные	8) Вывод средней активности	
		ионов электролита	
	соотношения	9) Вывод средней моляльности	
	термодинамики растворов	ионов электролитов	
	электролитов	10) Определение первого и	
	электролитов	второго стандартных состояний	
4		11) Вычисление ионной силы для	ЛР
	Ионная сила	сильных электролитов	
	гюнная сила	12) Исследования зависимости	
		зарядов ионов от их активности	
5	Основные понятия	13) Электростатическая теория	ЛР
	электростатической	Дебая и Хюккеля	
	теории растворов	14) Вычисление радиуса ионной	
	сильных	атмосферы	
	электролитов Дебая-	15) Вычисление среднего	
	Хюккеля	эффективного диаметра	
6	Концентрационные	16) Три группы	

цепи	концентрационных цепей без	
	переноса ионов	
	17) Решение задач для	
	концентрационных цепей с	
	переносом ионов	

В данном подразделе, в табличной форме приводится описание содержания дисциплины, структурированное по разделам, с указанием по каждому разделу формы текущего контроля: защита лабораторной работы (ЛР).

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы учебным планом не предусмотрены.

2.4 Перечень учебно-методического обеспечения для

самостоятельной работы обучающихся по дисциплине (модулю)

№	Наименование раздела	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1.	Основные понятия электрохимии	Ким, Н.М. Физическая химия: в 2 кн. Ч.2. Электрохимия и кинетика химических реакций: учеб.пособие. [Электронный ресурс] — Электрон. дан. — Кемерово: КузГТУ имени Т.Ф. Горбачева, 2009. — 140 с. — Режим доступа: http://e.lanbook.com/book/6642 — Загл. с экрана. Терская, И.Н. Методические указания для программированного опроса студентов на практических занятиях по физической химии по разделу «Растворы электролитов. Электрохимия». [Электронный ресурс] / И.Н. Терская, Е.А. Чижова. — Электрон. дан. — Иваново: ИГХТУ, 2011. — 44 с. — Режим доступа: http://e.lanbook.com/book/4526 — Загл. с экрана.
2.	Закон разведения Оствальда	Ким, Н.М. Физическая химия: в 2 кн. Ч.2. Электрохимия и кинетика химических реакций: учеб.пособие. [Электронный ресурс] — Электрон. дан. — Кемерово: КузГТУ имени Т.Ф. Горбачева, 2009. — 140 с. — Режим доступа: http://e.lanbook.com/book/6642 — Загл. с экрана. Борисов, И.М. Основы электрохимии: учебное пособие. [Электронный ресурс] — Электрон. дан. — БГПУ имени М. Акмуллы, 2009. — 100 с. — Режим доступа: http://e.lanbook.com/book/42234 — Загл. с экрана.
3.	Основные соотношения термодинамики растворов электролитов	Ким, Н.М. Физическая химия: в 2 кн. Ч.2. Электрохимия и кинетика химических реакций: учеб.пособие. [Электронный ресурс] — Электрон. дан. — Кемерово: КузГТУ имени Т.Ф. Горбачева, 2009. — 140 с. — Режим доступа: http://e.lanbook.com/book/6642 — Загл. с экрана. Дамаскин, Б.Б. Электрохимия. [Электронный ресурс] / Б.Б. Дамаскин, О.А. Петрий, Г.А. Цирлина. — Электрон. дан. — СПб.: Лань, 2015. — 672 с. — Режим доступа: http://e.lanbook.com/book/58166 — Загл. с экрана.
4.	Ионная сила	Терская, И.Н. Методические указания

		программированного опроса студентов на практических занятиях по физической химии по разделу «Растворы электролитов. Электрохимия». [Электронный ресурс] / И.Н. Терская, Е.А. Чижова. — Электрон. дан. — Иваново : ИГХТУ, 2011. — 44 с. — Режим доступа: http://e.lanbook.com/book/4526 — Загл. с экрана. Борисов, И.М. Основы электрохимии: учебное пособие. [Электронный ресурс] — Электрон. дан. — БГПУ имени М. Акмуллы, 2009. — 100 с. — Режим доступа: http://e.lanbook.com/book/42234 — Загл. с экрана.
5.	Основные понятия электростатической теории растворов сильных электролитов Дебая-Хюккеля	Терская, И.Н. Методические указания для программированного опроса студентов на практических занятиях по физической химии по разделу «Растворы электролитов. Электрохимия». [Электронный ресурс] / И.Н. Терская, Е.А. Чижова. — Электрон. дан. — Иваново : ИГХТУ, 2011. — 44 с. — Режим доступа: http://e.lanbook.com/book/4526 — Загл. с экрана. Дамаскин, Б.Б. Электрохимия. [Электронный ресурс] / Б.Б. Дамаскин, О.А. Петрий, Г.А. Цирлина. — Электрон. дан. — СПб. : Лань, 2015. — 672 с. — Режим доступа: http://e.lanbook.com/book/58166 — Загл. с экрана.
6.	Концентрационные цепи	Борисов, И.М. Основы электрохимии: учебное пособие. [Электронный ресурс] — Электрон. дан. — БГПУ имени М. Акмуллы, 2009. — 100 с. — Режим доступа: http://e.lanbook.com/book/42234 — Загл. с экрана. Дамаскин, Б.Б. Электрохимия. [Электронный ресурс] / Б.Б. Дамаскин, О.А. Петрий, Г.А. Цирлина. — Электрон. дан. — СПб. : Лань, 2015. — 672 с. — Режим доступа: http://e.lanbook.com/book/58166 — Загл. с экрана.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

Лекции, семинарские занятия, индивидуальные задания, устные опросы, зачёт.

Для реализации компетентностного подхода предусматривается использование в учебном процессе активных и интерактивных форм проведения аудиторных и внеаудиторных занятий с применением современных математических пакетов прикладных программ, а именно:

- Пакета Wolfram Mathematica
- Пакета MathCAD 15.

В процессе выполнения практических заданий учащиеся должны приобрести навык использования пакетов Wolfram Mathematica и MATHCAD для решения задач электрохимического анализа.

Использование в обучении информационных технологий составляет 50% объема аудиторных занятий и способствует формированию и развитию профессиональных навыков обучающихся.

К образовательным технологиям также относятся интерактивные методы обучения. Интерактивность подачи материала достигается не только за счёт взаимодействия вида «преподаватель — студент» и «студент — преподаватель», но и «студент — студент». Все эти виды взаимодействия хорошо достигаются при изложении материала на практических занятиях и в процессе докладов с использованием компьютерных технологий.

Возможность дискуссии предполагает умение высказать собственную идею, предложить свой путь решения, аргументировано отстаивать свою точку зрения, связно излагать мысли. Полезны следующие задания: составление плана решения задачи, поиск другого способа решения, сравнение различных способов решения, проведение выкладок для решения задачи и выкладок для проверки правильности полученного решения. Студентам предлагается проанализировать варианты решения, обсудить Основной объем доклад, высказать своё мнение. использования интерактивных методов обучения реализуется именно в ходе дискуссий на практических занятиях.

Общие вопросы, которые выносятся на дискуссию:

- 1. Составления плана решения задачи.
- 2. Определение возможных способов решений задачи.
- 3. Выбор среди рассматриваемых способов наиболее рационального.
- 4. Самостоятельное составление студентами опорных заданий по теме, характеризующих глубину понимания студентами соответствующего материала.

Применение на занятии компьютерных технологий позволяет студентам при рассмотрении определенных тем курса более глубоко освоить некоторые понятия. В этой связи определенные практические занятия преподавателю целесообразно проводить в виде презентации. Также в таком виде на практических занятиях по некоторым темам студенты могут представлять и свои доклады.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и

промежуточной аттестации.

- 4.1 Фонд оценочных средств для проведения текущего контроля.
- 4.1.1 Примерный перечень вопросов для коллоквиумов
- 1. Термодинамические потенциалы.
- 2. Основные понятия статистической термодинамики смысл второго начала.
 - 3. Химический потенциал. Электрохимический потенциал.
- 4. Условия электрохимического равновесия на отдельной межфазной границе и в электрохимической цепи.
- 5. Скачки потенциала на границе раздела фаз; разность потенциалов Гальвани и Вольта.
 - 6. Понятие электродного потенциала. Уравнение Нернста.
 - 7. Различные типы электродов сравнения.
- 8. Взаимные превращения химической и электрической энергии в электрохимической системе.
- 9. Термодинамика гальванического элемента, уравнение Гиббса-Гельмгольца.
- 10. Пользование таблицами термодинамических величин для расчетов электрохимических равновесий.
 - 11. Влияние природы растворителя на электродный потенциал.
 - 12. Основные типы гальванических цепей.
 - 13. Концентрационные цепи без переноса и с переносом.
 - 14. Диффузионный потенциал.
- 15. Методы определения коэффициента активности, констант равновесия ионных реакций и чисел переноса измерений на основе измерений электродвижущих сил. Электрохимическое равновесие на границе двух несмешивающихся жидкостей, на мембранах и ионоселективных электродах.

4.1.2 Образец лабораторной работы

No 1

1. Константа диссоциации циановой кислоты согласно уравнению

$$HCNO \leftrightarrow H^+ + CNO^-$$

- при 291 К равна $1,2\cdot 10^{-4}$. Определите концентрацию анионов CNO^- в растворе, содержащем 0,6 κ моль/ κ^3 циановой кислоты.
- **2.** В таблице приведены значения pKa кислот в неводных растворителях. Приняв концентрации растворов равными $0,1 \, \kappa monb / \, m^3$, рассчитайте концентрации анионов. **Примечание.** $pKa = -\lg K_{\kappa ucn}$ (нижний индекс a используется для кислот, а индекс b- для оснований).

Кислота	Растворитель				
Кислота	метанол	этанол	бутанол	крезол	
Уксусная <i>СН</i> ₃ <i>СООН</i>	9,52	10,32	10,35		
Хлоруксусная CH ₂ ClCOOH	7,8	8,51	8,50	8,66	
Дихлоруксусная <i>СНСl₂COOH</i>	6,3	7,14	7,30	7,31	

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

4.2.1 Примерный перечень вопросов к зачёту

- 1. Проводники первого рода.
- 2. Проводники второго рода.
- 3. Исследования электролитов.
- 4. Степень диссоциации.
- 5. Константа диссоциации.
- 6. Общий вид закона распределения Освальда.
- 7. Исследования сильных электролитов.
- 8. Средняя активность ионов электролита.
- 9. Средняя моляльность ионов электролитов.
- 10. Первое и второе стандартные состояния.
- 11. Понятие ионной силы.
- 12. Правило ионной силы о разбавленных растворах.
- 13. Электростатическая теория Дебая и Хюккеля.
- 14. Радиус ионной атмосферы.
- 15. Предельный закон Дебая-Хюккеля.
- 16. Три группы концентрационных цепей без переноса ионов.
- 17. Концентрационные цепи с переносом ионов.

Зачёт оценивается по системе: не зачтено, зачтено.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на зачёте;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

– в форме электронного документа.

Для лиц с нарушениями слуха:

- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

- 1. Электрохимия и химическая кинетика : учебное пособие / Г.В. Булидорова, Ю.Г. Галяметдинов, Х.М. Ярошевская, В.П. Барабанов. Казань : Издательство КНИТУ, 2014. 371 с. ISBN 978-5-7882-1658-4. [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=427844
- 2. Дамаскин, Б.Б. Электрохимия / Б.Б. Дамаскин, О.А. Петрий, Г.А. Цирлина. СПб. : Лань, 2015. 672 с. ISBN 978-5-8114-1878-7. [Электронный ресурс]. URL: http://e.lanbook.com/book/58166
- 3. Зайков, Ю.П. Электрохимия расплавленных солей: учебнометодическое пособие / Ю.П. Зайков, и др.; науч. ред. В.М. Рудой. Екатеринбург: Издательство Уральского университета, 2014. 88 с. ISBN 978-5-7996-1261-0. [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=275802

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электроннобиблиотечных системах.

5.2 Дополнительная литература:

- 1. Лежнев А.В. Метод базисных потенциалов в задачах математической физики и гидродинамики. КубГУ, Краснодар, 2009. 111 с.
- 2. Дроботенко М.И., Лежнев В.Г., Марковский А.Н. Методы вычислений (практикум) КубГУ, Краснодар, 2009. 49 с.
- 3. Лежнев В.Г. Лабораторный курс по численной математической физике. Краснодар, 1989.
- 4. Владимиров В.С. Уравнения математической физики. М., 1981. 512 с.
- 5. Михайлов В.П. Дифференциальные уравнения в частных производных. М., 1983. 424 с.

5.3. Периодические издания:

1. Вестник Московского Университета. Серия 15. Вычислительная математика и кибернетика: научный журнал. М.: МГУ, 2014, 2015. - доступно: www.biblioclub.ru — Университетская библиотека ONLINE.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля).

- 1. Электронно-библиотечная система "Университетская библиотека online" www.biblioclub.ru.
- 2. Электронно-библиотечная система Издательства «Лань» http://e.lanbook.com.

7. Методические указания для обучающихся по освоению дисциплины (модуля)

По курсу предусмотрено проведение лекционных занятий, на которых дается основной теоретический материал, рассматриваются основные приёмы решения задач и решаются примеры практических задач.

Используется как традиционная информационно-объяснительная подача материала, так и интерактивная подача материала с мультимедийной системой. Компьютерные технологии в данном случае обеспечивают возможность разнопланового отображения алгоритмов и демонстрационного материала. Такое сочетание позволяет оптимально использовать отведённое время и раскрывать логику и содержание дисциплины.

Интерактивные образовательные технологии, используемые в аудиторных занятиях включают следующее:

- семинары в диалоговом режиме,
- групповые дискуссии,
- обсуждение результатов работы исследовательских групп, сформированных из бакалавров.

На практических занятиях студенты, решая семестровые задания, приобретают практические навыки применения компьютерных технологий, написания и отладки программ, программной реализации алгоритмов.

Важнейшим этапом курса является самостоятельная работа, во время которой студенты осуществляют проработку необходимого материала, используя литературу из основного и дополнительного списков, готовятся к текущему контролю, изучая примеры задач, рассмотренных на лекциях и на практических занятиях.

Для текущего контроля бакалавры предоставляют презентации в электронном виде по результатам изучения теоретических вопросов и выполнения заданий к самостоятельной работе.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

8.1 Перечень информационных технологий.

Выполнение практических заданий на компьютере с использованием языка таких пакетов прикладных программ как Wolfram Mathematica и MathCAD.

Проверка индивидуальных заданий и консультирование посредством электронной почты.

8.2 Перечень необходимого программного обеспечения.

- 1. Пакет Wolfram Mathematica.
- 2. Пакет МАТНСАД.

8.3 Перечень информационных справочных систем:

- 1. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)
- 2. Мурашкин В. Г. Инженерные и научные расчеты в программном комплексе MathCAD: учебное пособие. Самара: СГАСУ, 2011. 84 с. доступно: www.biblioclub.ru Университетская библиотека ONLINE.

9. Материально-техническая база, необходимая для осуществления

образовательного процесса по дисциплине (модулю)

образовательного процесса по дисциплине (модулю)							
No	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность					
1.	Лекционные занятия	Аудитория для проведения занятий лекционного типа					
2.	Лабораторные	Аудитория, укомплектованная компьютерами для работы					
	занятия	студентов и компьютером для преподавателя,					
		подключенным к интерактивной доске					
3.	Текущий контроль,	Аудитория, укомплектованная компьютерами для работы					
	промежуточная	студентов и компьютером для преподавателя,					
	аттестация	подключенным к интерактивной доске					
4.	Самостоятельная	Аудитория, укомплектованная компьютерами для работы					
	работа	студентов					