Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет физико-технический

УТВЕРЖДАЮ: Проректор по учебной работе, качеству образования — первый проректор мый унивый у

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

2017г.

Б1.Б.10.02 КОМПЬЮТЕРНАЯ ГРАФИКА

(код и наименование дисциплины в соответствии с учебным планом)

Направление подготовки/					
пециальность 12.03.04 Биотехнические системы и технологии					
(код и наименование направления подготовки/специальности)					
Направленность (профиль) /					
специализация "Инженерное дело в медико – биологической практике"					
(наименование направленности (профиля) специализации)					
Программа подготовки академическая					
<u> </u>					
(академическая /прикладная)					
Форма обучения очная					
(очная, очно-заочная, заочная)					
Квалификация (степень) выпускника бакалавр					
(бакалавр, магистр, специалист)					

Рабочая программа дисциплины составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 12.03.04 Биотехнические системы и технологии

Программу составил: Л.Р. Григорьян, доцент

Рабочая программа дисциплины утверждена на заседании кафедры физики и информационных систем

протокол № 16 «4» мая 2017г.

Заведующий кафедрой физики и

информационных систем Богатов Н.М.

фамилия, инициалы

Рабочая программа обсуждена на заседании кафедры физики и информационных систем

протокол № 16 «4» мая 2017г.

Заведующий кафедрой физики и

информационных систем Богатов Н.М.

фамилия, инициалы

Утверждена на заседании учебно-методической комиссии физико-технического факультета

протокол № 6 «4» мая 2017г.

Председатель УМК факультета Богатов Н.М.

фамилия, инициалы

Рецензенты:

Шапошникова Т.Л., зав. кафедрой физики ФГБОУ ВО КубГТУ

Григорьян Л.Р., генеральный директор ООО НПФ "Мезон"

1 Цели и задачи изучения дисциплины (модуля).

1.1 Цель освоения дисциплины.

Целью преподавания дисциплины «Компьютерная графика» освоение студентами теоретических и практических основ изучение методов графических изображений, обучение чтению и выполнению рисунков и изображений. Изучение общих правил выполнения схем радиоэлектронной аппаратуры; использование средств компьютерной графики для решения разноплановых графических задач; построения пакетов компьютерной графики, ориентированных на применение в информационных системах; способов организации интерактивного графического принципов и режима информационных системах; изучение студентами методов геометрического моделирования объектов и отображения графической информации активных и пассивных устройствах отображения.

1.2 Задачи дисциплины.

К основным задачам освоения дисциплины «Компьютерная графика» относится: развитие пространственных представлений и конструктивно-геометрического мышления, способностей к анализу и синтезу пространственных форм на основе графических моделей пространства, которые практически реализуются в виде различных чертежей. Изучение компьютерной графики развивает логическое и образное мышление как основу инженерного творчества.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Дисциплина Б1.Б.10.02 «Компьютерная графика» для бакалавров по направлению 12.03.04 Биотехнические системы и технологии (профиль: Инженерное дело в медико – биологической практике) относится к базовой части модуля дисциплин данной специальности.

Логически дисциплина связана с предметами базовой части первой ступени образования. Базируется на успешном усвоении сопутствующих дисциплин. Для освоения данной дисциплины необходимо владеть методами аналитической геометрии.

В результате изучения настоящей дисциплины студенты должны получить знания, имеющие не только самостоятельное значение, но и обеспечивающие базовую подготовку базовой и вариативной частей модуля обучения, обеспечивая согласованность и преемственность с этими дисциплинами.

Программа дисциплины «Компьютерная графика» согласуется со всеми учебными программами базовой и вариативной частей учебного плана.

Дисциплина «Компьютерная графика» предназначена для подготовки бакалавров к практической работе в области исследований, технологий и эксплуатации приборов и технологий.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций: ОПК- 4, ОПК- 9.

$N_{\underline{0}}$	Индекс	Содержание	В результате изучения учебной дисциплины			
П.	компете	компетенции	обучающиеся должны			
п.	нции	(или её части)	знать	уметь	владеть	
1.	ОПК-4	готовностью	теоретические и	использовать	методами и	
		применять	практические	графические	средствами	
		современные	основы методов	пакеты в составе	использован	
		средства для	графических		ия	

No	Индекс	Содержание	В результате і	изучения учебной ди	сциплины		
п.	компете	компетенции	обучающиеся должны				
П.	нции	(или её части)	знать	уметь	владеть		
		выполнения и	изображений,	информационных	компьютерн		
		редактирования	принципы и	технологий, а	ой графики		
		изображений и	способы	также при	для решения		
		чертежей и	организации	решении задач	разнопланов		
		подготовки	интерактивного	информационной	ЫХ		
		конструкторско-	графического	безопасности	графических		
		технологической	режима в		задач и		
		документации	информационны		информацио		
2.	ОПК-9	способностью	х системах.		нных задач		
		использовать	теоретические и				
		навыки работы с	практические				
		компьютером,	основы				
		владением	компьютерных				
		методами	графических				
		информационных	пакетов; основы				
		технологий,	построения				
		готовностью	компьютерной				
		соблюдать	графики,				
		основные	ориентированны				
		требования	х на применение				
		информационной	В				
		безопасности	информационны				
			х системах.				

Структура и содержание дисциплины. Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины составляет 2 зач.ед. (72 часов), их распределение по видам работ представлено в таблице (для студентов $O\Phi O$).

Вид учебной работы	Всего		естры
	часов	(ча	сы)
		2	-
Контактная работа, в том числе:			
Аудиторные занятия (всего):	50,2	50,2	
Занятия лекционного типа	16	16	-
Лабораторные занятия	32	32	-
Занятия семинарского типа (семинары,			
практические занятия)	-	1	-
	-	ı	-
Иная контактная работа:			
Контроль самостоятельной работы (КСР)	2	2	
Промежуточная аттестация (ИКР)	0,2	0,2	
Самостоятельная работа, в том числе:	22	22	
Курсовая работа	-	-	-
Проработка учебного (теоретического) материала	18	18	-
Выполнение индивидуальных заданий (подготовка	-	-	-

сообщений, презентаций				
Реферат		ı	-	-
Подготовка к текущему в	контролю	3,8	3,8	-
Контроль:				
Подготовка к экзамену		-	-	
Общая трудоемкость	час.	72	72	-
	в том числе контактная работа	50,2	50,2	
	зач. ед	2	2	

2.2 Структура дисциплины: Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 2 семестре (для студентов $O\Phi O$):

			Количество часов				
№	Наименование разделов (тем)	D.	A	худиторна	Я	Внеаудиторная	
		Всего	Л	работа ПЗ	ЛР	работа СРС	
1	2	3	4	5	6	7	
1	_	3	4	3	0	/	
1.	Возможности современной инженерной и компьютерной графики.	6	2	-	2	2	
2.	Базовая графическая система	12	2	-	6	2	
3.	Компьютерная техника для обработки и оформления графической информации	12	2	-	6	2	
4.	Базовые понятия компьютерной графики, растровая и векторная графика, векторная анимация.	12	2	-	6	4	
5.	Современные графические системы (Adobe Photoshop, CorelDraw, Компас, 3D-STUDIO).	14	4	-	6	4	
6.	Функциональные характеристики графических систем. Перспективы развития технических устройств машинной графики.	14	4	-	6	4	
	Итого по дисциплине:		16	-	32	18	

Примечание: Π – лекции, Π 3 – практические занятия / семинары, Π P – лабораторные занятия, СРС – самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

№	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
1.		Предмет дисциплины и ее задачи. Понятия	Ответы на
	1	компьютерной графики, геометрического	контрольные
	инженерной и	моделирования, графической системы, базового	вопросы (КВ) /

2.	компьютерной графики. Базовая графическая система	графического пакета. Вычислительные ресурсы для решения геометрических графических задач. Применение средств компьютерной графики. Графические стандарты. Базовая графическая система. Функции ядра графической системы. Стандарты в	выполнение лабораторной работы (ЛР) КВ / ЛР
3.	-	компьютерной графике (на разработку графических систем, обменные файлы и т.д.). Основные графические примитивы.	
	для обработки и оформления графической информации	Представление изображения как совокупности графических примитивов. Применение компьютерной техники для обработки и оформления графической информации.	КВ / ЛР
4.	Базовые понятия компьютерной графики, растровая и векторная графика, векторная анимация.	Виды компьютерной графики. Растровая графика. Векторная графика. Цветовая модель RGB. Цветовая модель CMYK. Цветовая модель HSB. Графические форматы. Форматы файлов растровой графики. Форматы файлов векторной графики.	КВ / ЛР
5.	Современные графические системы (Adobe Photoshop, CorelDraw, Компас, 3D-STUDIO).	Обзор современных графических систем (Adobe Photoshop, CorelDraw, AutoCAD, 3D-STUDIO).	КВ / ЛР
6.	Функциональные характеристики графических систем. Перспективы развития технических устройств машинной графики.	Функциональные характеристики графических систем. Перспективы развития технических устройств машинной графики.	КВ / ЛР

2.3.2 Занятия семинарского типа. Согласно учебному плану семинарского занятия по данной дисциплине не предусмотрены.

2.3.3 Лабораторные занятия.

No	No		Форма
П/П	раздела	Наименование лабораторных работ	текущего
11/11	дисциплины		контроля
			Отчет по
1	1	Основы работы с цветом	лабораторной
			работе
		Цветовые модели, системы соответствия цветом и	Отчет по
2	2	режимов	лабораторной
		1	работе
		T 1	Отчет по
3	3	Графические форматы	лабораторной
			работе
4	4	Растровая графика	Отчет по
4	4	1 1 1	лабораторной

			работе
			Отчет по
5	5	Векторная графика	лабораторной
			работе
			Отчет по
6	6	Фрактальная графика	лабораторной работе
			работе

Лабораторные работы выполняются в компьютерном классе на OC Windows в стандартных пакетах растровой и векторной графики.

В результате выполнения лабораторных работ у студентов формируются и оцениваются требуемые ФГОС и ООП по направлению 12.03.04 Биотехнические системы и технологии (профиль: "Инженерное дело в медико — биологической практике") компетенции: ОПК-4, ОПК-9.

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы - не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Возможности	1. Компьютерная графика. Учебник. Петров М.П. Молочков
		В.П. СПб.:Питер, 2003 г.
	и компьютерной графики.	2. Романычева, Эльза Тимофеевна, Соколова, Т. Ю.,
2	Базовая графическая	Шандурина, Г. Ф. Инженерная и ком-пьютерная графика:
	система	[учебник для вузов с дистанционным обуч. по напр.
		"Информатика и выч. техника", "Проектирование и
3	Компьютерная техника	технология электронных средств" и спец. "Радиотехника" и
	для обработки и	"Элек-тронное машиностроение"] / Э. Т. Романычева, Т. Ю.
	оформления графической	Соколова, Г. Ф. Шандурина; гл. ред. И. М. Захаров 2-е изд.,
	информации	перерабМ.: ДМК Пресс, 2001
4	Базовые понятия	3. Шикин Е.В., Боресков А.В. Компьютерная графика.
4	компьютерной графики,	Динамика, реалистичные изображе-ния М.: Диалог-
	1	МИФИ, 1995.
	растровая и векторная	4. Иванов В.П., Батраков А.С. Трехмерная компьютерная
	графика, векторная	графика./ Под. ред. К.М. Полищу-ка М.: Радио и связь,
	анимация.	1995.
5	Современные	5. Роджерс Д., Адамс Дж. Математические основы
	графические системы	машинной графики: Пер. с англ. — М.: Машиностроение,
	(Adobe Photoshop,	1980. — 240 с., ил.
	CorelDraw, Компас, 3D-	6. Фоли Дж., вэн Дэм А. Основы интерактивной
	STUDIO).	машинной графики: В 2-х книгах. Кн. 1 и 2. Пер. с англ. —

6		М.: Мир, 1985. — 368 с., ил.
	Функциональные характеристики графических систем. Перспективы развития технических устройств машинной графики.	

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

В процессе преподавания дисциплины используются следующие методы:

- лекции;
- опрос;
- индивидуальные практические задания;
- публичная защита лабораторных работ;
- консультации преподавателей;
- самостоятельная работа студентов (изучение теоретического материала, подготовка к лабораторным занятиям, выполнение домашних работ и индивидуальных типовых расчетов, подготовка к опросу и зачету).

Для проведения лекционных занятий могут использоваться мультимедийные средства воспроизведения активного содержимого, позволяющего слушателю воспринимать особенности изучаемого материала, зачастую играющие решающую роль в понимании и восприятии, а также формировании профессиональных компетенций. Эффективное обсуждение сложных и дискуссионных вопросов и проблем.

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и осуществляемое путем подготовки индивидуальных докладов;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

Основные образовательные технологии, используемые в учебном процессе:

- лекции с проблемным изложением;
- обсуждение сложных и дискуссионных вопросов и проблем и разрешение

проблем;

компьютерные занятия в режимах взаимодействия «преподаватель – студент»,
 «студент – преподаватель», «студент – студент»;

Интерактивные образовательные технологии, используемые в аудиторных занятиях:

- технология развития критического мышления;
- лекции с проблемным изложением;
- изучение и закрепление нового материала (использование вопросов, Сократический диалог);
- − обсуждение сложных и дискуссионных вопросов и проблем («Займи позицию (шкала мнений)», проективные техники, «Один вдвоем все вместе», «Смени позицию», «Дискуссия в стиле телевизионного ток-шоу», дебаты, симпозиум);
 - разрешение проблем («Дерево решений», «Мозговой штурм», «Анализ казусов»);
 - творческие задания;
 - работа в малых группах;
 - технология компьютерного моделирования численных расчетов.

Проведение всех занятий лабораторного практикума предусмотрено в классе снабженном всем необходимым оборудованием и компьютерами для эффективного выполнения соответствующих лабораторных работ.

По итогам выполнения каждой лабораторной работы студент предоставляет и защищает выполненную работу, причем в беседе с преподавателем должен продемонстрировать знание как теоретического и экспериментального материала, относящегося к работе, так и необходимых для практической реализации работы компьютерных технологий.

Дополнительная форма контроля эффективности усвоения материала и приобретения практических навыков заключается в открытой интерактивной защите лабораторной работы на устном выступлении перед аудиторией сокурсников.

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и путем подготовки докладов;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

4.1 Фонд оценочных средств для проведения текущего контроля.

В процессе подготовки и ответам на контрольные вопросы формируются и оцениваются все требуемые ФГОС и ООП для направления 12.03.04 Биотехнические системы и технологии (профиль: "Инженерное дело в медико – биологической практике") компетенции:ОПК-4, ОПК-9.

Ниже приводятся <u>примеры</u> контрольных вопросов для разделов рабочей программы.

- 1. Какие длины волн соответствуют основным цветам.
- 2. Поясните значения термина «метамерия».
- 3. Как вы понимаете отличие цветового диапазона от динамического?
- 4. Какие источники стандартного цвета вы знаете?
- 5. Поясните термин «цветовая температура».

- 6. Какие типы рецепторов человеческого глаза отвечают на ночное зрение, а какие за дневное.
- 7. К какому диапазону длин волн чувствителен глаз человека?
- 8. В чем отличие цветовых моделей от цветовых режимов?
- 9. Каково назначение эталонных таблиц атласов, каталогов?
- 10. Какие палитры цветов вы знаете, для чего они применяются.
- 11. Как вы понимаете такие понятия компьютерной графики, как слои и объекты?
- 12. Какие цветовые модели являются субтрактивной? Аддитивной?
- 13. Назовите основные системы соответствия цветов.
- 14. Чем определяется качество изображения?
- 15. Как создать изображение с заданным разрешением?
- 16. Поясните следующие термины и приведите примеры: . разрешение; растр; линиатура; цветовое разрешение; яркостное разрешение; пространственное разрешение; глубина цвета.
- 17. Перечислите методы сжатия изображений, их преимущества и недостатки.
- 18. Какие типы графических форматов вы знаете?
- 19. Какие типы сжатия используются в форматах изображений?
- 20. Перечислите известные вам алгоритмы сжатия. Поясните принцип их действия.
- 21. Почему растровая графика называется «точечной»?
- 22. Какие инструменты предоставляются растровыми графическими пакетами для обработки изображений?
- 23. Для чего применяются инструменты ретуши изображений?
- 24. Объясните сущность работы с маской в растровых программах.
- 25. Для чего служат гистограммы?
- 26. Как вы понимаете термин «слой изображения»?
- 27. Какие виды компьютерной графики вы знаете?
- 28. Назовите средства тональной коррекции.
- 29. Перечислите инструментальные средства цветовой коррекции.
- 30. Каково назначение фильтров?
- 31. Перечислите достоинства и недостатки известных растровых программ.
- 32. Какова структура векторного рисунка?
- 33. Каковы свойства объекта.
- 34. Поясните термин графический примитив.
- 35. Назовите основные свойства контуров.
- 36. Разложите какой-либо векторный рисунок на составляющие.
- 37. Сделайте краткий обзор графических редакторов.
- 38. Каковы достоинства и недостатки векторных программ.
- 39. Какие векторные графические форматы вы знаете.
- 40. Поясните смысл терминов: гарнитура, кегль, начертание.
- 41. Определения фракталов. Самоподобие. Дробные размерности.
- 42. Пыль Кантора, кривая Пиано, снежинка Коха, дракон Хэйгена
- 43. Классификация фракталов. Фракталы Мандельброта и Жюлиа
- 44. Системы итерированных функции. Топология и фрактальная размерность.
- 45. Размерность береговой линии, размерность геометрических фракталов.
- 46. Фрактальная размерность природных объектов.
- 47. Подобие и геометрические преобразования фракталов.
- 48. Подобие и скейлинг, размерность подобия. Инвариантность.
- 49. Мультиразмерные фракталы
- 50. Фрактальные модели неравновесных динамических систем
- 51. Фрактальные алгоритмы сжатия информации

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

Вопросы, выносимые на зачет по дисциплине «Компьютерная графика» для направления подготовки: 12.03.04 Биотехнические системы и технологии

- 1. Предмет курса и основная терминология компьютерной графики.
- 2. Основные понятия компьютерной графики.
- 3. Достоинства и недостатки разных способов представления изображений.
- 4. Параметры растровых изображений. Разрешение. Глубина цвета. Тоновый диапазон.
 - 5. Классификация современного программного обеспечения обработки графики.
 - 6. Форматы графических файлов.
- 7. Восприятие человеком светового потока. Цвет и свет. Ахроматические, хроматические, монохроматические цвета. Кривые реакция глаза.
 - 8. Характеристики цвета. Светлота, насыщенность, тон.
- 9. Цветовые модели, цветовые пространства. Аддитивные и субтрактивные цветовые модели. Основные цветовые модели: RGB, CMY, CMYK, HSV.
 - 10. Системы управления цветом.
 - 11. Регулировка яркости и контрастности растрового изображения.
 - 12. Построение гистограммы. Масштабирование изображений.
 - 13. Геометрические преобразования изображений.
 - 14. Понятие растеризации. Связанность пикселей.
 - 15. Понятие векторной графики.
 - 16. Определение точек на плоскости.
 - 17. Перенос, масштабирование, отражение, сдвиг.
 - 18. Вывод матрицы для поворота вокруг центра координат.
 - 19. Однородные координаты.
 - 20. Нормализация и ее геометрический смысл.
 - 21. Комбинированные преобразования.
- 22. Понятие линейного фильтра. Задание ядра фильтра. Фильтрация на границе изображения.
 - 23. Сглаживающие фильтры. Гауссовский фильтр.
 - 24. Контрастноповышающие фильтры.
 - 25. Фракталы. Историческая справка. Классификация фракталов.
- 26. Геометрические фракталы. Кривая Коха, снежинка Коха, Дракон Хартера хейтуэя. Использование L-систем для построения «дракона». Ковер и треугольник Серпинского.
- 27. Алгебраические фракталы. Построение множества Мандельброта. Построение множества Жюлиа.
 - 28. Стохастические фракталы.
 - 29. Изображение трехмерных объектов
 - 30. Этапы отображения трехмерных объектов.
 - 31. Отсечение по видимому объему.
 - 32. Нормализация видимого объема и переход к каноническому виду.
- 33. Представление пространственных форм. Параметрические бикубические куски. Полигональные сетки.
 - 34. Представление полигональных сеток в ЭВМ.
 - 36. Аппаратные средства компьютерной графики
- 37. Устройства ввода. Сканеры, дигитайзеры/графические планшеты. Цифровые фото и видеокамеры.
 - 38. Устройства вывода (мониторы, принтеры, плоттеры, цифровые проекторы)
 - 39. Устройства обработки (графические ускорители)

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

- 1. Никулин, Е.А. Компьютерная графика. Модели и алгоритмы [Электронный ресурс] : учебное пособие / Е.А. Никулин. Электрон. дан. Санкт-Петербург : Лань, 2017. 708 с. Режим доступа: https://e.lanbook.com/book/93702. Загл. с экрана.
- 2. Приемышев, А.В. Компьютерная графика в САПР [Электронный ресурс] : учебное пособие / А.В. Приемышев, В.Н. Крутов, В.А. Треяль, О.А. Коршакова. Электрон. дан. Санкт-Петербург : Лань, 2017. 196 с. Режим доступа: https://e.lanbook.com/book/90060. Загл. с экрана.
- 3. Инженерная и компьютерная графика [Текст] : [учебник для вузов с дистанционным обуч. по напр. "Информатика и выч. техника", "Проектирование и технология электронных средств" и спец. "Радиотехника" и "Электронное машиностроение"] / Э. Т. Романычева, Т. Ю. Соколова, Г. Ф. Шандурина ; гл. ред. И. М. Захаров. 2-е изд., перераб. М. : ДМК Пресс, 2001. 586 с. : ил. (Проектирование). К книге прилагается 1 CD-ROM. Библиогр.: с. 586. ISBN 5940740510 : 147.00.
- 4. Инженерная графика [Текст] : учебник для студентов немашиностроит. спец. вузов / А. А. Чекмарев. 3-е изд., стер. М. : Высшая школа, 2000. 365 с. : ил. Библиогр.: с. 355. ISBN 5060037274 : 100.00.
- 5. Инженерная графика [Текст] : учебник для студентов немашиностроит. спец. вузов / А. А. Чекмарев. 5-е изд., стер. М. : Высшая школа, 2003. 365 с. : ил. Библиогр. : с. 355. ISBN 5060037274.
- 6. AutoCAD 2005 [Текст] : [учебный курс] / Т. Соколова. СПб. [и др.] : Питер, 2005. 538 с. : ил. (Библиотека пользоателя). Прилагается [1] CD-ROM. ISBN 5469009262 : 246 р. 70 к.

- 7. Автоматизация конструкторских работ в среде Компас-3D [Текст] : учебное пособие для студентов вузов / В. В. Самсонов, Г. А. Красильникова. 2-е изд., стер. М. : Академия, 2009. 223 с. : ил. (Высшее профессиональное образование. Машиностроение). Библиогр. : с. 219. ISBN 9785769562068 : 220 р.
- 8. Компьютерная графика [Текст]: практикум / Н. М. Богатов, Л. Р. Григорьян, О. Е. Митина; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар: [Кубанский государственный университет], 2018. 107 с.: цв. ил. Библиогр.: с. 99-100. ISBN 978-5-8209-1477-5: 23 р. 30 к.

5.2 Дополнительная литература:

- 1. Романычева, Эльза Тимофеевна, Соколова, Т. Ю., Шандурина, Г. Ф. Инженерная и компьютерная графика: [учебник для вузов с дистанционным обуч. по напр. "Информатика и выч. техника", "Проектирование и технология электронных средств" и спец. "Радиотехника" и "Электронное машиностроение"] / Э. Т. Романычева, Т. Ю. Соколова, Г. Ф. Шандурина; гл. ред. И. М. Захаров 2-е изд., перераб. -М.: ДМК Пресс, 2001
- 2. Соколова, Татьяна Юрьевна AutoCAD 2005: [учебный курс] /Т. Соколова СПб. [и др.]: ПИТЕР, 2005
- 3. Самсонов, Владимир Викторович, Красильникова, Г. А. Автоматизация конструкторских работ в среде Компас-3D: учебное пособие для студентов вузов /В. В. Самсонов, Г. А. Красильникова 2-е изд., стер. -М.: Академия, 2009

5.3. Периодические издания:

Нет.

- 6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля).
 - 1. Электронные ресурсы ФГБОУ ВПО «Кубанский государственный университет»: http://www.kubsu.ru/node/1145
 - 2. Информационная система «Единое окно доступа к образовательным ресурсам»: http://window.edu.ru/window
 - 3. Федеральный образовательный портал: http://www.edu.ru/db/portal/sites/res_page.htm
 - 4. Большая научная библиотека: http://www.sci-lib.com/

7. Методические указания для обучающихся по освоению дисциплины (модуля).

На самостоятельную работу студентов, согласно требованиям ФГОС ВО по направлению 12.03.04 Биотехнические системы и технологии (профиль: "Инженерное дело в медико — биологической практике"), отводится около 50 % времени от общей трудоемкости дисциплины. Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов;
- проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе различных способов взаимодействия.

В соответствии с этим при проведении оперативного контроля могут

использоваться контрольные вопросы как к выполняемым работам лабораторного практикума, так и к соответствующим разделам основной дисциплины.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) — дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

8.1 Перечень информационных технологий.

- 1. Проверка домашних заданий и консультирование посредством электронной почты.
 - 2. Использование электронных презентаций при проведении практических занятий.

8.2 Перечень необходимого программного обеспечения.

- 1. Операционная система MS Windows.
- 2. Интегрированное офисное приложение MS Office.
- 3. Обеспечение информационной безопасности-антивирус.
- 4. Стандартные пакеты растровой и векторной графики (растровый редактор GIMP, Paint.net, векторный редактор InkScape, Draw of OOO).

8.3 Перечень информационных справочных систем:

1. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)/

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

No	Вид работ	Материально-техническое обеспечение дисциплины
		(модуля) и оснащенность
1.	Лекционные занятия	Мультимедийная аудитория с выходом в ИНТЕРНЕТ;
		комплект учебной мебели; доска учебная.; учебные ПЭВМ;
		ПЭВМ преподавателя 1 шт (учебная аудитория 132
		корпус С)
2.	Лабораторные	Мультимедийная аудитория с выходом в ИНТЕРНЕТ;
	занятия	комплект учебной мебели; доска учебная.; учебные ПЭВМ;
		ПЭВМ преподавателя 1 шт (учебная аудитория 132
		корпус С)
3.	Самостоятельная	Компьютерная техника с возможностью подключения к
	работа	сети "Интернет", программным обеспечением в режиме
		подключения к терминальному серверу, программой
		экранного увеличения и доступом в электронную
		информационно-образовательную среду университета
		(учебная аудитория 204, 213 корпус С)