Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет физико-технический

> **УТВЕРЖДАЮ** че-Проректор по учебной работе, качеству образования - первый проректор Хагуров Т. подпись

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.ДВ.01.02 Построение изображений медицинской томографии (код и наименование дисциплины в соответствии с учебным планом)

Направление подготовки 12.04.04 Биотехнические системы и технологии (код и наименование направления подготовки/специальности)

Направленность (профиль) Методы анализа и синтеза медицинских изображений (наименование направленности (профиля) специализации)

Программа подготовки	академическая	
	(академическая /прикладн	ая)
Форма обучения	очная	
	(очная, очно-заочная	, заочная)
Квалификация (степень) выпускникамаг	истр
	(бака.	лавр, магистр, специалист)

Программа полготовки

Краснодар 2018

Рабочая программа дисциплины «Построение изображений медицинской томографии» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования подготовки магистров по направлению 12.04.04 «Биотехнические системы и технологии», профиль «Методы анализа и синтеза медицинских изображений».

Программу составил(и):	
Н.М.Богатов, профессор, док. фм.н.	borard
И.О. Фамилия, должность, ученая степень, ученое звание	подпись

Рабочая программа дисциплины утверждена на заседании кафедры физики и информационных систем

протокол № 15 от «06» апреля 2018г Заведующий кафедрой физики и информационных систем Богатов Н.М. фамилия, инициалы

Рабочая программа обсуждена на заседании кафедры физики и информационных систем

протокол № 15 от «06» апреля 2018г Заведующий кафедрой физики и информационных систем Богатов Н.М.

полнись

Утверждена на заседании учебно-методической комиссии физико-технического факультета

протокол № 10 от «12» апреля 2018г.

Председатель УМК факультета Богатов Н.М.

фамилия, инициалы

Рецензенты:

Шапошникова Т.Л., зав. кафедрой физики ФГБОУ ВО КубГТУ

Григорьян Л.Р., Генеральный директор ООО НПФ «Мезон»

1. Цели и задачи освоения дисциплины

Дисциплина «Построение изображений медицинской томографии» ставит своей целью сформировать у студентов теоретические представления о физических законах, лежащих в основе медицинской томографии, и практические навыки технического обслуживания учреждений здравоохранения.

Основные задачи дисциплины – изучить физические законы и математические методы, лежащие в основе построения изображений медицинской томографии; изучить устройство медицинских томографов и компьютерные программы обработки результатов исследований.

2. Место дисциплины в структуре основной образовательной программы высшего образования

Дисциплина «Построение изображений медицинской томографии» входит в Базовую часть, Вариативную часть, раздел Дисциплины по выбору ООП. Дисциплина логически и содержательно-методически связана с дисциплинами «Общая физика», «Квантовая механика», «Биофизика», «Высшая математика», «Информатика». Для освоения данной дисциплины необходимо владеть методами математического анализа, аналитической геометрии, линейной алгебры, решением алгебраических, дифференциальных и интегральных уравнений; теории функций комплексного переменного, теории вероятностей и математической статистики, дискретной математики; знать основные физические законы; уметь применять математические методы и физические законы для решения практических задач.

Освоение данной дисциплины необходимо как предшествующее для изучения следующих дисциплин и практик: «Программы обработки и анализа медицинских изображений», «Научно-производственной практики».

3 Требования к результатам освоения содержания дисциплины

В результате освоения дисциплины формируются следующие компетенции:

- способностью демонстрировать навыки работы в коллективе, порождать новые идеи (ОПК-3);
- способностью выбирать оптимальные методы и методики изучения свойств биологических объектов и формировать программы исследований (ПК-2);
- способностью организовывать и проводить медико-биологические, эргономические и экологические исследования (ПК-3);
- готовностью участвовать в поддержании единого информационного пространства планирования и управления предприятием на всех этапах жизненного цикла производимой продукции (ПК-13);

В результате изучения дисциплины студент должен: знать:

- особенности биологических объектов моделирования и методики экспериментальной оценки их свойств;
 - методы синтеза и исследования моделей;
- физические законы и математические методы, лежащие в основе построения изображений медицинской томографии;
- устройство медицинских томографов; уметь:
- адекватно ставить задачи исследования и оптимизации сложных объектов на основе методов математического моделирования;
- осуществлять формализацию и алгоритмизацию функционирования исследуемой системы;
 - выбирать адекватные методы исследования моделей;
 - принимать адекватные решения по результатам исследования моделей;

- использовать компьютерные программы обработки результатов томографических исследований;
- владеть:
- методами расчета параметров и основных характеристик моделей любого из рассмотренных классов;
- практическими навыками работы с программными пакетами математического моделирования;
 - навыками методологического анализа научного исследования и его результатов.

4. Содержание и структура дисциплины «Построение изображений медицинской томографии»

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа. Форма итогового контроля – экзамен, зачет.

4.1. Содержание разделов дисциплины

№	Наименование	Содержание раздела, формируемые	Форма	Разработано с
раздела	раздела	компетенции, знания.	текущего	участием пред-
			контроля	ставителей ра-
				ботодателей
1	2	3	4	5
1	Развитие ком-	История возникновения и этапы раз-	Тест.	ГБУЗ «Краевая
	пьютерной то-	вития. Конфигурация компьютерно-		клиническая
	мографии.	го томографа. Характеристики КТ-		больница №1
		сканеров. ОПК-3, ПК-13, знать:		им. проф. С.В.
		устройство медицинских томогра-		Очаповского»
		фов.		ДЗКК
2	Построение	Реконструкция изображений в ком-	Тест.	ГБУЗ «Краевая
	изображения в	пьютерной томографии. Режимы	Защита	клиническая
	компьютерной	сканирования.	лабора-	больница №1
	томографии.	Качество изображения. Трехмерные	торных	им. проф. С.В.
		реконструкции. ОПК-3, ПК-3, ПК-2,	работ в	Очаповского»
		знать: особенности биологических	интерак-	ДЗКК
		объектов моделирования и методики	тивной	
		экспериментальной оценки их	форме.	
		свойств; методы синтеза и исследо-		
		вания моделей; физические законы и		
		математические методы, лежащие в		
		основе построения изображений ме-		
		дицинской томографии.		
3	Артефакты	Артефакты изображений в компью-	Тест.	ГБУЗ «Краевая
	компьютерной	терной томографии. Артефакты, вы-	Защита	клиническая
	томографии.	званные физическими процессами.	лабора-	больница №1
		Артефакты, вызванные пациентом.	торных	им. проф. С.В.
		Неисправность оборудования. Арте-	работ в	Очаповского»
		факты при спиральном сканирова-	интерак-	ДЗКК
		нии. ПК-3, ПК-13, знать: особенно-	тивной	
		сти биологических объектов модели-	форме.	
		рования и методики эксперимен-		
		тальной оценки их свойств.		
4	Развитие пози-	История возникновения. Этапы ис-	Тест.	ГБУЗ «Краевая
	тронно-	следования. Основные блоки скане-		клиническая

		T		T .
	эмиссионной томографии	ра. Радионуклиды, используемые в ПЭТ. Достоинства, недостатки и области применения ПЭТ. Характеристики ПЭТ/КТ-сканеров. ОПК-3, ПК-2, ПК-3, знать: особенности биологических объектов моделирования и		больница №1 им. проф. С.В. Очаповского» ДЗКК
		методики экспериментальной оценки их свойств; методы синтеза и исследования моделей; физические законы		
		и математические методы, лежащие		
		в основе построения изображений		
		медицинской томографии; устрой- ство медицинских томографов.		
5	Анализ изображений позитроннозмиссионной томографии.	Реконструкция изображений. Аппаратное обеспечение и контроль качества. Артефакты изображений в ПЭТ. Аппаратные артефакты. Артефакты сбора данных Артефакты обработки данных. ПК-2, ПК-3, ПК-13,	Тест. Защита лабора- торных работ в интерак-	ГБУЗ «Краевая клиническая больница №1 им. проф. С.В. Очаповского» ДЗКК
		ОПК-3, знать: особенности биологических объектов моделирования и методики экспериментальной оценки их свойств; методы синтеза и исследования моделей; физические законы и математические методы, лежащие в основе построения изображений медицинской томографии.	тивной форме.	
6	Принципы магнитно- резонансной томографии.	Этапы развития МРТ. Физические основы МРТ. Основные блоки МРтомографа. Классификация МРтомографов. ОПК-3, ПК-13, знать: физические законы и математические методы, лежащие в основе построения изображений медицинской томографии; устройство медицинских томографов.	Тест.	ГБУЗ «Краевая клиническая больница №1 им. проф. С.В. Очаповского» ДЗКК
7	Построение изображения в MP- томографии.	Построение изображения. Математические методы обработки сигналов в МР-томографии. Основные импульсные последовательность. Спин-эхо последовательность. Последовательность быстрое спин-эхо. Последовательность инверсиявосстановление. Последовательность градиентное эхо. Последовательность градиентное эхо. Последовательность быстрое градиентное эхо. Эхопланарное отображение. ПК-3, ПК-2, ПК-13, знать: особенности биологических объектов моделирования и методики экспериментальной оценки их свойств; методы синтеза и исследования моделей; физические законы	Тест. Защита лабора- торных работ в интерак- тивной форме.	ГБУЗ «Краевая клиническая больница №1 им. проф. С.В. Очаповского» ДЗКК

		и математические методы, лежащие в основе построения изображений медицинской томографии.		
8	Анализ MP- изображений.	Показатели качества изображения. Изменение яркости МР-изображений. Изменение контраста МР-изображений. ОПК-3, ПК-2, ПК-3, ПК-13, знать: особенности биологических объектов моделирования и методики экспериментальной оценки их свойств; методы синтеза и исследования моделей; физические законы и математические методы, лежащие в основе построения изображений медицинской томографии.	Тест. Защита лабора- торных работ в интерак- тивной форме.	ГБУЗ «Краевая клиническая больница №1 им. проф. С.В. Очаповского» ДЗКК
9	Артефакты MP- изображений.	Физиологические артефакты. Артефакты, вызванные физическими явлениями. Артефакты, вызванные неисправностью оборудования. Неправильные действия оператора. ПК-3, ПК-13, знать: особенности биологических объектов моделирования и методики экспериментальной оценки их свойств.	Тест. Защита лабора- торных работ в интерак- тивной форме.	ГБУЗ «Краевая клиническая больница №1 им. проф. С.В. Очаповского» ДЗКК
10	Медицинские применения MPT.	МРТ диагностика патологий головного и спинного мозга. МРТ диагностика патологий костей и суставов. МРТ диагностика патологий костей и суставов. МРТ диагностика патологий молочной железы. Магнитно-резонансная ангиография. Безопасность при проведении МРТ. Перспективы развития МРТ. ОПК-3, ПК-3, ПК-2, ПК-13, знать: особенности биологических объектов моделирования и методики экспериментальной оценки их свойств.	Тест.	ГБУЗ «Краевая клиническая больница №1 им. проф. С.В. Очаповского» ДЗКК

4.2 Структура дисциплины

Распределение трудоемкости

Вид работы	Трудоемкость, часов		В
	1 семестр	2 семестр	Всего
Общая трудоемкость	144		144
Аудиторная работа:	48		48
Лекции (Л)	16		16
Практические занятия (ПЗ)			
Лабораторные работы (ЛР)	32		32
Самостоятельная работа:	60		60
Реферат (Р)			
Самостоятельное изучение разделов	20		20
Самоподготовка	40		40

Контролируемая самостоятельная работа		
Подготовка и сдача экзамена	36	36
Вид итогового контроля	экзамен	зачет

Разделы дисциплины, изучаемые в <u>11</u> семестре

$\mathcal{N}_{\underline{0}}$	Наименование разделов		Количество часов			
раздела		Всего	Ауди Л	торная ра ПЗ	абота ЛР	Самостоятельная работа
1	2	3	4	5	6	7
1	Развитие компьютерной томографии.	8	2	3	U	6
2	Построение изображения в компьютерной томо- графии.	14	2		6	6
3	Артефакты компьютер- ной томографии.	10			4	6
4	Развитие позитронно- эмиссионной томогра- фии	8	2			6
5	Анализ изображений по- зитронно-эмиссионной томографии.	14	2		6	6
6	Принципы магнитно- резонансной томогра- фии.	8	2			6
7	Построение изображения в MP-томографии.	14	2		6	6
8	Анализ MP- изображений.	14	2		6	6
9	Артефакты MP- изображений.	10			4	6
10	Медицинские примене- ния МРТ.	8	2			6
	Итого:	108	16		32	60
	Всего:	108				

4.3 Лабораторные работы

$N_{\underline{0}}$	Наименование	Содержание лабораторной работы, формируемые	Форма
ЛР	лабораторной	компетенции, знания, умения, навыки	текущего
	работы		контроля
1	Изучение мето-	Изучение математических методов реконструк-	Защита лабо-
	дов построения	ции изображений в компьютерной томографии.	раторных ра-
	изображений в	Создание компьютерной программы анализа КТ-	бот в интерак-
	компьютерной	изображений. ОПК-3, ПК-2, ПК-3, ПК-13 знать:	тивной форме.
	томографии.	особенности биологических объектов моделиро-	
		вания и методики экспериментальной оценки их	
		свойств; методы синтеза и исследования моделей;	
		физические законы и математические методы,	
		лежащие в основе построения изображений ме-	

	T		
2	Повышение ка- чества КТ-	дицинской томографии; уметь: адекватно ставить задачи исследования и оптимизации сложных объектов на основе методов математического моделирования; осуществлять формализацию и алгоритмизацию функционирования исследуемой системы; выбирать адекватные методы исследования моделей; принимать адекватные решения по результатам исследования моделей; использовать компьютерные программы обработки результатов томографических исследований; владеть: методами расчета параметров и основных характеристик моделей любого из рассмотренных классов; практическими навыками работы с программными пакетами математического моделирования; навыками методологического анализа научного исследования и его результатов. Понятие качества изображения. Создание компьютерной программы повышения качества КТ-	Защита лабораторных ра-
	изображений.	изображений. Трехмерные реконструкции. ОПК-3, ПК-2, ПК-3, ПК-13, знать: физические законы и математические методы, лежащие в основе построения изображений медицинской томографии; уметь: использовать компьютерные программы обработки результатов томографических исследований; владеть: практическими навыками работы с программными пакетами математического моделирования; навыками методологического анализа научного исследования и его результатов.	бот в интерак- тивной форме.
3	Определение артефактов на изображениях компьютерной томографии.	Изучение артефактов изображений в компьютерной томографии. Определение артефактов, вызванных физическими процессами, вызванных пациентом, неисправностью оборудования, спиральным сканированием. ОПК-3, ПК-2, ПК-3, ПК-13, знать: особенности биологических объектов моделирования и методики экспериментальной оценки их свойств; физические законы и математические методы, лежащие в основе построения изображений медицинской томографии; уметь: осуществлять формализацию и алгоритмизацию функционирования исследуемой системы; выбирать адекватные методы исследования моделей; принимать адекватные решения по результатам исследования моделей; использовать компьютерные программы обработки результатов томографических исследований; владеть: практическими навыками работы с программными пакетами математического моделирования; навыками методологического анализа научного исследования и его результатов.	Защита лабораторных работ в интерактивной форме.
4	Построение	Изучение методов реконструкции изображений.	Защита лабо-
	изображений	Повышение качества изображений позитронно-	раторных ра-

	ПОВИТО	preservative Towarmachuri OTV 2 TV 2 TV 2	Som B HHAMOROM
	позитронно- эмиссионной	эмиссионной томографии. ОПК-3, ПК-2, ПК-3, ПК-13 знать: особенности биологических объек-	бот в интерак- тивной форме.
	томографии.		тивнои форме.
	томографии.	тов моделирования и методики экспериментальной оценки их свойств; методы синтеза и иссле-	
		дования моделей; физические законы и матема-	
		тические методы, лежащие в основе построения	
		изображений медицинской томографии; уметь:	
		адекватно ставить задачи исследования и опти-	
		мизации сложных объектов на основе методов	
		математического моделирования; осуществлять	
		формализацию и алгоритмизацию функциониро-	
		вания исследуемой системы; выбирать адекват-	
		ные методы исследования моделей; принимать	
		адекватные решения по результатам исследова-	
		ния моделей; использовать компьютерные про-	
		граммы обработки результатов томографических	
		исследований; владеть: методами расчета пара-	
		метров и основных характеристик моделей любо-	
		го из рассмотренных классов; практическими	
		навыками работы с программными пакетами ма-	
		тематического моделирования; навыками мето-	
		дологического анализа научного исследования и	
		его результатов.	
5	Определение	Изучение причин возникновения артефактов в	Защита лабо-
	артефактов на	изображениях позитронно-эмиссионной томо-	раторных ра-
	изображениях	графии. Определение и классификация артефак-	бот в интерак-
	позитронно-	тов на изображениях позитронно-эмиссионной	тивной форме.
	эмиссионной	томографии: аппаратные артефакты, артефакты	
	томографии.	сбора данных, артефакты обработки данных.	
		ОПК-3, ПК-2, ПК-3, ПК-13 знать: особенности биологических объектов моделирования и мето-	
		дики экспериментальной оценки их свойств; фи-	
		зические законы и математические методы, ле-	
		жащие в основе построения изображений меди-	
		цинской томографии; уметь: осуществлять фор-	
		мализацию и алгоритмизацию функционирования	
		исследуемой системы; выбирать адекватные ме-	
		тоды исследования моделей; принимать адекват-	
		ные решения по результатам исследования моде-	
		лей; использовать компьютерные программы об-	
		работки результатов томографических исследо-	
		ваний; владеть: практическими навыками работы	
		с программными пакетами математического мо-	
		делирования; навыками методологического ана-	
	D 6	лиза научного исследования и его результатов.	2
6	Работа с растро-	Изучение теории растровых изображений. Изуче-	Защита лабо-
	выми изображе-	ние инструментов работы с изображениями в	раторных ра-
	ниями в среде	среде Builder C++. ОПК-3, ПК-2, ПК-3, ПК-13,	бот в интерак-
	Builder C++.	знать: физические законы и математические ме-	тивной форме.
		тоды, лежащие в основе построения изображений	
		медицинской томографии; уметь: использовать компьютерные программы обработки результатов	
		компьютерные программы обработки результатов	

	I	T	
		томографических исследований; владеть: практи-	
		ческими навыками работы с программными па-	
		кетами математического моделирования; навы-	
		ками методологического анализа научного иссле-	
		дования и его результатов.	
7	Построение МР-	Изучение математических методов реконструк-	Защита лабо-
	изображения	ции МР-изображений. Создание программы по-	раторных ра-
		строения МР-изображений. ОПК-3, ПК-2, ПК-3,	бот в интерак-
		ПК-13, знать: особенности биологических объек-	тивной форме.
		тов моделирования и методики эксперименталь-	
		ной оценки их свойств; методы синтеза и иссле-	
		дования моделей; физические законы и матема-	
		тические методы, лежащие в основе построения	
		изображений медицинской томографии; уметь:	
		адекватно ставить задачи исследования и опти-	
		мизации сложных объектов на основе методов	
		математического моделирования; осуществлять	
		формализацию и алгоритмизацию функциониро-	
		вания исследуемой системы; выбирать адекват-	
		ные методы исследования моделей; принимать	
		адекватные решения по результатам исследова-	
		ния моделей; использовать компьютерные про-	
		граммы обработки результатов томографических	
		исследований; владеть: методами расчета пара-	
		метров и основных характеристик моделей любо-	
		го из рассмотренных классов; практическими	
		навыками работы с программными пакетами ма-	
		тематического моделирования; навыками мето-	
		дологического анализа научного исследования и	
		его результатов.	
8	Фурье - анализ	Создание программы Фурье - анализа сигналов	Защита лабо-
	сигналов и	магнитно-резонансного томографа ОПК-3, ПК-2,	раторных ра-
	изображений.	ПК-3, ПК-13, знать: физические законы и мате-	бот в интерак-
	1	матические методы, лежащие в основе построе-	тивной форме.
		ния изображений медицинской томографии;	
		уметь: использовать компьютерные программы	
		обработки результатов томографических иссле-	
		дований; владеть: практическими навыками рабо-	
		ты с программными пакетами математического	
		моделирования; навыками методологического	
		анализа научного исследования и его результа-	
		тов.	
9	Методы измене-	Изучение алгоритмов изменения яркости МРТ-	Защита лабо-
	ния яркости МР-	изображений. Создание программы изменения	раторных ра-
	изображений.	яркости МРТ-изображений ОПК-3, ПК-2, ПК-3,	бот в интерак-
		ПК-13, знать: физические законы и математиче-	тивной форме.
		ские методы, лежащие в основе построения изоб-	
		ражений медицинской томографии; уметь: ис-	
		пользовать компьютерные программы обработки	
		результатов томографических исследований; вла-	
		деть: практическими навыками работы с про-	
		граммными пакетами математического модели-	
		, <u>*</u>	

		рования; навыками методологического анализа	
		научного исследования и его результатов.	
10	Методы изменения контраста MP-изображений.	Изучение алгоритмов изменения контраста МР- изображений. Создание программы изменения контраста МРТ-изображений ОПК-3, ПК-2, ПК-3, ПК-13 знать: физические законы и математические методы, лежащие в основе построения изображений медицинской томографии; уметь: использовать компьютерные программы обработки результатов томографических исследований; владеть: практическими навыками работы с программными пакетами математического моделирования; навыками методологического анализа научного исследования и его результатов.	Защита лабораторных работ в интерактивной форме.
11	Определение артефактов MP-изображений.	Физиологические артефакты. Артефакты, вызванные физическими явлениями. Артефакты, вызванные неисправностью оборудования. Неправильные действия оператора ОПК-3, ПК-2, ПК-3, ПК-13 знать: особенности биологических объектов моделирования и методики экспериментальной оценки их свойств; физические законы и математические методы, лежащие в основе построения изображений медицинской томографии; уметь: осуществлять формализацию и алгоритмизацию функционирования исследуемой системы; выбирать адекватные методы исследования моделей; принимать адекватные решения по результатам исследования моделей; использовать компьютерные программы обработки результатов томографических исследований; владеть: практическими навыками работы с программными пакетами математического моделирования; навыками методологического анализа научного исследования и его результатов.	Защита лабораторных работ в интерактивной форме.

4.4 Самостоятельное изучение разделов дисциплины

Рекомендуется следующий график и календарный план самостоятельной работы студентов по учебным неделям (8 недель):

11 семестр

№ уч. недели	Темы учебной дисциплины, рекомендуе- мые для обязательного изучения	Темы учебной дисциплины, рекомендуемые для самостоятельного изучения
1	История возникновения и этапы развития. Конфигурация компьютерного томографа.	Неисправность оборудования.
1, 2	Реконструкция изображений в компьютерной томографии.	Неисправность оборудования.
2	Режимы сканирования.	Трехмерные реконструкции.
2	Качество изображения.	Трехмерные реконструкции.
3	Артефакты изображений в компьютерной томографии.	Характеристики КТ-сканеров.

	Артефакты, вызванные физическими про-	Характеристики КТ-сканеров.	
		Ларактеристики КТ-сканеров.	
3	цессами. Артефакты, вызванные пациен-		
	том. Артефакты при спиральном сканиро-		
	вании.		
3	История возникновения ПЭТ. Этапы ис-	Характеристики ПЭТ/КТ-	
3	следования.	сканеров.	
4	Основные блоки сканера.		
4	Реконструкция изображений.	Достоинства, недостатки ПЭТ.	
4	Аппаратное обеспечение и контроль каче-	Посточноство но постотиц ПЭТ	
4	ства.	Достоинства, недостатки ПЭТ.	
	Артефакты изображений в ПЭТ: аппарат-		
5	ные артефакты, артефакты сбора данных,	Области применения ПЭТ.	
	артефакты обработки данных.		
5	Радионуклиды, используемые в ПЭТ.	Области применения ПЭТ.	
	Этапы развития МРТ. Физические основы	Аппаратное обеспечение МРТ.	
5	MPT.	7 miliaparnoe oocene ienne ivii 1.	
6	Основные блоки МР-томографа. Класси-	Аппаратное обеспечение МРТ.	
	фикация МР-томографов.		
	Построение изображения.		
6	Математические методы обработки сигна-	Программное обеспечение МРТ.	
	лов в МР-томографии.		
	Основные импульсные последовательно-		
	сти. Спин-эхо последовательность. После-		
	довательность быстрое спин-эхо. После-		
7	довательность инверсия-восстановление.	Программное обеспечение МРТ.	
	Последовательность градиентное эхо. По-		
	следовательность быстрое градиентное		
	эхо. Эхо-планарное отображение.		
	МРТ диагностика патологий головного и		
	спинного мозга. МРТ диагностика патоло-		
	гий костей и суставов. МРТ диагностика		
7		Немедицинские применения МРТ.	
	патологий внутренних органов. МРТ диа-	_	
	гностика патологий молочной железы.		
	Магнитно-резонансная ангиография.		
7	Показатели качества изображения. Изме-	Немедицинские применения МРТ.	
-	нение яркости МР-изображений.	-	
		Алгоритмы изменения яркости	
8	Изменение контраста МР-изображений.	МР-изображений. Алгоритмы из-	
	изменение контраста ин изооражении.	менение контраста МР-	
		изображений.	
	Физиологические артефакты. Артефакты,		
	вызванные физическими явлениями. Ар-	Техническая документация, ре-	
8	тефакты, вызванные неисправностью обо-	гламентирующая действия опера-	
	рудования. Неправильные действия опера-	тора при проведении МРТ.	
	тора.		
	ЯМР-спектроскопия. Безопасность при	Техническая документация, ре-	
8	проведении МРТ. Перспективы развития	гламентирующая действия инже-	
Ü	мрт.	нера при эксплуатации МРТ.	
	1711 1.	пера при эксплуатации ин т.	

5. Образовательные технологии

При реализации учебной работы по освоению дисциплины «Построение изображений ме-

дицинской томографии» используются современные образовательные технологии:

- информационно-коммуникационные технологии в процессе самостоятельной работы при поиске информации в Интернете, подготовке к защите лабораторных работ;
- демонстрационные методы обучения в процессе показа презентаций и обсуждения выступлений;
- исследовательские методы в обучении в процессе выполнения лабораторных работ;
- проблемное обучение в процессе обсуждения задач реконструкции изображений.

Успешное освоение материала курса предполагает большую самостоятельную работу магистрантов и руководство этой работой со стороны преподавателей.

В учебном процессе используются активные и интерактивные формы проведения занятий: дискуссия, защита лабораторных работ, мозговой штурм, мастер-класс, беседа.

Интерактивные технологии, используемые при изучении дисциплины

интерактивные технологии, используемые при изучении дисциплины				
Семестр	Вид заня-	№ раз-	Используемые интерактивные образовательные	Кол-
	тия (Л, ПР,	дела	технологии	во
	ЛР)			ча-
	,			сов
8	Л	2	Мозговой штурм: «Реконструкция изображений в	1
			компьютерной томографии»	
	Л	10	Беседа: «Ограничения к применению и противо-	1
			показания компьютерной томографии»	
	Л	4	Беседа: «Ограничения к применению и противо-	1
			показания позитронно-эмиссионной томографии»	
	Л	5	Мозговой штурм: «Реконструкция изображений	1
			ПЭТ»	
	Л	6	Мозговой штурм: «Построение модели физиче-	1
			ских процессов, лежащих в основе MPT».	
	Л	6	Беседа: «Классификация MP-томографов».	1
	Л	7	Мозговой штурм: «Реконструкция МР-	1
			изображений».	
	Л	7	Беседа: «Основные импульсные последователь-	1
			ности».	
	Л	10	Беседа: «Применения MP-томографии».	1
	ЛР	1-11	Дискуссия, защита лабораторных работ	5
Итого:			* * *	14

6. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

Текущий контроль:

- контрольные вопросы по разделам учебной программы.
- лабораторные задания.

Промежуточный контроль:

- защита лабораторных работ.
- тестирование.

Итоговый контроль:

- экзамен.

В процессе подготовки к выполнению лабораторных компьютерных работ студенты используют сетевые технологии, изучают электронные образовательные ресурсы, работают с ин-

формацией в глобальных компьютерных сетях, приобретают навыки работы с компьютером как средством управления информацией, используют основные законы естественнонаучных дисциплин, методы математического анализа и моделирования, теоретического и экспериментального исследования, проводят медико-биологические и научно-технические исследования с применением технических средств, информационных технологий и методов обработки результатов.

В процессе защиты лабораторных работ $\Pi P-1 - \Pi P-11$, выступлений и дискуссий формируется и оценивается достижение следующих компетенций: ОПК-3; $\Pi K-2$; $\Pi K-3$; $\Pi K-13$.

В процессе мозгового штурма на темы «Реконструкция изображений в компьютерной томографии», «Реконструкция изображений ПЭТ», «Построение модели физических процессов, лежащих в основе МРТ», «Реконструкция МР-изображений», бесед на темы «Ограничения к применению и противопоказания компьютерной томографии», «Ограничения к применению и противопоказания позитронно-эмиссионной томографии», «Классификация МР-томографов», «Основные импульсные последовательности», «Применения МР-томографии» выступлений и дискуссий формируется и оценивается достижение следующих компетенций: ОПК-3; ПК-2; ПК-3; ПК-13.

В процессе компьютерного тестирования проверяются знания физических законов и математических методов, лежащих в основе построения изображений медицинской томографии, знание устройства медицинских томографов.

Зачет ставится по результатам сдачи всех лабораторных работ и компьютерного тестирования.

В процессе экзамена по всем темам формируется и оценивается достижение следующих компетенций: ОПК-3; ПК-2; ПК-3; ПК-13.

В результате формируются: знания:

- особенностей биологических объектов моделирования и методики экспериментальной оценки их свойств с помощью медицинских томографических исследований;
 - методов синтеза и исследования моделей объектов томографических исследований;
- физических законов и математических методов, лежащих в основе построения изображений медицинской томографии;
- устройства медицинских томографов; умения:
- адекватно ставить задачи исследования и оптимизации сложных объектов томографических исследований на основе методов математического моделирования;
- осуществлять формализацию и алгоритмизацию функционирования исследуемой системы получения томографических изображений;
 - выбирать адекватные методы исследования моделей томографических иследований;
 - принимать адекватные решения по результатам исследования томографических моделей;
- использовать компьютерные программы обработки результатов томографических исследований;

навыки:

- владеть методами расчета параметров и основных характеристик моделей томографических иследований;
- практической работы с программными пакетами математического моделирования и обработки изображений;
 - методологического анализа научного исследования и его результатов.

Тест 1.

Вопросы компьютерного теста по разделам 1 - 5.

В результате оценивается достижение компетенций ОПК-3; ПК-2; ПК-3; ПК-13.

- 1. Происхождение и значение термина "томография"?
- 2. Какой вид томографии категорически запрещен для лиц с кардиостимуляторами?
- 3. В чем суть всех видов томографии?
- 4. От чего зависит качество томографических изображений?
- 5. В чем заключается идея радиационной (рентгеновской) компьютерной томографии (КТ)?
- 6. Каковы преимуществами КТ по сравнению с традиционной рентгенографией?
- 7. Кто и когда впервые рассмотрел задачу реконструкции рентгеновского изображения?
- 8. Кто и когда предложил метод компьютерной томографии?
- 9. Кто и когда практически обосновал возможность рентгеновской томографии?
- 10. Когда разработан первый отечественный рентгеновский томограф?
- 11. Кто и когда разработал первый коммерческий сканер головного мозга?
- 12. Каково графическое разрешение изображения первого коммерческого сканера головного мозга?
- 13. Основой работы любого КТ-сканера является?
- 14. Когда разработан первый отечественный медицинский рентгеновский томограф?
- 15. Компьютерные томографы первого поколения, принцип их работы и время построения изображения?
- 16. Принцип работы медицинских томографов второго поколения, время построения изображения, примеры томографов?
- 17. Когда появились компьютерные томографы третьего поколения, принцип их работы, время построения изображения?
- 18. Принцип работы медицинских томографов четвертого поколения, время построения изображения?
- 19. В чем преимущество метода винтового сканирования?
- 20. Когда появились компьютерные томографы пятого поколения, принцип их работы, время построения изображения, новые возможности?
- 21. Какие основные блоки входят в состав любого КТ-сканера?
- 22. Какие блоки расположены внутри генри томографа?
- 23. Любое несоответствие между КТ-числами реконструированного изображения и истинными коэффициентами ослабления материалом объекта называют?
- 24. Природа рентгеновского излучения?
- 25. Как зависит выход рентгеновского излучения от атомного номера мишени?
- 26. Как преобразуется энергия электронов при взаимодействии с веществом анода?
- 27. Какова роль стеклянного корпуса рентгеновской трубки?
- 28. Какие требования предъявляются к материалу анода?
- 29. Как конструкции рентгеновских трубок отличаются в зависимости от способа охлаждения анода?
- 30. Способ охлаждения и недостаток трубок со стационарным анодом?
- 31. Как происходит охлаждение в трубках с вращающимся анодом?
- 32. Мощность, напряжение и ток анода рентгеновских трубок в современных КТ-системах?
- 33. Какую форму имеет пучок рентгеновских лучей в компьютерном томографе?
- 34. Какие детекторы рентгеновского излучения используются в компьютерных томографах?
- 35. Назовите недостатки люминесцентных детекторов.
- 36. Принцип работы газовых детекторов?
- 37. Перечислите основные характеристики детекторов, используемых в КТ.
- 38. Какие свойства детектора отражает характеристика эффективность?
- 39. Кто впервые рассмотрел задачу реконструкции изображения в 1917 г.?
- 40. Какие свойства детектора отражает характеристика время ответа?
- 41. Какие свойства детектора отражает характеристика динамический диапазон?
- 42. С помощью чего придается форма пучку рентгеновских лучей?
- 43. Где располагаются коллиматоры источника и для чего?
- 44. Для чего используются фильтры, из какого материала они сделаны?

- 45. Для чего используется консоль управления столом пациента и генри?
- 46. Для чего используется высоковольтный трехфазный генератор?
- 47. Какие функции выполняет компьютер?
- 48. Одна из главных проблем, возникающих при решении математических задач томографии.
- 49. Какие алгоритмы используются при реконструкции изображений в спиральной КТ и что они позволяют?
- 50. Принцип алгоритма 360°-ной интерполяции.
- 51. Какая математическая задача ставится в томографии?
- 52. Чем отличаются различные алгоритмы восстановления?
- 53. Как формируется проекция изображения?
- 54. Принцип алгоритма 180°-ной интерполяции.
- 55. Когда появились первые многослойные КТ-сканеры?
- 56. Принцип работы многосрезовых КТ-сканеров.
- 57. Преимущества многосрезовых КТ-сканеров.
- 58. Для чего используются несколько рядов детекторов в многосрезовых КТ-сканерах?
- 59. Сформулируйте теорему о центральном сечении.
- 60. Напишите математическую формулировку теоремы о центральном сечении.
- 61. Как определяется питч (pitch) при многосрезовом сканировании?
- 62. Какие эффекты определяют изменение энергии рентгеновских фотонов при прохождении биологической ткани?
- 63. Первая вполне качественная томограмма головного мозга человека была впервые получена:
- 64. Как производится оценка полученных вдоль выбранной траектории данных?
- 65. В чем особенность метода винтового сканирования?
- 66. В чем суть алгоритма Z-фильтрации или алгоритма реконструкции с переменной толщиной среза?
- 67. Сколько рядов детекторов имеют современные многосрезовые КТ-сканеры?
- 68. Как найти коэффициенты поглощения для каждого воксела, необходимые для реконструкции изображения?
- 69. Вследствие чего возникают артефакты?
- 70. В каких единицах измерения даются выходные данные КТ-сканера?
- 71. Какой диапазон изменения плотности исследуемых тканей позволяет различать компьютерная обработка КТ изображения?
- 72. Укажите основные стадии пошаговой КТ.

Тест 2.

Вопросы компьютерного теста по разделам 6, 7, 10.

В результате оценивается достижение компетенций ОПК-3; ПК-2; ПК-3; ПК-13.

- 73. Происхождение и значение термина "томография"?
- 74. Какой вид томографии категорически запрещен для лиц с кардиостимуляторами?
- 75. В чем суть всех видов томографии?
- 76. От чего зависит качество томографических изображений?
- 77. Принцип работы магнитно-резонансных томографов второго поколения, время построения изображения, примеры томографов?
- 78. Принцип работы магнитно-резонансных томографов четвертого поколения, время построения изображения?
- 79. Одна из главных проблем, возникающих при решении математических задач томографии.
- 80. Вследствие чего возникают артефакты?
- 81. Каковы основные этапы развития МРТ?
- 82. Какое физическое явление лежит в основе МРТ?
- 83. Перечислите основные блоки МР-томографа.
- 84. Как классифицируются МР-томографы.

- 85. Какой математический аппарат используется для построения изображения.
- 86. Назовите основные импульсные последовательности.
- 87. Назовите параметры спин-эхо последовательности.
- 88. Назовите параметры последовательности быстрое спин-эхо.
- 89. Назовите параметры последовательности инверсия-восстановление.
- 90. Назовите параметры последовательности градиентное эхо.
- 91. Назовите параметры последовательности быстрое градиентное эхо.
- 92. Назовите параметры последовательности эхо-планарного отображения.
- 93. Примеры МРТ диагностики патологий головного и спинного мозга.
- 94. Примеры МРТ диагностики патологий костей и суставов.
- 95. Примеры МРТ диагностики патологий внутренних органов.
- 96. Примеры МРТ диагностики патологий молочной железы.
- 97. Каков принцип магнитно-резонансной ангиографии.
- 98. Назовите показатели качества изображения.

Тест 3.

Вопросы компьютерного теста по разделам 8, 9.

В результате оценивается достижение компетенций ОПК-3; ПК-2; ПК-3; ПК-13.

- 1. Назовите алгоритмы изменения яркости МР-изображений.
- 2. Назовите алгоритмы изменение контраста МР-изображений.
- 3. Назовите артефакты МР-изображений.
- 4. Как возникают физиологические артефакты.
- 5. Как возникают артефакты, вызванные физическими явлениями?
- 6. Как возникают артефакты, вызванные неисправностью оборудования?
- 7. Примеры неправильных действий оператора.
- 8. Где применяется ЯМР-спектроскопия?
- 9. Какие риски при проведении МРТ?
- 10. Возможные направления развития МРТ.

ПЕРЕЧЕНЬ ВОПРОСОВ, ВЫНОСИМЫХ НА ЭКЗАМЕН

- 1. История возникновения и этапы развития медицинской томографии.
- 2. Конфигурация компьютерного томографа.
- 3. Реконструкция изображений в компьютерной томографии.
- 4. Режимы сканирования.
- 5. Качество изображения.
- 6. Артефакты изображений в компьютерной томографии.
- 7. Артефакты, вызванные физическими процессами.
- 8. Артефакты, вызванные пациентом.
- 9. Неисправность оборудования.
- 10. Артефакты при спиральном сканировании.
- 11. Трехмерные реконструкции.
- 12. Характеристики КТ-сканеров.
- 13. Этапы исследования ПЭТ.
- 14. Основные блоки ПЭТ сканера.
- 15. Реконструкция изображений.
- 16. Аппаратное обеспечение и контроль качества в ПЭТ.
- 17. Артефакты изображений в ПЭТ.
- 18. Аппаратные артефакты ПЭТ.
- 19. Артефакты сбора данных ПЭТ.
- 20. Артефакты обработки данных ПЭТ.
- 21. Радионуклиды, используемые в ПЭТ.

- 22. Достоинства, недостатки и области применения ПЭТ.
- 23. Характеристики ПЭТ -сканеров.
- 24. Этапы развития МРТ.
- 25. Физические основы МРТ.
- 26. Основные блоки МР-томографа.
- 27. Классификация МР-томографов.
- 28. Построение изображения.
- 29. Основные импульсные последовательности.
- 30. Спин-эхо последовательность.
- 31. Последовательность быстрое спин-эхо.
- 32. Последовательность инверсия-восстановление.
- 33. Последовательность градиентное эхо.
- 34. Последовательность быстрое градиентное эхо.
- 35. Эхо-планарное отображение.
- 36. МРТ диагностика патологий головного и спинного мозга.
- 37. МРТ диагностика патологий костей и суставов.
- 38. МРТ диагностика патологий внутренних органов.
- 39. МРТ диагностика патологий молочной железы.
- 40. Магнитно-резонансная ангиография.
- 41. Показатели качества изображения.
- 42. Артефакты МР-изображений.
- 43. Физиологические артефакты.
- 44. Артефакты, вызванные физическими явлениями.
- 45. Артефакты, вызванные неисправностью оборудования.
- 46. Неправильные действия оператора.
- 47. ЯМР-спектроскопия.
- 48. Безопасность при проведении МРТ.
- 49. Перспективы развития МРТ.

7. Учебно-методическое обеспечение дисциплины

7.1 Основная литература:

- 1. Терещенко, С.А. Методы вычислительной томографии [Электронный ресурс] : монография Электрон. дан. Москва : Физматлит, 2004. 320 с. Режим доступа: https://e.lanbook.com/book/59381
- 2. Гладкова, Н.Д. Руководство по оптической когерентной томографии [Электронный ресурс] : рук. / Н.Д. Гладкова, А.М. Сергеев. Электрон. дан. Москва : Физматлит, 2007. 296 с. Режим доступа: https://e.lanbook.com/book/2162
- **3.** Сизиков, В.С. Прямые и обратные задачи восстановления изображений, спектроскопии и томографии с MatLab: Учебное пособие + CD [Электронный ресурс]: учеб. пособие Электрон. дан. Санкт-Петербург: Лань, 2018. 412 с. Режим доступа: https://e.lanbook.com/book/99358

7.2 Программное обеспечение

- 1. Лицензионное и свободно распространяемое ПО: операционные системы ПЭВМ, текстовые, графические редакторы, табличные процессоры.
- 2. Авторское ПО: программы онлайнового контроля знаний студентов, программы обработки сигналов, изображений, управления оборудованием.

8. Материально-техническое обеспечение дисциплины

Для проведения занятий по дисциплине «Построение изображений медицинской томографии» имеется необходимая материально-техническая база, соответствующая действующим санитарным и противопожарным правилам и нормам:

– лекционная аудитория, оснащенная мультимедийными проекторами с возможностью подключения к Wi-Fi, документ-камерой, маркерными досками для демонстрации учебного материала;

- специализированный класс, с компьютерами и подключенным к ним периферийным измерительным прибором;
- аппаратурное и программное обеспечение, соответствующие методические материалы для проведения самостоятельной работы по дисциплине;

– литература в библиотеке университета.

- литература в ополнотеке университета.				
N⊆	Вид работ	Материально-техническое обеспечение дисциплины		
	-	(модуля) и оснащенность		
1.	Лекционные за-	Аудитории 315С, 209С оснащены презентационной		
	нятия	техникой (проектор, экран, компьютер/ноутбук) и соот-		
		ветствующим программным обеспечением (ПО): ОС		
		Windows, MS Office.		
2.	Семинарские занятия	Не запланированы		
3.	Лабораторные заня-	Аудитории 148С, 132С оснащенны презентационной		
	тия	техникой (проектор, экран, компьютер/ноутбук) и соот-		
		ветствующим программным обеспечением (ПО): ОС		
		Windows, MS Office.		
4.	Курсовое проектиро-	Кабинет для выполнения курсовых работ аудитория		
	вание	204C, 205C.		
5.	Групповые (индиви-	Аудитория 148С, оснащенная презентационной тех-		
	дуальные) консульта-	никой (проектор, экран, компьютер/ноутбук) и соответ-		
	ции	ствующим программным обеспечением (ПО): ОС		
		Windows, MS Office.		
6.	Текущий контроль,	Аудитория 148С, оснащенная презентационной тех-		
	промежуточная атте-	никой (проектор, экран, компьютер/ноутбук) и соответ-		
	стация	ствующим программным обеспечением (ПО): ОС		
	,	Windows, MS Office.		
7.	Самостоятельная ра-	Кабинет электронных ресурсов для самостоятельной		
	бота	работы, оснащенный компьютерной техникой с возможно-		
		стью подключения к сети «Интернет», программой экран-		
		ного увеличения и обеспеченный доступом в электронную		
		информационно-образовательную среду университета.		
		Аудитория 204С, 205С.		
		/ n F		