АННОТАЦИЯ ДИСЦИПЛИНЫ Б1.В.08 МОДЕЛИ ТЕПЛОМАССОПЕРЕНОСА

01.04.02

Курс 5, семестр 9, з.е 2

Цель дисциплины «Модели тепломассопереноса» — формирование у студентов системных знаний в области математического моделирования в тепломассопереносе и обеспечение естественнонаучного фундамента для профессиональной подготовки специалиста.

Задачи дисциплины:

- формирование системных знаний об основных закономерностях тепломассопереноса;
- формирование у студентов навыков самостоятельной аналитической и научноисследовательской работы;
 - развитие у магистров навыков работы с учебной и научной литературой;
- показать связь приближённых и численных методов решения краевых задач тепломассопереноса;
- показать магистрантам возможности современных технических и программных средств для решения исследовательских задач прикладного характера;
- показать возможности современных математических пакетов для моделирования процессов тепломассопереноса.

Место учебной дисциплины в структуре ООП ВО

Дисциплина «Модели тепломассопереноса» для магистров относится к дисциплинам вариативной части Блока 1 учебного плана. Дисциплина базируется на знаниях, полученных по стандарту высшего образования, и является основой для теоретической подготовки магистров.

Имеется логическая связь высшая математика, дифференциальные уравнения, функциональный анализ, физика, концепции современного естествознания, численные методы, методы оптимизации, программирования и содержательно-методической взаимосвязь с другими частями ООП ВО: математические методы и модели нанотехнологий, модели мембранной электрохимии, теория сложных систем.

В совокупности изучение этой дисциплины готовит обучаемых к различным видам практической, научно-теоретической и исследовательской деятельности.

Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Компетенции обучающегося, формируемые в результате освоения курса «Модели тепломассопереноса»:

N	Инде кс	Содержание компетенции (или её части)	В результате изучения учебной дисциплины обучающиеся должны				
			знать	уметь	владеть		

			_			
1.		способностью	методы разработки	анализировать	навыками	
	ПК-2	разрабатывать и	моделей	концептуальные и	разрабатывать и	
		анализировать	тепломассоперено	теоретические	анализировать	
		концептуальные и	ca	модели	концептуальные	
		теоретические модели		тепломассоперено	и теоретические	
		решаемых научных		ca	методы и	
		проблем и задач			модели	
					тепломассопере	
					носа	
	ПК-4	способностью	методы	анализировать	навыками	
		разрабатывать и	разработки	концептуальные и	разрабатывать и	
		анализировать	моделей	теоретические	анализировать	
		концептуальные и	тепломассоперено	модели	концептуальные	
		теоретические модели	са в	тепломассоперено	и теоретические	
		решаемых задач	производственно-	са в	модели	
		проектной и	технологической	производственно-	тепломассопере	
		производственно-	деятельности	технологической	носа в	
		технологической		деятельности.	производственн	
		деятельности			0-	
					технологическо	
					й деятельности	

Структура учебной дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 9 семестре

No	Наименование разделов	Количество часов				
раз-		Всего	Аудиторная Работа			СР
дела			Лек.	Лаб.	КСР	
1	2	3	4	5	6	7
1	Дифференциальное уравнение тепломассопереноса.	12		4		8
2	Простейшие задачи конвективной тепломассопередачи.	10		2		8
3	Термодиффузия. Выделение и перенос тепла. Тепловыделения на границах раздела. Термогальванические ячейки.	10		2		8
4	Решение уравнения классическим методом. Методы интегрального преобразования. Методы численного решения.	10		2		8

5	Модельное уравнение конвективного переноса. Модельное уравнение диссипации, конвекции и кинетики.	12	2	8
6	Качественные методы тепломассопереноса в жидкости и газе.	10	2	8
7	Методы исследования тепломассопереноса в камере обессоливания электродиализного аппарата	9,8	2	7,8
	ИКР	0,2		
	Итого:	72	16	55,8

Курсовые работы – не предусмотрены

Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

- 1. Гершанов В.Ю. Нелинейные нестационарные эффекты в процессах массопереноса: монография / В.Ю. Гершанов, С.И. Гармашов. Ростов-на-Дону: Издательство Южного федерального университета, 2014. 114 с. [Электронный ресурс]. Режим доступа: http://biblioclub.ru/index.php?page=book&id=445310.
- 2. Коваленко А.В. Математическое моделирование физико-химических процессов в среде Comsol Multiphysics 5.2. / Коваленко А.В., Узденова А.М., Уртенов М.Х., Никоненко В.В. СПб.: Изд-во «Лань», 2017. 228 с. [Электронный ресурс] Режим доступа: https://e.lanbook.com/book/93695
- 3. Узденова, А.М. Математическое моделирование мембранных процессов с использованием Comsol Multiphysics (Учебное пособие) / А.М. Узденова, А.В. Коваленко, М.Х. Уртенов. Карачаевск: КЧГУ, 2012. 180 с.
- 4. Чубырь, Н.О. Двумерные математические модели переноса бинарного электролита в электромембранных системах (численный и асимптотический анализ) / Чубырь Н.О., Уртенов М.Х., Коваленко А.В. Краснодар: ФГБОУ ВПО «КубГТУ», 2012. 131 с.