Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кубанский государственный университет» Факультет педагогики, психологии и коммуникативистики

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.03.01 ФИЗИКА

Направление подготовки 44.03.05 Педагогическое образование

Направленность (профиль) Технологическое образование, Экономика

Программа подготовки академическая

Форма обучения очная

Квалификация (степень) выпускника бакалавр

Рабочая программа дисциплины «Физика» составлена в соответствии с федеральным государственным образовательным стандартом высшего профессионального образования (ФГОС ВПО) по направлению подготовки 44.03.05 Педагогическое образование (с двумя профилями подготовки), профиль: Технологическое образование, Экономика

направления подготовки

Программу составил(и):

С.А. Покатилов, преподаватель

А.Г. Хентонен, доцент, канд.пед.наук

Жирма Е.Н., директор МБОУ СОШ №61 г.Краснодара

Рабочая программа дисциплины «Термодинамика, статистическая физика и физическая кинетика» утверждена на заседании кафедры технологии и предпринимательства

протокол № 13 «26» мая 2015г.

Заведующий кафедрой технологии и предпринимательства

Сажина Н.М.

Рабочая программа обсуждена на заседании кафедры технологии и предпринимательства

протокол № 13 «26» мая 2015 г.

Заведующий кафедрой

технологии и предпринимательства

СажинаН.М.

Утверждена на заседании учебно-методической комиссии факультета педагогики, психологии и коммуникативистики

протокол № 10 «27» мая 2015г.

Председатель УМК факультета Гребенникова В.М.

Рецензенты:

Жирма Е.Н., директор МБОУ СОШ №61 г.Краснодара

Голубь М.С., канд.пед.наук, доцент кафедры ДПП ФППК КубГУ//

1 Цели и задачи изучения дисциплины (модуля).

1.1 Цель освоения дисциплины.

Основная *цель* преподавания дисциплины «Физика» — развитие у студентов личностных качеств, а также формирование профессиональных компетенций в соответствии с требованиями ФГОС ВПО с учетом специфики профиля подготовки, основанных на знакомстве с освоением фундаментальных физических законов и понятий, теорий, методов классической и современной физики.

1.2 Задачи дисциплины.

- формирование естественнонаучного мировоззрения;
- формирование навыков владения основными приемами и методами решения научно- технических задач;
- ознакомление с современной научно-исследовательской аппаратурой и измерительными приборами;
- ознакомление с историей физики и ее развитием, а также с основными направлениями и тенденциями развития современной физики;
 - формирование навыков проведения научных исследований;
- формирование культуры мышления, устной и письменной речи, развитие способности к обобщению, анализу, восприятию информации, постановке цели и выбору путей еè достижения.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Дисциплина «Физика» (Б1.В.03.01) относится к вариативной части Блока 1 Модуль 2. «Естественнонаучные дисциплины в технологическом образовании» учебного плана.

Перечень последующих дисциплин, для которых данная дисциплина является предшествующей: Информатика, Прикладная механика, Химия.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся профессиональных компетенций (ПК-4, ПК-7)

No	Индекс	Содержание	В результате	изучения учебной	і дисциплины	
	компет	компетенции (или её	обучающиеся должны			
П.П.	енции	части)	знать	уметь	владеть	
1.	ПК-4	способностью	Знание	Умение	Способен	
		использовать	основных	определить	организовать	
		возможности	физических	стиль, методы,	образовательн	
		образовательной	законов и их	средства и	ую среду для	
		среды для	применения	технологии	достижения	
		достижения	для	формирования	личностных,	
		личностных,	достижения	личностных,	метапредметн	
		метапредметных и	личностных,	метапредметн	ых и	
		предметных	метапредметн	ых и	предметных	
		результатов	ых и	предметных	результатов	
		обучения и	предметных	результатов	обучения и	
		обеспечения	результатов	обучения и	обеспечения	
		качества учебно-	обучения и	обеспечения	качества	
		воспитательного	обеспечения	качества	учебно-	
		процесса средствами	качества	учебно-	воспитательно	
		преподаваемого	учебно-	воспитательно	го процесса на	
		учебного предмета	воспитательно	го процесса на	уроках	
			го процесса на	уроках	технологии	

No	Индекс	Содержание	В результате изучения учебной дисциплины		
п.п.	компет	компетенции (или её	обучающиеся должн		НЫ
11.11.	енции	части)	знать	уметь	владеть
			уроках	технологии с	
			технологии	помощью	
				знаний по	
				физическим	
				законам,	
				естественно-	
				научной	
				картине мира	
2	ПК-7	способностью	Знание	Умение	Владение
		организовывать	методов	организовать	средствами,
		сотрудничество	организации	сотрудничеств	методами и
		обучающихся,	сотрудничеств	o c	технологиями
		поддерживать	а и	учащимися,	организации
		активность и	сопровождени	поддержка их	сотрудничеств
		инициативность,	Я	активности,	а и
		самостоятельность	обучающихся,	инициативнос	сопровождени
		обучающихся,	поддержки	ти и	Я
		развивать их	активности и	самостоятельн	обучающихся,
		творческие	инициативнос	ости, развитие	поддержки у
		способности	ти,	у них навыков	них
			самостоятельн	использования	активности и
			ости. Знание	физики	инициативнос
			основных		ти,
			физических		самостоятельн
			законов,		ости.
			формирование		Способен
			естественнона		применять
			учного		средства,
			мировоззрения		методы и
			_		технологии
					развития
					способностей
					по усвоению
					физики

В процессе изучения дисциплины (модуля) студент должен знать:

- историю развития физики и представлений о естественно-научной картине мира;
- основные понятия этого предмета, понимать содержание фундаментальных законов и основных моделей классической и современной физики;

Уметь владеть:

- формулировать основные определения предмета, использовать уравнения физики для конкретных физических ситуаций, проводить необходимые математические преобразования,
 объяснять содержание фундаментальных принципов и законов, а также способы решения задач.
- планировать и осуществлять учебный эксперимент, организовывать экспериментальную и исследовательскую деятельность; оценивать результаты эксперимента, готовить отчетные материалы о проведенной исследовательской работе;
- приобретать новые знания по физике, используя современные информационные и коммуникационные технологии.

Владеть умениями и иметь опыт:

-навыками применения общих методов физики к решению конкретных задач;

-методологией исследования в области физики.

2. Структура и содержание дисциплины.

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины составляет 3 зач.ед. (108 часов), их распределение по видам работ представлено в таблице (для студентов $O\Phi O$).

Вид у	Всего	Семестры	
	•	часов	(часы)
			3
Аудиторные занятия (всего)	56	56
В том числе:			
Занятия лекционного ти	па	14	14
Занятия семинарского т занятия)	типа (семинары, практические	40	40
Лабораторные занятия		-	-
Иная контактная рабо	ота:		
КСР		2	2
Промежуточная аттеста	ция (ИКР)	0,3	0,3
Самостоятельная рабо	25	25	
В том числе:			
Проработка учебного (8	8	
Реферат	6	6	
Выполнение индивидуал	ьных заданий (подготовка	4	4
сообщений, презентаци			
Подготовка к текущем	у контролю	7	7
Промежуточная аттес	гации	26,7	26,7
Общая	Час.	108	108
трудоемкость:	В том числе контактная работа	56,3	56,3
	Зач.ед	3	3

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 3 семестре (очная форма)

			Количество часов				
№	Наименование разделов	Всего	Аудиторная работа			Внеаудит орная работа	
			Л	П3	ЛР	CPC	
1	2	3	4	5	6	7	
1.	Механика	12	2	6	-	4	
2.	Молекулярная физика и термодинамика	13	2	6	-	5	
3.	Электродинамика	16	4	8	-	4	
4.	Оптика	10	2	6		2	
5.	Теория относительности	14	2	6		6	
6.	Квантовая физика	14	2	8		4	
7.	KCP	2					
8.	Экзамен	27					

2.3 Содержание разделов дисциплины:2.3.1 Занятия лекционного типа.

№	Наименование	Содорумуну роздала	Форма
710	раздела	Содержание раздела	текущего
	-		контроля
1	2	3	4
	Механика	Производная. Механическое движение.	Собеседование
		Равномерное прямолинейное движение.	(0)
		Равноускоренное движение. Равномерное	(C)
		движение по окружности.	
,	Молекулярная	Основные положения МКТ. Газы, жидкости и	Собеседование
	физика и	твердые тела. Основные формулы молекулярной	(0)
	термодинамика	физики. Температура. Внутренняя энергия.	(C)
		Насыщенный пар	
Ţ,	Электродинамика	Электрический заряд. Потенциал электрического	Тестирование
		поля. Проводники в электрическом поле.	(T)
		Диэлектрики в электрическом поле. Постоянный	
		электрический ток.	
4	Оптика	Световые лучи. Отражение света. Преломление	Собеседование
		света. Оптические приборы. Интерференция	(C)
		воли. Интерференция света. Дифракция света.	, ,
		Дисперсия света.	
	Теория	Принцип относительности Галилея.	Собеседование
	относительности	Релятивистская кинематика.	(C)
(Квантовая физика	Фотоэффект. Фотоны. Корпускулярно-волновой	Тестирование
		дуализм. Строение атома. Строение ядра.	(T)

2.3.2 Занятия семинарского типа.

№	Наименование	Тематика практических занятий	Форма текущего
710	раздела	(семинаров)	контроля
1	2	3	4
1	Механика	Первый закон Ньютона. Второй и третий закон	Коллоквиум (К)
		Ньютона. Статика твердого тела. Статика	
		жидкостей и газов. Импульс. Энергия.	
		Механические колебания. Механические волны.	
2	Молекулярная	Основные формулы молекулярной физики.	Коллоквиум (К)
	физика и	Уравнение состояния идеального газа.	
	термодинамика	Изопроцессы. Фазовые переходы. Первый закон	
		термодинамики. Тепловые машины. Второй	
		закон термодинамики.	
3	Электродинамика	Закон Кулона. Конденсатор. Энергия	Коллоквиум (К)
		электрического поля. Закон Ома. Соединения	
		проводников. Работа и мощность тока.	
		Электрический ток в металлах, газах,	
		электролитах. Магнитное поле.	
4	Оптика	Оптические приборы. Принцип Гюйгенса.	Реферат
		Линзы. Ход лучей. Тонкие линзы. Ход лучей.	
		Тонкие линзы. Построение изображений.	
5	Теория	Принципы СТО. Релятивистская динамика.	Коллоквиум (К)

	относительности		
(б Квантовая	Линейчатые спектры. Атом Бора. Лазер.	Коллоквиум (К)
	физика	Радиоактивность. Энергия связи ядра. Ядерные	
		реакции.	

2.3.3 Лабораторные занятия.

Лабораторные занятия - не предусмотрены

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы - не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Проработка учебного (теоретического) материала	Методические указания по организации самостоятельной работы по дисциплине «Физика» Канторович, С.С. Общая физика. Механика: учебное пособие / С.С. Канторович, Д.В. Пермикин Екатеринбург: Издательство Уральского университета, 2012 124 с ISBN 978-5-7996-0721-0 Физика: Разделы «Механика. Молекулярная физика. Термодинамика» (организация самостоятельной работы студентов): учебно-методическое пособие / Министерство образования и науки РФ, ФГБОУ ВПО «Уфимский государственный университет экономики и сервиса», Кафедра «Физика»; сост. О.А. Денисова Уфа: Уфимский государственный университет экономики и сервиса, 2014 Ч. 1 132 с Библиогр.: с. 114.
2	Реферат	Методические указания по написанию реферата по дисциплине «Физика» Канторович, С.С. Общая физика. Механика : учебное пособие / С.С. Канторович, Д.В. Пермикин Екатеринбург : Издательство Уральского университета, 2012 124 с ISBN 978-5-7996-0721-0
3	Все перечисленные СРС	Казанцева, А.Б. Сборник вопросов и задач по общей физике: учебное пособие / А.Б. Казанцева, Н.В. Соина, Г.Н. Гольцман; Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский педагогический государственный университет» Москва: Прометей, 2012 Раздел 5. Молекулярная физика 144 с ISBN 978-5-7042-2340-5 Малышев, Л.Г. Физика атома и ядра / Л.Г. Малышев, А.А. Повзнер; Министерство образования и науки Российской Федерации, Уральский федеральный университет имени первого Президента России Б. Н. Ельцина; науч. ред. Ф.А. Сидоренко Екатеринбург:

		Издательство Уральского университета, 2014 145 с. : ил., табл Библиогр. в кн ISBN 978-5-7996-1283-2
4	Выполнение индивидуальных заданий (подготовка сообщений, презентаций)	Методические указания по написанию реферата по дисциплине «Физика». Канторович, С.С. Общая физика. Механика : учебное пособие / С.С. Канторович, Д.В. Пермикин Екатеринбург : Издательство Уральского университета, 2012 124 с ISBN 978-5-7996-0721-0
5	Подготовка к текущему контролю	Казанцева, А.Б. Сборник вопросов и задач по общей физике: учебное пособие / А.Б. Казанцева, Н.В. Соина, Г.Н. Гольцман; Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский педагогический государственный университет» Москва: Прометей, 2012 Раздел 5. Молекулярная физика 144 с ISBN 978-5-7042-2340-5 Малышев, Л.Г. Физика атома и ядра / Л.Г. Малышев, А.А. Повзнер; Министерство образования и науки Российской Федерации, Уральский федеральный университет имени первого Президента России Б. Н. Ельцина; науч. ред. Ф.А. Сидоренко Екатеринбург: Издательство Уральского университета, 2014 145 с.: ил., табл Библиогр. в кн ISBN 978-5-7996-1283-2

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

Для достижения поставленных целей преподавания дисциплины реализуются следующие средства, способы и организационные мероприятия:

- изучение теоретического материала дисциплины на лекциях с использованием компьютерных технологий;
- самостоятельное изучение теоретического материала дисциплины с использованием *Internet*-ресурсов, информационных баз, методических разработок, специальной учебной и научной литературы;
- закрепление теоретического материала при выполнения графических, проблемно-ориентированных, поисковых заданий.

Преподавание дисциплины основано на использовании интерактивных педагогических технологий, ориентированных на развитие личности студента. Так, в частности, используется технология «обучение в сотрудничестве» (collaborative learning).

Процесс группового обучения, в отличие от традиционного фронтального и индивидуального, характеризуется такими основными чертами, как:

- -**участие.** Групповое участие способствует расширению информационного поля отдельно взятого студента и всей группы в целом. Они учатся работать вместе, обсуждать проблемы, принимать коллективные решения и развивать свою мыслительную деятельность;
- -социализация. Студенты учатся задавать вопросы, слушать своих коллег, следить за выступлением своих товарищей и интерпретировать услышанное. При этом постепенно приходит понимание необходимости активного участия в работе группы, ответственности за свой вклад в процесс коллективной работы. Студентам предоставляется возможность «примерить» на себя различные социальные роли: задающего вопросы, медиатора, интерпретатора, ведущего дискуссию, мотиватора и т. д.;
- **-общение.** Студенты должны знать, как и когда надо задавать вопросы, как организовать дискуссию и как ею управлять, как мотивировать участников дискуссии, как говорить, как избежать конфликтных ситуаций и пр.;
- **-рефлексия.** Студенты должны научиться рефлексии, анализу собственной деятельности. Должны понять, как оценить результаты совместной деятельности, индивидуальное и групповое участие, сам процесс;
- -взаимодействие для саморазвития. Студенты должны осознать, что успех их учебной деятельности зависит от успеха каждого отдельного обучающегося. Они должны помогать друг другу, поддерживать и вдохновлять друг друга, помогать развиваться, так как в условиях обучения в сотрудничестве это необходимый «взаимовыгодный» процесс. При этом каждый отвечает за всех, за все, за весь учебный процесс.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

4.1 Фонд оценочных средств для проведения текущего контроля.

Примерные вопросы к коллоквиуму

- 1. Механическое движение.
- 2. Траектория движения. Пройденный путь. Скорость движения.
- 3. Ускорение движения. Тангенциальное ускорение. Нормальное ускорение. Связь между ними.
- 4. Законы Ньютона. Силы в механике: сила всемирного тяготения, сила тяжести, вес тела, сила упругости, сила Архимеда, сила Стокса.
- 5. Кинематика движения точки по окружности и вращательного движения твердого тела, угловая скорость, угловое ускорение.
 - 6. Связь линейной скорости с угловой и тангенциального ускорения с угловым.
- 7. Динамика вращательного движения тел вокруг неподвижной оси: момент силы относительно оси, плечо силы, момент инерции точечного тела и системы тел, основной закон динамики вращательного движения.
- 8. Механические колебания. Смещение, амплитуда, период, частота, фаза и циклическая частота колебаний. Гармонические колебания.
- 9. Уравнение гармонических колебаний. Скорость и ускорение движения при гармонических колебаниях. Связь ускорения со смещением.
- 10. Представление гармонических колебаний в виде вращающегося вектора. Сложение двух гармонических колебаний с одинаковыми частотами, совершающихся в одном направлении. Условия усиления и максимального усиления колебаний. Условия ослабления и наибольшего ослабления колебаний
 - 11. Квазиупругая сила.
 - 12. Математический и физический маятники.
 - 13. Циклическая частота гармонического осциллятора.
 - 14. Энергия колебаний.

Примерный тест

Тестовое задание. Ответьте на вопросы, выбрав тот ответ (ответы), который (которые) Вы считаете правильным (правильными).

Вопросы теста.

1 Какую массу принимают за единицу массы в атомной физике?

- 1/16 долю массы атома кислорода
- массу атома кислорода
- +1/12 долю массы атома углерода
- массу атома водорода
- массу одного нейтрона

2 Какие вещества называются изотопами?

- вещества, имеющие одинаковые массы, у которых атомные веса выражаются целыми числами
- вещества, обладающие одинаковыми химическими свойствами и имеющие различные порядковые номера
 - вещества, располагающиеся в одной строке в таблице Менделеева
- вещества, располагающиеся в одном и том же столбце таблицы Менделеева и имеющие одинаковые химические свойства
- +вещества, имеющие одни и те же порядковые номера в таблице Менделеева, но различные массовые числа

3 Перемещением называют:

- линию в пространстве, описываемую точкой при движении
- вектор, соединяющий начальное и конечное положение точки
- длину пути
- вектор, соединяющий начало координат и конечную точку пути

4 Первый закон Ньютона имеет следующую формулировку:

- существуют такие системы отсчета, в которых свободные тела движутся прямолинейно и равномерно
 - сила есть произведение массы на ускорение
 - силы в природе возникают симметричными парами

5 Второй закон Ньютона имеет следующую формулировку:

- существуют такие системы отсчета, в которых свободные тела движутся прямолинейно и равномерно
 - сила есть произведение массы на ускорение
 - силы в природе возникают симметричными парами
- ускорение, с которым движется тело, под воздействием силы, прямо пропорционально ускорению и обратно пропорционально массе

6 Третий закон Ньютона имеет следующую формулировку:

- существуют такие системы отсчета, в которых свободные тела движутся прямолинейно и равномерно
 - сила есть произведение массы на ускорение
 - силы в природе возникают симметричными парами
- два тела взаимодействуют друг на друга с силами, равными по модулю, но противоположными по направлению

7 Стальной шарик это...

- физическое тело
- физическая величина
- физическое явление

8 Найдите из указанных скоростей наибольшую...

- -1 m/c
- -100 cm/c
- 100 см/мин
- +100 дм/c

9 Диффузия это...

- физическое тело
- физическая величина
- физическое явление

10 Имеет ли электрический заряд электрон и протон?

- электрон да, протон нет
- электрон и протон имеют заряды
- оба не имеют зарядов
- электрон нет, протон да

11 Молекула – это

- наименьшая частица
- наименьшая устойчивая частица вещества
- наименьшая устойчивая частица вещества, обладающая его основными химическими свойствами
 - частица, состоящая из атомов
 - нет правильного ответа

12 Число Авогадро — это

- число молекул в одном моле вещества
- число молекул в одном килограмме вещества
- число молекул в одном метре кубическом
- затрудняюсь ответить

Темы рефератов

- 1. Электрическое взаимодействие заряженных тел.
- 2. Электрический заряд.
- 3. Закон Кулона.
- 4. Напряженность и потенциал электрического поля.
- 5. Напряженность и потенциал электростатического поля точечного заряда и системы точечных зарядов.
 - 6. Работа электрического поля. Разность потенциалов.
- 7. Связь разности потенциалов с напряженностью электрического поля. Электрический конденсатор.
 - 8. Электроемкость конденсатора.
 - 9. Электроемкость плоского конденсатора. Энергия электрического поля.
 - 10. Электрический ток.
 - 11. Сила тока.
 - 12. Плотность тока.
 - 13. Электродвижущая сила.
 - 14. Напряжение.
 - 15. Электрическое сопротивление проводников.
 - 16. Электрический ток в металлах.
 - 17. Закон Ома.
 - 18. Закон Ома в дифференциальной форме.
 - 19. Работа электрического тока. Закон Джоуля Ленца.
- 20. Магнитное взаимодействие. Индукция и напряженность магнитного поля. Сила Ампера.

- 21. Индукция магнитного поля элемента тока (закон Био-Савара-Лапласа), прямого проводника с током, соленоида.
- 22. Действие магнитного поля на движущийся точечный электрический заряд. Сила Лоренца.
 - 23. Движение заряженных частиц в электрическом и магнитном полях.

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

Методические указания

Подготовка к экзамену позволяет повторить и закрепить пройденный материал. Подготовку следует начинать с прочтения конспектов лекций. Для лучшего усвоения материала рекомендуется изучение материала по предложенным литературным источникам и дополнительно подобранным самими студентами.

Вопросы к экзамену:

- 1. Закон сохранения электрического заряда. Закон Кулона.
- 2. Электрическое поле. Напряженность поля.
- 3. Принцип суперпозиции электрических полей.
- 4. Электрическое смещение. Поток смещения. Поток вектора напряженности.
- 5. Теорема Остроградского Гаусса для электростатического поля.
- 6. Потенциал электростатического поля. Эквипотенциальные поверхности.
- 7. Связь между напряженностью и потенциалом электрического поля.
- 8. Работа по перемещению зарядов в электрическом поле.
- 9. Поляризация диэлектриков. Полярные и неполярные диэлектрики. Электрический диполь.
 - 10. Проводники в электрическом поле.
 - 11. Электроемкость уединенного проводника.
 - 12. Электроемкость. Конденсаторы.
 - 13. Энергия электростатического поля.
 - 14. Электрический ток. Сила тока и плотность тока.
 - 15. Закон Ома. Закон Джоуля Ленца.
 - 16. Разветвленные цепи. Правила Кирхгофа.
 - 17. Контактная разность потенциалов. Термоэлектричество.
 - 18. Электрический ток в вакууме. Термоэлектронная эмиссия и ее применение.
 - 19. Магнитное поле. Магнитная индукция. Закон Ампера. Магнитное поле тока.
 - 20. Закон Био-Савара-Лапласа и его применение к расчету магнитного поля.
 - 21. Магнитное поле прямолинейного проводника с током.
 - 22. Магнитное поле кругового тока. Магнитный момент витка с током.
- 23. Вихревой характер магнитного поля. Закон полного тока (циркуляция вектора магнитной индукции) и его применение к расчету магнитного поля тороида и длинного соленоила.
 - 24. Действие магнитного поля на движущийся заряд. Сила Лоренца.
 - 25. Эффект Холла.
 - 26. Контур с током в магнитном поле.
 - 27. Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля.
 - 28. Работа перемещения проводника и контура с током в магнитном поле.
 - 29. Явление электромагнитной индукции (опыты Фарадея). Правило Ленца.
 - 30. Закон электромагнитной индукции.
 - 31. Явление самоиндукции. Индуктивность.
 - 32. Явление взаимной индукции. Взаимная индуктивность.
- 33. Энергия магнитного поля проводника с током. Объемная цлотность энергии магнитного поля.

- 34. Магнитное поле в веществе. Магнитные моменты атомов. Типы магнетиков. Намагниченность.
 - 35. Элементарная теория диа- и парамагнетизма.
 - 36. Магнитная восприимчивость вещества и ее зависимость от температуры.
 - 37. Напряженность магнитного поля. Магнитная проницаемость среды.
- 38. Ферромагнетики. Кривая намагничивания. Магнитный гистерезис. Точка Кюри.
 - 39. Уравнения Максвелла для электромагнитного поля в интегральной форме.
 - 40. Электрический колебательный контур. Энергия электромагнитных колебаний.
 - 41. Электромагнитные волны. Основные свойства электромагнитных волн.

Критерии оценки:

Оценка отлично:

- знание учебного материала на основе программы и углубленные сведения по одной из проблем за пределами программы;
- логическое, последовательное изложение вопроса с опорой на разнообразные источники;
 - определение своей позиции в раскрытии подходов к рассматриваемой проблеме;
- выполнение творческого задания на высоком уровне с привлечением различных источников;
 - подготовка презентации.

Оценка хорошо:

- знание учебного материала в пределах программы;
- раскрытие различных подходов к рассматриваемой проблеме;
- опора при построении ответа на обязательную литературу;
- выполнение творческого задания с некоторыми замечаниями и неточностями;
- подготовка презентации.

Оценка удовлетворительно

- знание учебного материала в пределах программы на основании одного из подходов к рассматриваемой проблеме;
- отсутствие собственной критической оценки возможности использования изученного материала для решения современных проблем;
- выполнение творческого задания со значительными ошибками, неправильным оформлением;
 - без выполнения презентации.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление

информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

- 1. Канторович, С.С. Общая физика. Механика : учебное пособие / С.С. Канторович, Д.В. Пермикин. Екатеринбург : Издательство Уральского университета, 2012. 124 с. ISBN 978-5-7996-0721-0
- 2. Физика: Разделы «Механика. Молекулярная физика. Термодинамика» (организация самостоятельной работы студентов) : учебно-методическое пособие / Министерство образования и науки РФ, ФГБОУ ВПО «Уфимский государственный университет экономики и сервиса», Кафедра «Физика» ; сост. О.А. Денисова. Уфа : Уфимский государственный университет экономики и сервиса, 2014. Ч. 1. 132 с. Библиогр.: с. 114.

5.2 Дополнительная литература:

- 1. Казанцева, А.Б. Сборник вопросов и задач по общей физике : учебное пособие / А.Б. Казанцева, Н.В. Соина, Г.Н. Гольцман ; Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский педагогический государственный университет». Москва : Прометей, 2012. Раздел 5. Молекулярная физика. 144 с. ISBN 978-5-7042-2340-5
- 2. Малышев, Л.Г. Физика атома и ядра / Л.Г. Малышев, А.А. Повзнер ; Министерство образования и науки Российской Федерации, Уральский федеральный университет имени первого Президента России Б. Н. Ельцина ; науч. ред. Ф.А. Сидоренко. Екатеринбург : Издательство Уральского университета, 2014. 145 с. : ил., табл. Библиогр. в кн. ISBN 978-5-7996-1283-2

5.3. Периодические издания:

1. Интернет-библиотека образовательных изданий http://www.iqlib.ru/

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля).

Электронная библиотечная система издательства "Лань" http://e.lanbook.com/

Электронная библиотечная система "Айбукс" http://ibooks.ru/

Электронная библиотечная система "ZNANIUM.COM" http://znanium.com/

Электронная Библиотека Диссертаций https://dvs.rsl.ru/

Научная электронная библиотека (НЭБ) http://www.elibrary.ru/

7. Методические указания для обучающихся по освоению дисциплины (модуля).

Организация и учебно-методическое обеспечение самостоятельной работы студентов(СРС)

Текущая и опережающая СРС, направленная на углубление и закрепление знаний, а также развитие практических умений заключается в:

- работе бакалавров с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме,
- написании реферата,
- изучении тем, вынесенных на самостоятельную проработку,
- подготовке к экзамену.

Творческая проблемно-ориентированная самостоятельная работа (TCP) направлена на развитие интеллектуальных умений, комплекса универсальных (общекультурных) и профессиональных компетенций, повышение творческого потенциала бакалавров и заключается в:

- поиске, анализе, структурировании и презентации информации,
- анализе учебно-тематического плана уроков технологии,
- исследовательской работе и участии в научных студенческих конференциях, семинарах и олимпиадах по проблеме технологического образования.

Обучающие инвалиды, как и все остальные студенты, могут обучаться по индивидуальному учебному плану в установленные сроки с учетом особенностей образовательных потребностей конкретного обучающегося. Срок получения высшего образования при обучении по индивидуальному плану для инвалидов и лиц с ограниченными возможностями здоровья может быть при необходимости увеличен, но не более чем на полгода. При составлении индивидуального графика обучения могут быть предусмотрены различные варианты проведения занятий: в образовательной организации (в академической группе и индивидуально), на дому с использованием элементов дистанционных образовательных технологий.

Обучающие инвалиды, как и все остальные студенты, могут обучаться по индивидуальному учебному плану в установленные сроки с учетом особенностей образовательных потребностей конкретного обучающегося. Срок получения высшего образования при обучении по индивидуальному плану для инвалидов и лиц с ограниченными возможностями здоровья может быть при необходимости увеличен, но не более чем на полгода. При составлении индивидуального графика обучения могут быть предусмотрены различные варианты проведения занятий: в образовательной организации (в академической группе и индивидуально), на дому с использованием элементов дистанционных образовательных технологий.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

8.1 Перечень информационных технологий.

- Проверка домашних заданий и консультирование посредством электронной почты.
- Использование электронных презентаций при проведении лекционных и практических занятий.

8.2 Перечень необходимого программного обеспечения.

Программы для демонстрации и создания презентаций («Microsoft Power Point»). Программы, демонстрации видео материалов (проигрыватель «Windows Media Player»).

8.3 Перечень информационных справочных систем:

- 1. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
- 2. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)/
- 3. Гарант.ру: информационно-правовой портал http://www.garant.ru
- 4. Министерство образования и науки http://минобрнауки.рф
- 5. Университетская информационная система РОССИЯ (УИС Россия) http://uisrussia.msu.ru

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

No	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные занятия	Лекционная аудитория, оснащенная презентационной техникой (проектор, экран, компьютер) и соответствующим программным обеспечением (ПО) про профилю «Технологическое образование. Физика» специализированные демонстрационные установки: мультимедийный интерактивный демонстрационный комплекс
2.	Семинарские занятия	Специальное помещение, оснащенная презентационной техникой (проектор, экран, мультимедийный интерактивный демонстрационный комплекс
3.	Групповые (индивидуальные) консультации	Аудитория, (кабинет) 22 Мультимедийный интерактивный демонстрационный комплекс
4.	Текущий контроль, промежуточная аттестация	Аудитория, (кабинет) 21 Оборудование: мультимедийный проектор, экран, персональный компьютер, учебная мебель, доска учебная, выход в Интернет, учебно-наглядные пособия; лабораторный комплекс для учебной практической и проектной деятельности
5.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационно-образовательную среду университета.