АННОТАЦИЯ

дисциплины Б1.В.ДВ.03.02 «Радиооптика и нанофотоника (часть 2)» Направление подготовки 11.03.04 Электроника и наноэлектроника Направленность (профиль) подготовки «Нанотехнологии в электронике» Уровень – бакалавриат Курс 3 Семестр 6

Объем трудоемкости: 4 зачетных единицы (144 часа, из них -54,3 часа аудиторной нагрузки: лекционных 16 часов, лабораторных занятий 32 часа; КСР 6 часов, самостоятельной работы 54 часа, контроль 35,7 часов).

Цель дисциплины:

Радиооптика и нанофотоника — это наиболее динамично развивающееся направление фотоники, определяющее прогресс мировой науки и техники, связанный с исследованием, разработкой, созданием и эксплуатацией новых материалов, технологий, приборов и устройств, направленных на передачу, прием, обработку, хранение и отображение информации на основе оптических технологий. Радиооптика и нанофотоника ориентирована на интеграцию оптических, информационных и телекоммуникационных технологий.

Основная цель преподавания дисциплины – получение студентами необходимых знаний о последних достижениях в области нанофотоники, в частности в области создания, исследования и манипуляции новых типов оптических наноматериалов, таких, как фотонные кристаллы, квантовые точки, метаматериалы и др.

Задачи дисциплины:

Задачами освоения дисциплины «Радиооптика и нанофотоника (часть 2)» являются:

- привить студентам навыки научно-исследовательской работы и продемонстрировать широкие возможности использования техники волноводной фотоники в различных направлениях;
- обучить студентов принципам и приемам самостоятельных расчетов характеристик элементной базы волноводной фотоники, интегрально-оптических и волоконно-оптических структур;
- освоение студентами физических принципов и математических моделей волноводной фотоники;
- выработка практических навыков аналитического и численного анализа процесса распространения оптического излучения в элементной базе волноводной фотоники, а также расчета основных характеристик этих устройств;
- получение глубоких знаний по оптической физике и оптической информатике, оптическому материаловедению, функциональным устройствам и системам фотоники;
- изучение возможностей преодоления дифракционного предела в оптике для исследования наноразмерных объектов;
- изучение потенциальных возможностей и существующих сфер применения наночастиц полупроводников для создания нанофильтров и пассивных элементов интегральных схем;
 - изучение фотонных кристаллов как базовых элементов современной нанофотоники;
- изучение люминесценции наноразмерных частиц как основы работы субволновой микроскопии.

В результате изучения настоящей дисциплины студенты должны получить базовые теоретические знания и практические навыки, позволяющие проводить моделирование и расчет элементной базы волноводной фотоники, а также получить базовые теоретические знания в области физических основ современной нанофотоники и нанофотонных приборов, устройства и систем.

Место дисциплины в структуре ООП ВО

Дисциплина Б1.В.ДВ.03.02 «Радиооптика и нанофотоника (часть 2)» для бакалавриата по направлению 11.03.04 Электроника и наноэлектроника (профиль: Нанотехнологии в электронике) относится к дисциплинам по выбору Б1.В.ДВ вариативной части Б1.В блока 1 «Дисциплины (модули)» Б1 учебного плана.

Дисциплина логически и содержательно-методически связана с дисциплинами базовой части модуля Б1.Б «Математический анализ», «Физика», «Общий физический практикум» и дисциплин вариативной части Б1.В. Кроме того, дисциплина базируется на успешном усвоении сопутствующих дисциплин: «Физика полупроводников», «Электродинамика и распространение радиоволн», «Квантовая механика», «Теория вероятности и математическая статистика», «Электроника», «Физика наноразмерных систем», «Радиооптика и нанофотоника (часть 1)». Для освоения данной дисциплины необходимо владеть методами математического анализа, аналитической геометрии, линейной алгебры, решением алгебраических и дифференциальных уравнений; теории функций комплексного переменного, теории вероятностей и математической статистики; знать основные физические законы; уметь применять математические методы и физические законы для решения практических задач.

В результате изучения настоящей дисциплины студенты должны получить знания, имеющие не только самостоятельное значение, но и обеспечивающие базовую подготовку для усвоения дисциплин базовой и вариативной частей модуля Б1, обеспечивая согласованность и преемственность с этими дисциплинами при переходе к оптическим и цифровым технологиям.

Программа дисциплины «Радиооптика и нанофотоника (часть 2)» согласуется со всеми учебными программами дисциплин базовой 61.6 и вариативной 61.8 частей модуля (дисциплин) 61 учебного плана.

Требования к уровню освоения дисциплины

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций: ОПК-6, ПК-13.

No	Индекс	Содержание	В результате изучения учебной дисциплины				
п/п	компе-	компетенции	обучающиеся должны				
	тенции	(или её части)	знать	уметь	владеть		
1	ОПК-6	способностью осу-	– физические	– вычислять рас-	– к работе над		
		ществлять поиск,	основы распро-	пределение элек-	исследованиями		
		хранение, обработку	странения излу-	тромагнитного	в области нано-		
		и анализ информа-	чения по инте-	поля вблизи на-	фотоники;		
		ции из различных	грально-	норазмерных ме-	– навыками		
		источников и баз	оптическим	таллических	системного на-		
		данных, представ-	волноводам и	структур;	учного анализа		
		лять ее в требуемом	оптическому	– вычислять ра-	проблем (как		
		формате с использо-	волокну;	пределение элек-	природных, так		
		ванием информаци-	– механизм	тромагнитного	и профессио-		
		онных, компьютер-	взаимодействия	поля вблизи на-	нальных) раз-		
		ных и сетевых тех-	света и вещест-	света и вещест- норазмерных ме-			
		нологий	ва в ближнем таллических		сложности;		
			поле; размерные	структур с по-	– навыками ра-		
			эффекты, кван-	мощью моделей:	боты с лабора-		
			товые ограни-	мультипольного	торным обору-		
			чения; основные	взаимодействия и	дованием и со-		
			эксперимен-	конечных разно-	временной на-		

			тальные схемы ближнеполевых	стей во времен- ной области;	учной аппара- турой;
			измерений;	ной области,выполнять	- навыками
			– механизм пре-	оценку усиления	проведения фи-
			одоления ди-	электромагнит-	зического экс-
			фракционного	ного поля вблизи	перимента;
			предела;	безапертуных	– самостоятель-
			– условия воз-	металических	но решать зада-
			буждения по-	зондов;	чи по вычисле-
			верхностных	– интерпретиро-	нию электро-
			плазмонов;	вать Раман-	магнитных по-
			– основные экс-	спектры и изо-	лей в ближней
			периментальные схемы ближне-	бражения, усиленные металли-	зоне.
				ческим зондом.	
			полевых измерений.	-теским зондом.	
2	ПК-13	способностью нала-	– физические	– вычислять рас-	– к работе над
		живать, испытывать,	основы распро-	пределение элек-	исследованиями
		проверять работо-	странения излу-	тромагнитного	в области нано-
		способность измери-	чения по инте-	поля вблизи на-	фотоники;
		тельного, диагности-	грально-	норазмерных ме-	– навыками
		ческого, технологи-	оптическим	таллических	системного на-
		ческого оборудова-	волноводам и	структур;	учного анализа
		ния, используемого	оптическому	– вычислять ра-	проблем (как
		для решения различ-	волокну;	пределение элек-	природных, так
		ных научно- технических, техно-	механизмвзаимодействия	тромагнитного поля вблизи на-	и профессиональных) раз-
		логических и произ-	света и вещест-	норазмерных ме-	личного уровня
		водственных задач в	ва в ближнем	таллических	сложности;
		области электроники	поле; размерные	структур с по-	– навыками ра-
		и наноэлектроники	эффекты, кван-	мощью моделей:	боты с лабора-
		1	товые ограни-	мультипольного	торным обору-
			чения; основные	взаимодействия и	дованием и со-
			эксперимен-	конечных разно-	временной на-
			тальные схемы	стей во времен-	учной аппара-
			ближнеполевых	ной области;	турой;
			измерений;	– выполнять	– навыками
			– механизм пре-	оценку усиления	проведения фи-
			одоления ди-	электромагнит-	зического экс-
			фракционного	ного поля вблизи	перимента.
			предела;	безапертуных	- самостоятель-
			– условия воз-	металлических	но решать зада-
			буждения по-	30НДОВ;	чи по вычисле-
			верхностных	интерпретиро- вать Раман-	нию электро- магнитных по-
			плазмонов; – основные экс-	вать Раман-	лей в ближней
			периментальные	бражения, уси-	зоне.
			схемы ближне-	ленные металли-	Join e.
			полевых изме-	ческим зондом.	
			рений.		
<u> </u>	<u> </u>	I	T	<u> </u>	

Основные разделы дисциплины:

	Наименование разделов (тем)	Количество часов					
№ п/п		Всего	Аудиторная работа			КСР	Внеауди- торная работа
			Л	П3	ЛР		CPC
1	Элементная база волноводной фотоники. Интегрально-оптические волноводы	41	4		24	1	12
2	Элементная база волноводной фотоники. Оптические волокна	23	4		8	1	10
3	Физические основы нанофотоники	22	4			2	16
	Нанофотонные приборы, устройства и системы	22	4			2	16
	Итого по дисциплине:	108	16		32	6	54

Курсовые работы: не предусмотрены

Форма проведения аттестации по дисциплине: экзамен

Основная литература:

- 1. Дифракционная оптика и нанофотоника [Электронный ресурс] / Е.А. Безус [и др.]. Электрон. дан. М.: Физматлит, 2014. 608 с. Режим доступа: https://e.lanbook.com/book/71979
- 2. Игнатов, А.Н. Оптоэлектроника и нанофотоника: учеб. пособие [Электронный ресурс] Электрон. дан. СПб: Лань, 2017. 596 с. Режим доступа: https://e.lanbook.com/book/95150
- 3. Кульчин Ю.Н. Современная оптика и фотоника нано- и микросистем [Электронный ресурс] Электрон. дан. Москва: Физматлит, 2016. 440 с. Режим доступа: https://e.lanbook.com/book/91158
- 4. Панов, М.Ф. Физические основы фотоники: учеб. пособие [Электронный ресурс] / М.Ф. Панов, А.В. Соломонов. Электрон. дан. СПб.: Лань, 2017. 564 с. Режим доступа: https://e.lanbook.com/book/92656
- 5. Салех Б., Тейх М. Оптика и фотоника. Принципы и применения. Т. 1, 2. Долгопрудный: Издательский дом Интеллект, 2012.

Автор РПД: Прохоров В.П., канд. физ.-мат. наук, доцент