Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» (ФГБОУ ВО «КубГУ»)

Физико-технический факультет

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования – первый

проректор

Хагуров Т.А.

подмись

2018 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.Б.09.01 МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Направление подготовки

03.03.02 Физика

Направленность (профиль)

Фундаментальная физика

Программа подготовки

академическая

Форма обучения

очная

Квалификация выпускника

бакалавр

Краснодар 2018

Рабочая программа дисциплины «Методы математической физики» составлена в соответствии Федеральным государственным C образования по направлению образовательным стандартом высшего подготовки 03.03.02 Физика.

Программу составил: А.А. Мартынов, доцент кафедры теор. физики и комп. тех.,

к. ф.-мат. наук, доцент

Рабочая программа дисциплины «Методы математической утверждена на заседании кафедры теоретической физики и компьютерных технологий

протокол № 9 «29» марта 2018 г.

Заведующий кафедрой (разработчика)

Исаев В.А.

Рабочая программа обсуждена на заседании кафедры физики и информационных систем

протокол № 15 «6» апреля 2018 г. Заведующий кафедрой (выпускающей) Богатов Н.М.

полпись

Утверждена на заседании учебно-методической комиссии физикотехнического факультета

протокол № 10 «12» апреля 2018 г.

Председатель УМК факультета Богатов Н.М.

Рецензенты:

Л.Р. Григорьян, ген. директор ООО НПФ «Мезон», к. ф.-м. наук

Г.Ф. Копытов, зав. каф. радиофизики и нанотех., д. ф.-мат. наук, профессор

1 Цели и задачи изучения дисциплины.

1.1 Цель дисциплины.

Учебная дисциплина «Методы математической физики» ставит своей целью изучение математических моделей различных физических явлений. Значительная часть математических моделей, изучаемых в традиционном (классическом) курсе математической физики, сводится к краевым задачам для линейных дифференциальных уравнений в частных производных второго порядка, среди которых особо важны три: волновое уравнение, уравнение теплопроводности и уравнение Лапласа. Первостепенная роль этих (и некоторых других) уравнений, сформулированных еще в XIX веке, объясняется их исключительной универсальностью - трудно найти раздел точного естествознания (теория колебаний, гидродинамика, теория упругости, электродинамика, физические акустика и оптика и др.), в котором бы они не применялись. Поэтому краевые задачи для этих уравнений относят к базовым задачам математической физики.

Сложные физические процессы описываются математическими моделями, являющимися, как правило, объединением нескольких базовых задач. Уравнения гиперболического, параболического и эллиптического типов, составляющие основу данного курса "Методов математической физики" являются как раз примерами базовых задач.

1.2 Задачи дисциплины.

Основная задача дисциплины - изучение (математическая постановка задачи, проблема существования и единственности решения, типичные аналитические методы исследования, отыскание общих и частных решений задач) и практическое освоение методов решения базовых задач математической физики на примере уравнений гиперболического, параболического и эллиптического типов.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Учебная дисциплина «**Методы математической физики**» входит в базовую часть цикла общепрофессиональных дисциплин базового учебного плана по направлению подготовки бакалавриата 03.03.02 Физика.

Для успешного изучения дисциплины необходимо знание основ линейной алгебры, математического анализа, векторного и тензорного анализ, теории обыкновенных дифференциальных уравнений и теории функций комплексной переменной в объеме курсов университета.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Процесс изучения дисциплины направлен на формирование элементов следующей компетенции в соответствии с ФГОС ВО и ООП по данному направлению подготовки (специальности):

No		Содержание	В результате изуче	ния учебной дисципл	тины обучающие-
	Индекс	компетенции		ся должны	
П.П.		(или её части)	знать	уметь	владеть
1.	ОПК-2	способностью	классификацию	правильно поста-	навыками иссле-
		использовать в	уравнений в	вить краевую за-	дования матема-
		профессиональ-	частных произ-	дачу для уравне-	тических моде-
		ной деятельно-	водных второго	ния данного типа	лей физических
		сти базовые зна-	порядка, вид ба-	и владеть основ-	явлений, явля-
		ния фундамен-	зовых уравнений	ными методами	ющихся краевы-
		тальных разде-	всех типов и их	решения уравне-	ми задачами для
		лов математики,	аналитических	ний в частных	линейных диф-
		создавать мате-	решений, а так же	производных	ференциальных
		матические мо-	физическую ин-		уравнений в
		дели типовых	терпретацию этих		частных произ-

№	Индекс	Содержание компетенции	Содержание В результате изучения учебной дисциплины обучающие-компетенции ся должны		
п.п.		(или её части)	знать	уметь	владеть
		профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей	решений, физические законы, на которых базируется вывод конкретных уравнений		водных второго порядка
2.	ОПК-3	способностью использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач	методы математической физики для решения теоретических и экспериментальных задач в физике	применять методы математической физики для решения теоретических и экспериментальных задач в физике	навыками применения методов математической физики при решении теоретических и экспериментальных задач в физике

2 Структура и содержание дисциплины
2.1 Распределение трудоёмкости дисциплины по видам работ
Общая трудоёмкость дисциплины составляет 45 зач.ед. (144 часа), их распределение по видам работ представлено в таблице.

Вид учебно	ой работы	Всего	Сем	-
		часов	(час	сы)
			6	
Контактная работа, в том ч	нисле:	84,3	84,3	
Аудиторные занятия (всего	o):	80	80	
Занятия лекционного типа		32	32	
Лабораторные занятия		ı	-	
Занятия семинарского типа (семинары, практические	48	48	
занятия)		40	40	
Иная контактная работа:		4,3	4,3	
Контроль самостоятельной р	аботы (КСР)	4	4	
Промежуточная аттестация (ИКР)	0,3	0,3	
Самостоятельная работа, в	том числе:	24	24	
Проработка учебного (теорет	гического) материала	10	10	
Выполнение индивидуальны	х заданий (подготовка со-	10	10	
общений, презентаций)		10	10	
Реферат		4	4	
Контроль:		35,7	35,7	
Экзамен		35,7	35,7	
Общая трудоемкость	час.	144	144	
	в том числе контактная работа	84,3	84,3	
	зач. ед.	4	4	

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы (темы) дисциплины, изучаемые в 6 семестре (очная форма)

NC.	()	Количество часов				
№	Поличенование п оличенов		Аудиторная			Внеаудиторная
раз-	Наименование разделов	Всего		работа		работа
дела			Л	П3	Л3	CPC
1	2	3	4	5	6	7
1	Предмет и задачи математи- ческой физики	15	4	6	-	5
2	Уравнения гиперболического типа	25	8	12	1	5
3	Уравнения параболического типа	23	8	10	1	5
4	Уравнения эллиптического типа	25	8	12	-	5
5	Нелинейные уравнения ма- тематической физики	16	4	8	-	4
	Итого по дисциплине:		32	48	-	24

2.3Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

№	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
1.	Предмет и задачи математической физики	Предмет математической физики. Примеры математических моделей некоторых физических явлений: уравнения малых поперечных колебаний струны и мембраны, волновое уравнение электродинамики; уравнения теплопроводности и диффузии; уравнения Лапласа и Пуассона для электростатического потенциала; уравнение Гельмгольца для установившихся колебательных и волновых процессов; параболическое уравнение, описывающее дифракцию узких световых пучков. Дополнительные условия к дифференциальным уравнениям математической физики: начальные и граничные условия. Понятие краевой задачи. Корректно и некорректно поставленные задачи. Классификация дифференциальных уравнений в частных производных второго порядка и приведение их к канонической форме. Дифференциальные уравнения характеристик и их общие интегралы. Замена независимых переменных в уравнении и ее интерпретация, как преобразования перехода от декартовых координат к произвольным криволинейным координатам. Допустимые преобразования координатам.	трольные вопросы и задания.
2.	Уравнения гиперболи-	Уравнение малых поперечных колебаний	Ответы на кон-

	наакага типа	отрудии Постоиорко красовим запан Запана	Thou III III IO DOUDO
	ческого типа	струны. Постановка краевых задач. Задача Коши о свободных колебаниях бесконечной	
			сы
		струны и ее решение методом распростра-	
		няющихся волн (формула Д'аламбера). Сво-	
		бодные колебания полубесконечной струны.	
		Свободные и вынужденные колебания стру-	
		ны конечной длины. Метод разделения пе-	
		ременных. Разложение по собственным	
		функциям задачи Штурма-Лиувилля. Общая	
		схема метода разделения переменных. Ма-	
		лые поперечные колебания прямоугольной и	
		круглой мембран. Цилиндрические функции	
		и их свойства. Функция Грина (источника)	
		для неоднородного одномерного волнового	
		уравнения. Обобщенная функция Дирака и	
		ее свойства.	
3.	Уравнения параболиче-	Уравнения теплопроводности и диффузии.	Ответы на кон-
	ского типа	Постановка краевых задач для уравнения	трольные вопро-
		теплопроводности на отрезке. Метод разде-	сы
		ления переменных. Функция Грина (ис-	
		точника) для неоднородного параболическо-	
		го уравнения на отрезке. Задача Коши для	
		бесконечной прямой. Решение однородного	
		уравнения теплопроводности на бесконеч-	
		ной прямой методом интегрального преоб-	
		разования Фурье.	
4.	Уравнения эллиптиче-	Уравнения Лапласа, Пуассона и Гельмголь-	Ответы на кон-
	ского типа	ца. Постановка краевых задач Дирихле и	трольные вопро-
		Неймана для уравнений Лапласа и Пуасона.	сы
		Метод разделения переменных. Разложение	
		по собственным функциям задачи Штурма-	
		Лиувилля. Функция Грина (источника)	
		уравнения Лапласа. Гармонические функции	
		и их свойства. Полиномы Лежандра, присо-	
		единенные функции Лежандра, сферические	
		и шаровые функции и их свойства. Краевые	
		задачи для уравнения Гельмгольца.	
5.	Нелинейные уравнения	Нелинейное волновое уравнение, описыва-	Ответы на кон-
	• 1	ющее процессы взаимодействия волн в не-	
	_	линейно-оптических средах. Метод медлен-	СЫ
		но изменяющихся амплитуд. Система уко-	
		роченных уравнений для процесса генерации	
		второй оптической гармоники первого типа	
		с учетом явления дифракции. Некоторые	
		простейшие решения системы укороченных	
		уравнений в плосковолновом приближении.	
		Линеаризация системы укороченных урав-	
		нений (приближения заданного поля и за-	
		данной интенсивности основного излуче-	
		ния).	
<u> </u>	<u>l</u>	······································	

2.3.2 Занятия семинарского типа

Варианты практических заданий берутся из учебника: Сборник задач по уравнениям математической физики: учебное пособие / В.С. Владимиров, В.П. Михайлов, Т.В. Михайлова, М.И. Шабунин. - 4-е изд., перераб. и доп. - Москва: Физматлит, 2016. - 518 с. - URL:

http://biblioclub.ru/index.php?page=book&id=485543.

1100	January and American State of the Control of the Co	<u> </u>	Ф
<u>№</u>	Наименование	Тематика практических занятий	Форма текущего
1	раздела	(семинаров)	контроля
	Продукат и родоми мата	Решение задач по темам: приведение	Voyenou yog nobo
	_	гешение задач по темам. приведение уравнений гиперболического, параболического и эллиптического типов к канонической форме	1 - 1
2.	ческого типа	Решение задач по темам: малые поперечные колебания струны (бесконечной, полуограниченной и конечной длины), прямоугольной и круглой мембран; метод разделения переменных, собственные функции и собственные значения задачи Штурма-Лиувилля; цилиндрические функции и их свойства; функция Грина неоднородного одномерного волнового уравнения (вынужденные колебания струны конечной длины).	та, технический от- чёт по лаборатор- ным работам
3.	Уравнения параболиче- ского типа	Решение задач по темам: первая краевая задача для уравнения теплопроводности на отрезке и ее решение методом разделения переменных; задача Коши для бесконечной прямой и ее решение методом интегрального преобразования Фурье; фундаментальное решение уравнения теплопроводности на бесконечной прямой.	та, технический от- чёт по лаборатор- ным работам
4.	Уравнения эллиптиче- ского типа	Решение задач по темам: внутренняя и внешняя задачи Дирихле для уравнений Лапласа, Пуассона, Гельмгольца в случаях круговой и шаровой областей; полиномы Лежандра, сферические функции и их свойства; функция Грина задачи Дирихле для уравнения Лапласа в шаровой области.	та, технический отчёт по лабораторным работам
		Решение задач по темам: волновое уравнение в нелинейно-оптических средах; метод медленно изменяющихся амплитуд и сведение с его помощью нелинейного волнового уравнения к системе укороченных уравнений на примере процесса генерации второй оптической гармоники первого типа в нелинейно-оптических кристаллах; приближения заданного поля и заданной интенсивности основного излучения.	та, технический отчёт по лабораторным работам

2.3.3 Лабораторные занятия

По дисциплине «Методы математической физики» лабораторные занятия не планируются.

2.3.4 Примерная тематика курсовых работ (проектов)

Согласно учебному плану курсовые работы (проекты) по данной дисциплине не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Наименование раздела	Перечень учебно-методического обеспечения дисциплины по вы- полнению самостоятельной работы
1	2	3
1.	Разделы 1 – 5 .	1. Ильин А.М. Уравнения математической физики: учебное пособие / А.М. Ильин Москва: Физматлит, 2009 192 с URL: http://biblioclub.ru/index.php?page=book&id=69318. 2. Сабитов К.Б. Уравнения математической физики: учебник / К.Б. Сабитов Москва: Физматлит, 2013 352 с URL: http://biblioclub.ru/index.php?page=book&id=275562. 3. Сборник задач по уравнениям математической физики: учебное пособие / В.С. Владимиров, В.П. Михайлов, Т.В. Михайлова, М.И. Шабунин 4-е изд., перераб. и доп Москва: Физматлит, 2016 518 с URL: http://biblioclub.ru/index.php?page=book&id=485543.

3 Образовательные технологии

Для проведения меньшей части лекционных занятий используются мультимедийные средства воспроизведения активного содержимого, позволяющего слушателю воспринимать особенности изучаемой профессии, зачастую играющие решающую роль в понимании и восприятии, а также формировании профессиональных компетенций. Большая часть лекций и практические занятия проводятся с использованием доски и справочных материалов.

По дисциплине проводятся двухчасовые лекционно-практические занятия. При этом в каждом модуле проводятся практические занятия, посвященные решению типовых задач. В процессе практических занятий проводится обсуждение и разбор решений прикладных задач.

Такой инновационный подход позволил внедрить в процесс преподавания учебной дисциплины «Методы математической физики» новые средства, формы и активные прогрессивные методы обучения. Используемые технологии способствуют реализации студентами своего личностного, познавательного и творческого потенциала и выполнению учебных и учебно-исследовательских работ по личным траекториям.

4 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Текущий контроль:

- проверка домашних заданий по семинарским занятиям;
- контрольные вопросы по разделам учебной программы;
- реферат;
- презентация по теме реферата;
- внутрисеместровая аттестация.

Итоговый контроль:

–Экзамен.

4.1 Фонд оценочных средств для проведения текущей аттестации

Текущий контроль усвоения материала домашних практических заданий по проводится преподавателем устно в форме беседы. Оценка — по 5-ти балльной системе.

4.1.1 Темы рефератов

- 1. Физические задачи, приводящие к дифференциальным уравнениям в частных про-изводных.
 - 2. Уравнение диффузии.
 - 3. Вывод уравнений электрических колебаний в проводах.
 - 4. Физические задачи, приводящие к интегральным уравнениям.
 - 5. Приложения интегральных уравнений в математической физике.
 - 6. Приложения цилиндрических функций в математической физике.
 - 7. Применение сферических функций в математической физике.
 - 8. Примеры решения задач математической физики в системе Maple, Matcad.

4.2 Фонд оценочных средств для проведения промежуточной аттестации

4.2.1 Примеры вопросов для подготовки к экзамену

Контрольные вопросы:

- 1. Понятие дифференциальных уравнений в частных производных и его решения.
- 2. Классификация линейных уравнений 2-го порядка (гиперболического, эллиптического, параболического).
- 3. Приведение к каноническому виду уравнений 2-го порядка (гиперболического, эллиптического, параболического типов) с двумя независимыми переменными.
- 4. Простейшие задачи, приводящие к уравнениям гиперболического типа (колебание струны, распространение звука, распространение волн).
- 6. Уравнение малых поперечных колебаний струны.
- 7. Энергия колебаний струны.
- 8. Уравнение колебаний мембраны.
- 9. Граничные и начальные условия.
- 10. Решение задачи Коши для уравнения колебаний бесконечной струны. Формула Даламбера.
- 11. Корректно и не корректно поставленные задачи.
- 12. Метод разделения переменных для уравнения свободных колебаний жестко закрепленной струны (метод Фурье).
- 13. Физическая интерпретация решения уравнения колебаний жестко закрепленной струны (в виде стоячих волн).
- 14. Вынужденные колебания жестко закрепленной струны. Функция Грина (функция влияния мгновенного точечного источника силы).
- 15. Простейшие задачи, приводящие к уравнению параболического типа (уравнение теплопроводности, уравнение диффузии).
- 16. Постановка краевых задач для уравнения теплопроводности на отрезке.
- 17. Метод разделения переменных (Фурье) для уравнения теплопроводности на отрезке. Однородная краевая задача первого типа.
- 18. Функция источника для уравнения теплопроводности на отрезке (первая краевая задача).
- 19. Неоднородное уравнение теплопроводности и его решение.
- 20. Общая (первая) краевая задача для уравнения теплопроводности (уравнение и граничные условия неоднородны).
- 21. Распространение тепла на бесконечной прямой (задача Коши).
- 22. Интеграл Пуассона для решения уравнения теплопроводности.
- 23. Уравнения эллиптического типа. Задачи, приводящие к уравнениям Лапласа, Пуассона и

Гельмгольца.

- 24. Уравнения Лапласа в криволинейной системе координат (3 вида: в сферической, полярной, цилиндрической).
- 25. Фундаментальные решения уравнения Лапласа.
- 26. Гармонические функции. Общие свойства гармонических функций.
- 27. Первая и вторая формулы Грина.
- 28. Основная интегральная формула Грина.
- 29. Внешние краевые задачи для уравнений эллиптического типа.
- 30. Решение первой краевой задачи для круга методом разделения переменных. Интеграл Пуассона.
- 31. Функция источника для уравнения Лапласа.
- 32. Свойства функции источника для уравнения Лапласа.
- 33. Свободные колебания прямоугольной мембраны с жестко закрепленным краем.
- 34. Свободные колебания круглой мембраны с жестко закрепленным краем.
- 35. Цилиндрические функции и их свойства.
- 36. Первая краевая задача для уравнения Лапласа в шаровой области. Полиномы Лежандра, присоединенные функции Лежандра, сферические и шаровые функции и их свойства.

Экзамен проводится устно по билетам, состоящим из двух теоретических вопросов и одной задачи.

Рекомендуются следующие критерии оценки знаний.

Оценка «неудовлетворительно» выставляется в том случае, если студент демонстрирует:

- поверхностное знание теоретического материала;
- незнание основных законов, понятий и терминов учебной дисциплины, неверное оперирование ими;
 - грубые стилистические и речевые ошибки.

Оценка «удовлетворительно» ставится студентам, которые при ответе:

- в основном знают учебно-программный материал в объёме, необходимом для предстоящей учебы и работы по профессии;
 - в целом усвоили основную литературу;
- в ответах на вопросы имеют нарушения в последовательности изложения учебного материала, демонстрируют поверхностные знания вопроса;
 - имеют краткие ответы только в рамках лекционного курса;
 - приводят нечеткие формулировки физических понятий и законов;
 - имеют существенные погрешности и грубые ошибки в ответе на вопросы.

Оценка «хорошо» ставится студентам, которые при ответе:

- обнаруживают твёрдое знание программного материала, который излагают систематизировано, последовательно и уверенно;
 - усвоили основную и наиболее значимую дополнительную литературу;
 - допускают отдельные погрешности и незначительные ошибки при ответе;
- в ответах не допускает серьезных ошибок и легко устраняет отдельные неточности с помощью дополнительных вопросов преподавателя.

Оценка «отлично» ставится студентам, которые при ответе:

- обнаруживают всестороннее систематическое и глубокое знание программного материала (знание основных понятий, законов и терминов учебной дисциплины, умение оперировать ими);
 - излагают материал логично, последовательно, развернуто и уверенно;
 - излагают материал с достаточно четкими формулировками, подтверждаемыми гра-

фиками, цифрами или примерами;

- владеют научным стилем речи;
- демонстрируют знание материала лекций, базовых учебников и дополнительной литературы.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на зачете;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

- 1. Ильин А.М. Уравнения математической физики: учебное пособие / А.М. Ильин. Москва: Физматлит, 2009. 192 с. URL: http://biblioclub.ru/index.php?page=book&id=69318.
- 2. Сабитов К.Б. Уравнения математической физики: учебник / К.Б. Сабитов. Москва: Физматлит, 2013. 352 с. URL: http://biblioclub.ru/index.php?page=book&id=275562.
- 3. Сборник задач по уравнениям математической физики: учебное пособие / В.С. Владимиров, В.П. Михайлов, Т.В. Михайлова, М.И. Шабунин. 4-е изд., перераб. и доп. Москва: Физматлит, 2016. 518 с. URL: http://biblioclub.ru/index.php?page=book&id=485543

5.2 Дополнительная литература:

- 1. Полянин А. Д. Нелинейные уравнения математической физики и механики. Методы решения [Электронный ресурс]: учебник и практикум для академического бакалавриата / А.Д. Полянин, В.Ф. Зайцев, А.И. Журов. 2-е изд., испр. и доп. Москва: Юрайт, 2018. 256 с. https://biblio-online.ru/book/BA8375FD-BC61-4F27-98E2-27AF3AFDF2E4.
- 2. Алтунин К. К. Методы математической физики [Электронный ресурс]: учебное пособие / Алтунин К. К. 3-е изд. М.: Директ-Медиа, 2014. 123 с. https://biblioclub.ru/index.php?page=book_red&id=240552&sr=1.
- 3. Омельченко А. В. Методы интегральных преобразований в задачах математической физики [Электронный ресурс] / Омельченко А. В. М.: МЦНМО, 2010. 182 с. http://biblioclub.ru/index.php?page=book_red&id=63290&sr=1.

5.3. Периодические издания:

- 1. Вестник МГУ. Серия: Физика. Астрономия.
- 2. Журнал прикладной механики и технической физики.
- 3. Журнал технической физики.
- 4. Известия ВУЗов. Серия: Физика.
- 5. Инженерная физика.
- 6. Успехи физических наук.
- 7. Физика. Реферативный журнал. ВИНИТИ.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. Журнал: Современная электроника www.soel.ru
- 2. Журнал «Техника Связи» производственный технический журнал, освещает все аспекты телекоммуникаций и связи: http://www.t-sv.ru/ozhurnale.html
- 3. Сайт интерактивной поддержки проведения лабораторных и самостоятельных работ по дисциплине: http://www.adcomlogod.narod.ru
 - 4. http://ntb.tti.sfedu.ru/(сайт научно-технической библиотеки ТТИ ЮФУ);
 - 5. http://elibrary.ru/ (сайт научной электронной библиотеки);
 - 6. http://www.exponenta.ru/ (образовательный математический сайт);
- 7. http://www.i-exam.ru/ (сайт Научно-исследовательского института мониторинга качества образования, г. Йошкар-Ола).

7. Методические указания для обучающихся по освоению дисциплины (модуля)

На самостоятельную работу студентов отводится 17% времени от общей трудоемкости дисциплины. Проверка знаний студента основана на контрольных вопросах и дополнительных вопросах, касающихся соответствующих разделов дисциплины:

- выполнение домашних заданий по практическим занятиям;
- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний, получаемых посредствам изучения рекомендуемой литературы.
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) Перечень необходимого программного обеспечения

8.1 Перечень информационных технологий.

Не предусмотрено.

8.2 Перечень необходимого программного обеспечения.

Средства мультимедийной обучающей лаборатории:

- компьютерный класс;
- техническое обеспечение: персональные компьютеры.

8.3 Перечень информационных справочных систем:

Не предусмотрено.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Nº	Вид работ	Материально-техническое обеспечение дисциплины и оснащенность	
1.	Лекционные заня-	Аудитория 201С, оснащенная переносным проектором и	

	тия	магнитно-маркерной доской.
2.		Аудитории 300С оснащены магнитно-маркерными досками.
	ТИЯ	
3.	Самостоятельная	Аудитория 208С
	работа	