Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет»

«Кубанский государственный университет» Физико-технический факультет

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования – первый

проректор

Иванов А.Г.

<<u>30</u> »

1000 N

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.Б.09 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

(код и наименование дисциплины в соответствии с учебным планом)

Направление подготовки / спе	циальность	
11.03.04 Эле	ктроника и наноэлектроника	
	направления подготовки/специальности)	
Направленность (профиль) / сг	тециализация	
Наноте	хнологии в электронике	
(наименование п	направленности (профиля) специализации)	
Программа подготовки	академическая	
	(академическая /прикладная)	
Форма обучения	очная	
	(очная, очно-заочная, заочная)	
Квалификация (степень) выпус	скника <u>бакалавр</u> (бакалавр, магистр, специалист)	

Рабочая программа дисциплины Б1.Б.09 «Теоретические основы электротехники» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 11.03.04 Электроника и наноэлектроника, профиль «Нанотехнологии в электронике».

Программу составил:

С.А. Литвинов, канд. хим. наук, доцент кафедры оптоэлектроники

Рабочая программа дисциплины Б1.Б.09 «Теоретические основы электротехники» утверждена на заседании кафедры оптоэлектроники ФТФ, протокол № 8 от 11 мая 2017 г.

Заведующий кафедрой оптоэлектроники д-р техн. наук, профессор Яковенко Н.А.

Рабочая программа дисциплины обсуждена на заседании кафедры радиофизики и нанотехнологий, протокол № 9 от 02 мая 2017 г. Заведующий кафедрой, д-р физ.-мат. наук Копытов Г.Ф.

Утверждена на заседании учебно-методической комиссии физикотехнического факультета, протокол № 6 от 04 мая 2017 г. Председатель УМК ФТФ д-р физ.-мат. наук, профессор Богатов Н.М.

подпись

подпись

Рецензенты:

Куксенко Б.А., главный инженер АО «КБ «Селена»,

Исаев В.А., д-р физ.-мат. наук, зав. кафедрой теоретической физики и компьютерных технологий.

1 Цели и задачи изучения дисциплины

1.1 Цель дисциплины

Целью изучения дисциплины является достижение следующих результатов образования:

- получение студентами профессиональных знаний, умений и навыков в области теоретической электротехники;
- комплексное формирование профессиональных компетенций обучающихся, необходимых для последующей производственной деятельности бакалавра по направлению подготовки «Электроника и наноэлектроника» в условиях современного рынка при решении задач в областях электротехники, электроники, наноэлектроники, аналоговой и цифровой схемотехники.

1.2 Задачи дисциплины

Задачами освоения дисциплины являются:

- овладение учащимися способностью решать задачи анализа и расчета характеристик электрических цепей;
- формирование у студентов способности учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Б1.Б.09 «Теоретические основы электротехники» относится к базовой части Блока 1 «Дисциплины (модули)» учебного плана.

Дисциплина логически и содержательно-методически связана с дисциплинами базовой части модуля Б1 «Физика», «Математический анализ», «Электричество и магнетизм», «Теория электрических цепей».

Для освоения данной дисциплины необходимо владеть методами математического анализа, физики, электричества; знать основные физические законы в области электричества и магнетизма; уметь применять математические методы и физические принципы для решения практических задач.

В результате изучения дисциплины студенты должны получить знания, имеющие не только самостоятельное значение, но и обеспечивающие базовую подготовку для усвоения дисциплин базовой и вариативной частей модуля Б1 «Электроника», «Схемотехника», «Наноэлектроника», «Основы технологии электронной компонентной базы» и других, обеспечивая согласованность и преемственность с этими дисциплинами.

Программа дисциплины «Теоретические основы электротехники» согласуется со всеми учебными программами дисциплин базовой Б1.Б и вариативной Б1.В частей модуля (дисциплин) Б1 учебного плана.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы Изучение данной учебной дисциплины направлено на формирование у обучающихся компетенций ОПК-3, ОПК-7:

№	Индекс	Содержание компе-		учения учебной дис	сциплины обу-
П.П.	компе-	тенции (или её час- ти)	знать	чающиеся должны уметь	владеть
1.	ОПК-3	способностью решать задачи анализа и расчета характеристик электрических цепей	• основные понятия и определения теории электротехники; • методы анализа электрических, магнитных и электронных цепей; • методы спектрального анализа электрических сигналов;	• применять методы расчета электрических цепей в установившемся и переходном режимах для линейных и нелинейных моделей электрических цепей; • применять основные методы расчета электрических и электронных цепей для определения реакции цепи на постоянное и переменные воздействия;	• навыками анализа (расчета) установившихся и переходных режимов линейных и нелинейных электрических цепей;
2.	ОПК-7	способностью учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности	• математические модели линейных и нелинейных электрических цепей и методы их расчета в статическом и переходном режимах; • модели и временные характеристики основных видов электрических сигналов.	• строить физико- математические модели электро- технических устройств; • применять программные средства для моделирования и исследования сигналов, электрических и электронных цепей и устройств.	• навыками сбора и анализа исходных данных для расчета и проектирования электронных схем и устройств; • навыками составления описаний проводимых исследований, подготовки данных для составления отчетов, обзоров.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ Общая трудоёмкость дисциплины составляет 4 зач. ед. (144 часа), их распределение по видам работ представлено в таблице для студентов ОФО.

Вид уч	Всего часов	5 семестр			
Контактная работа:		76,3			
В том числе:					
Аудиторные занятия (все	го):	72			
Занятия лекционного типа		36			
Занятия семинарского типа ((семинары, практические занятия)	-			
Лабораторные занятия		36			
Иная контактная работа:					
Контроль самостоятельной	работы (КСР)	4			
Промежуточная аттестация	(ИКР) в форме экзамена	0,3			
Самостоятельная работа	(всего)	41			
В том числе:					
Проработка учебного (теор	11				
Расчетно-графические зада	ния	14			
Реферат		-			
Подготовка к текущему ког	нтролю	16			
Контроль:	Контроль:				
Подготовка к экзамену	26,7				
Вид промежуточной аттес	экзамен				
Общая трудоемкость час		144			
	в том числе контактная работа	76,3			
	зач. ед.	4			

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы дисциплины, изучаемые в 5 семестре для студентов ОФО.

Ma		Количество часов					В
№ раз- дела	аз- Наименование разделов		Аудит сего рабо			КСР	Внеаудиторная работа
дела			Л	П3	ЛР		CPC
1.	Анализ переходных процессов в линейных цепях классическим методом	35	10	-	12	1	12
2.	Нелинейные элементы. Анализ нелинейных цепей.	25	8	-	8	1	8
3.	Спектральный метод анализа сигналов	19	6	-	4	1	8
4.	Основы теории четырехполюс- ников	20,5	6	-	8	0,5	6
5.	Цепи с распределенными пара- метрами.	17,5	6	-	4	0,5	7
	Итого по дисциплине:	117	36	-	36	4	41
	Промежуточная аттестация (ИКР)					0,3	
	Подготовка к экзамену						26,7
	Всего по дисциплине:	144	36	-	36	4,3	67,7

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа

№	Наименование	Содержание раздела	Форма
112	раздела	Содержание раздела	текущего -
	раздела		контроля
1	2	3	4
1.	Анализ переходных процессов в линейных цепях классическим методом.	Возникновение переходных процессов. Законы коммутации и начальные условия. Определение порядка сложности цепи. Порядок анализа переходных процессов классическим методом. Вынужденный режим. Определение постоянных интегрирования. Свободный режим. Дифференциальное уравнение для свободных составляющих. Переходный процесс в последовательной RL цепи при коммутации к источнику постоянной ЭДС. Переходный процесс в RL цепи при замыкании L на R. Переходный процесс в последовательной RC цепи. Переходный процесс в RC цепи при замыкании С на R. Размыкание цепи с индуктивным элементом. Дифференцирующие и интегрирующие RC цепи. Дифференцирующие и интегрирующие RL цепи. Коммутация последовательной RLC цепи к источнику постоянной ЭДС. Критический режим в последовательной RLC цепи. Затухающий колебательный режим в последовательной RLC цепи. Логарифмический декремент затухания. Незатухающий колебательный режим в последовательной RLC цепи. Расчет параметров и характеристик апериодического, критического, затухающего колебательного режимов последовательной RLC цепи.	К
3.	Нелинейные эле- менты. Анализ нелинейных це- пей.	Нелинейные двухполюсники. Статические и дифференциальные характеристики нелинейных двухполюсников. Классификация нелинейных элементов. Общие свойства нелинейных цепей. Способы описания характеристик нелинейных элементов. Линейная, полиноминальная, кусочно-линейная аппроксимации. Метод нагрузочной характеристики для анализа нелинейной цепи. Расчёт электрических цепей постоянного тока при последовательном и параллельном включении нелинейных элементов. Расчёт электрических цепей переменного тока, содержащих нелинейные элементы.	
4.	Спектральный метод анализа цепей.	Спектральный метод анализа электрических цепей. Условия Дирихле. Разложение периодической негармонической функции в ряд Фурье. Разложение симметричных функций в ряд Фурье. Спектральная амплитудная и фазовая диаграммы периодических сигналов. Спектры прямоугольных периодических сигналов.	

No	Наименование раздела	Содержание раздела	Форма гекущего контроля
1	2	3	4
5.	Основы теории четырехполюсни- ков	Пассивные четырех- и трехполюсники. Коэффициенты передачи напряжения и тока четырехполюсника. Системы Z, Y, H, А-параметров четырехполюсника. Схемы П-образного и Т-образного соединений внутри четырехполюсников. Связь между различными системами параметров четырехполюсника. Последовательное и параллельное соединение четырехполюсников.	
6.	Цепи с распределенными параметрами.	Понятие о цепях с распределенными параметрами. Вывод телеграфных уравнений: дифференциальные уравнения линии передачи для мгновенных значений токов и напряжений. Коэффициент распространения и волновое сопротивление длинной линии. Понятие падающей и отраженной волн, коэффициент отражения линии. Режимы бегущих, стоячих и смешанных волн. Условие неискажающей линии передачи. Типы длинных линий и особенности их применения. Условие минимального затухания в длинной линии. Различные виды нагрузки линии передачи.	

2.3.2 Занятия семинарского типа

Занятия семинарского типа не предусмотрены.

2.3.3 Лабораторные занятия

	2.3.3 Лабораторные занятия	
No	Наименование лабораторных работ	Форма текущего контроля
1	3	4
	ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ	КВ / РГЗ / Т
1	Экспериментальное исследование переходных процессов в RC- цепях. Изучение воздействия прямоугольных импульсов напря- жения на RC-цепь.	
	ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ RL-ЦЕПЯХ	КВ / РГЗ / Т
2	Экспериментальное исследование переходных процессов в RL- цепях. Изучение воздействия прямоугольных импульсов напря- жения на RL-цепь.	
	ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ RLC- ЦЕПЯХ	КВ / РГЗ / Т
3	Экспериментальное исследование переходных процессов в RLC- цепях. Изучение воздействия прямоугольных импульсов напря- жения на RLC-цепь.	
	ИССЛЕДОВАНИЕ НЕЛИНЕЙНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА	КВ / РГЗ / Т
4	Исследование цепи постоянного тока, содержащей нелинейные элементы; экспериментальное получение характеристик нелинейных резистивных элементов, расчет нелинейной электрической цепи постоянного тока и экспериментальная проверка результатов расчета.	
	ОБЩИЕ СВОЙСТВА ЧЕТЫРЕХПОЛЮСНИКОВ	КВ / РГЗ / Т
5	Изучение уравнений, параметров и принципов описания четы- рехполюсников. Практическое определение h - параметров бипо- лярного транзистора в схеме включения с общим эмиттером в ка- честве четырехполюсника.	

Примечание: KB — ответы на контрольные вопросы, $P\Gamma 3$ — выполнение расчетнографических заданий, T — тестирование.

2.3.4 Примерная тематика курсовых работ (проектов):

Согласно учебному плану курсовые работы (проекты) по данной дисциплине не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

ООУЧАК	рщихся по дисциплине	
	D GD G	Перечень учебно-методического обеспечения дисциплины
No	Вид СРС	по выполнению самостоятельной работы
1	2	3
1.	Проработка учебного	1. Бессонов, Л. А. Теоретические основы электротехники.
	(Электрические цепи в 2 ч. Часть 1. : учебник для академи-
	(теоретического) мате-	ческого бакалавриата / Л. А. Бессонов. — 12-е изд., испр.
	риала	и доп. — М.: Издательство Юрайт, 2018. — 364 с. — (Ce-
	1	рия: Бакалавр. Академический курс). — ISBN 978-5-534-
		02622-1. — Режим доступа : www.biblio-
		online.ru/book/AFCC1C9F-B134-4FCA-9696-
		92B9E8618C67.
		2. Бессонов, Л. А. Теоретические основы электротехники.
		Электрические цепи в 2 ч. Часть 2. : учебник для академи-
		ческого бакалавриата / Л. А. Бессонов. — 12-е изд., испр.
		и доп. — М. : Издательство Юрайт, 2018. — 346 с. — (Ce-
		рия: Бакалавр. Академический курс). — ISBN 978-5-534-
		02624-5. — Режим доступа : www.biblio-
		online.ru/book/02071354-3E5E-46FD-B5DF-
		CF442E2A09EA.
		3. Литвинов, С.А., Яковенко, Н.А. Теоретические основы
		электротехники: лабораторный практикум. Краснодар: Кубанский гос. ун-т, 2017.
2.	Выполнение индиви-	1. Бессонов, Л. А. Теоретические основы электротехники.
	дуальных заданий	Электрические цепи в 2 ч. Часть 1. : учебник для академи-
	(расчетно-графические	ческого бакалавриата / Л. А. Бессонов. — 12-е изд., испр.
	задания)	и доп. — М.: Издательство Юрайт, 2018. — 364 с. — (Ce-
		рия: Бакалавр. Академический курс). — ISBN 978-5-534-
		02622-1. — Режим доступа : www.biblio-
		online.ru/book/AFCC1C9F-B134-4FCA-9696-
		92B9E8618C67.
		2. Бессонов, Л. А. Теоретические основы электротехники.
		Электрические цепи в 2 ч. Часть 2. : учебник для академи-
		ческого бакалавриата / Л. А. Бессонов. — 12-е изд., испр.
		и доп. — М. : Издательство Юрайт, 2018. — 346 с. — (Ce-
		рия: Бакалавр. Академический курс). — ISBN 978-5-534-
		02624-5. — Режим доступа : www.biblio-
		online.ru/book/02071354-3E5E-46FD-B5DF-
		CF442E2A09EA.
		3. Литвинов, С.А., Яковенко, Н.А. Теоретические основы
		электротехники: лабораторный практикум. Краснодар:
		Кубанский гос. ун-т, 2017.
		11, 0011 1, 2011.

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
	Подготовка к текущему контролю	1. Бессонов, Л. А. Теоретические основы электротехники. Электрические цепи в 2 ч. Часть 1. : учебник для академического бакалавриата / Л. А. Бессонов. — 12-е изд., испр. и доп. — М. : Издательство Юрайт, 2018. — 364 с. — (Серия : Бакалавр. Академический курс). — ISBN 978-5-534-02622-1. — Режим доступа : www.biblioonline.ru/book/AFCC1C9F-B134-4FCA-9696-92B9E8618C67. 2. Бессонов, Л. А. Теоретические основы электротехники. Электрические цепи в 2 ч. Часть 2. : учебник для академического бакалавриата / Л. А. Бессонов. — 12-е изд., испр. и доп. — М. : Издательство Юрайт, 2018. — 346 с. — (Серия : Бакалавр. Академический курс). — ISBN 978-5-534-02624-5. — Режим доступа : www.biblioonline.ru/book/02071354-3E5E-46FD-B5DF-CF442E2A09EA. 3. Литвинов, С.А., Яковенко, Н.А. Теоретические основы электротехники: лабораторный практикум. Краснодар: Кубанский гос. ун-т, 2017.
4.	КСР	1. Бессонов, Л. А. Теоретические основы электротехники. Электрические цепи в 2 ч. Часть 1.: учебник для академического бакалавриата / Л. А. Бессонов. — 12-е изд., испр. и доп. — М.: Издательство Юрайт, 2018. — 364 с. — (Серия: Бакалавр. Академический курс). — ISBN 978-5-534-02622-1. — Режим доступа: www.biblioonline.ru/book/AFCC1C9F-B134-4FCA-9696-92B9E8618C67. 2. Бессонов, Л. А. Теоретические основы электротехники. Электрические цепи в 2 ч. Часть 2.: учебник для академического бакалавриата / Л. А. Бессонов. — 12-е изд., испр. и доп. — М.: Издательство Юрайт, 2018. — 346 с. — (Серия: Бакалавр. Академический курс). — ISBN 978-5-534-02624-5. — Режим доступа: www.biblioonline.ru/book/02071354-3E5E-46FD-B5DF-CF442E2A09EA. 3. Литвинов, С.А., Яковенко, Н.А. Теоретические основы электротехники: лабораторный практикум. Краснодар: Кубанский гос. ун-т, 2017.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

– в печатной форме,

- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

В процессе преподавания дисциплины используются следующие методы:

- лекции;
- проведение практических занятий;
- проведение лабораторных занятий;
- опрос;
- индивидуальные практические задания;
- расчетно-графические задания;
- тестирование;
- публичная защита лабораторных работ;
- консультации преподавателей;
- самостоятельная работа студентов (изучение теоретического материала, подготовка к лабораторным занятиям, выполнение индивидуальных заданий, подготовка к опросу, тестированию и зачету).

Для проведения всех лекционных и практических (семинарских) занятий используются мультимедийные средства воспроизведения активного содержимого, позволяющего слушателю воспринимать особенности изучаемого материала, играющие важную роль в понимании и восприятии, а также формировании профессиональных компетенций. Интерактивные аудиторные занятия с использованием мультимедийных систем позволяют активно и эффективно вовлекать учащихся в учебный процесс и осуществлять обратную связь, обсуждать сложные и дискуссионные вопросы и проблемы.

По изучаемой дисциплине студентам предоставляется возможность открыто пользоваться (в том числе копировать на личные носители информации) подготовленными ведущим данную дисциплину преподавателем материалами в виде электронного комплекса сопровождения, включающего в себя:

- электронные конспекты лекций;
- электронные планы практических (семинарских) занятий;
- электронные варианты учебно-методических пособий для выполнения лабораторных заданий;
 - списки контрольных вопросов к каждой теме изучаемого курса;
- разнообразную дополнительную литературу, относящуюся к изучаемой дисциплине в электронном виде (в различных текстовых форматах *.doc, *.rtf, *.htm, *.txt, *.pdf, *.djvu и графических форматах *.jpg, *.png, *.gif, *.tif).

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых по средствам изучения рекомендуемой литературы и осуществляемое путем выполнения расчетно-графических заданий;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

Основные образовательные технологии, используемые в учебном процессе:

- интерактивная лекция с мультимедийной системой с активным вовлечением студентов в учебный процесс и обратной связью;
 - лекции с проблемным изложением;

- обсуждение сложных и дискуссионных вопросов и проблем и разрешение проблем;
- компьютерные занятия в режимах взаимодействия «преподаватель студент»,
 «студент преподаватель», «студент студент»;
- технологии смешанного обучения: дистанционные задания и упражнения, составление глоссариев терминов и определений, групповые методы Wiki, интернеттестирование.

Интерактивные образовательные технологии, используемые в аудиторных занятиях:

- лекции с проблемным изложением и использованием средств мультимедиа;
- изучение и закрепление нового материала (интерактивная лекция, работа с наглядными пособиями, видео- и аудиоматериалами);
 - обсуждение сложных и дискуссионных вопросов и проблем, дебаты, симпозиум;
- использование средств мультимедиа (компьютерные классы) при выполнении лабораторных работ;
- компьютерная тестирующая система на базе Atest10, позволяющая проводить оперативный и объективный контроль знаний учащихся.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

4.1 Фонд оценочных средств для проведения текущего контроля.

Контрольные вопросы по учебной программе

В процессе подготовки к ответам на контрольные вопросы формируются и оцениваются требуемые ФГОС и ООП для направления 11.03.04 «Электроника и наноэлектроника», направленность (профиль) «Нанотехнологии в электронике» компетенции: ОПК-3; ОПК-7.

Ниже приводятся примеры контрольных вопросов для раздела «Анализ переходных процессов в линейных цепях классическим методом» рабочей программы. Полный комплект контрольных вопросов для всех разделов рабочей программы приводится в ФОС дисциплины Б1.Б.09 «Теоретические основы электротехники».

Пример контрольных вопросов для раздела «Анализ переходных процессов в линейных цепях классическим методом»

- 1. Определение порядка сложности цепи.
- 2. Законы коммутации и начальные условия.
- 3. Порядок анализа переходных процессов классическим методом.
- 4. Вынужденный режим. Определение постоянных интегрирования.
- 5. Свободный режим. Дифференциальное уравнение для свободных составляющих.
- 6. Переходный процесс в последовательной RL цепи при коммутации к источнику постоянной ЭДС.
- 7. Переходный процесс в RL цепи при замыкании L на R.
- 8. Переходный процесс в последовательной RC цепи при коммутации к источнику постоянной ЭДС.
- 9. Переходный процесс в RC цепи при замыкании C на R.
- 10. Размыкание цепи с индуктивным элементом.
- 11. Коммутация последовательной RLC цепи к источнику постоянной ЭДС.
- 12. Апериодический режим в последовательной RLC цепи.

- 13. Критический режим в последовательной RLC цепи.
- 14. Затухающий колебательный режим в последовательной RLC цепи.
- 15. Логарифмический декремент затухания.
- 16. Определение логарифмического декремента затухания по добротности последовательного RLC контура.
- 17. Определение R, L и C параметров последовательного RLC контура по периоду и декременту затухания колебательного режима.
- 18. Незатухающий колебательный режим в последовательной RLC цепи.

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

4.2.1 Вопросы, выносимые на экзамен по дисциплине Б1.Б.09 «Теоретические основы электротехники» для направления 11.03.04 «Электроника и наноэлектроника», направленность (профиль) «Нанотехнологии в электронике»

В процессе подготовки и сдачи зачета формируются и оцениваются требуемые ФГОС и ООП для направления 11.03.04 «Электроника и наноэлектроника», направленность (профиль) «Нанотехнологии в электронике» компетенции: ОПК-3; ОПК-7.

- 1. Законы коммутации и начальные условия.
- 2. Определение порядка сложности цепи.
- 3. Порядок анализа переходных процессов классическим методом.
- 4. Вынужденный режим. Определение постоянных интегрирования.
- 5. Свободный режим. Дифференциальное уравнение для свободных составляющих.
- 6. Переходный процесс в последовательной RL цепи при коммутации к источнику постоянной ЭДС.
 - 7. Переходный процесс в RL цепи при замыкании L на R.
- 8. Переходный процесс в последовательной RC цепи при коммутации к источнику постоянной ЭДС.
 - 9. Переходный процесс в RC цепи при замыкании C на R.
 - 10. Размыкание цепи с индуктивным элементом.
 - 11. Коммутация последовательной RLC цепи к источнику постоянной ЭДС.
 - 12. Апериодический режим в последовательной RLC цепи.
 - 13. Критический режим в последовательной RLC цепи.
 - 14. Затухающий колебательный режим в последовательной RLC цепи.
 - 15. Декремент колебаний.
- 16. Определение логарифмического декремента колебаний по добротности последовательного RLC контура.
- 17. Определение R, L и C параметров последовательного RLC контура по периоду и декременту колебательного режима.
 - 18. Незатухающий колебательный режим в последовательной RLC цепи.
 - 19. Сглаживающие и резонансные электрические фильтры.
 - 20. Избирательные фильтры.
 - 21. Заградительные фильтры.
- 22. Нелинейные двухполюсники. Статические и дифференциальные характеристики нелинейных двухполюсников.
 - 23. Классификация нелинейных элементов.
 - 24. Общие свойства нелинейных цепей.
 - 25. Способы описания характеристик нелинейных элементов.
 - 26. Метод нагрузочной характеристики для анализа нелинейной цепи.
- 27. Расчёт электрических цепей постоянного тока при последовательном и параллельном включении нелинейных элементов.

- 28. Расчёт электрических цепей переменного тока, содержащих нелинейные элементы.
 - 29. Спектральный метод анализа электрических цепей. Условия Дирихле.
 - 30. Разложение периодической негармонической функции в ряд Фурье.
 - 31. Разложение симметричных функций в ряд Фурье.
 - 32. Спектральная амплитудная и фазовая диаграммы периодических сигналов.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

- 1. Новожилов, О. П. Электротехника (теория электрических цепей) : учебник для академического бакалавриата / О. П. Новожилов. М. : Издательство Юрайт, 2016. 643 с. (Серия : Бакалавр. Академический курс). ISBN 978-5-9916-3507-3. Режим доступа : www.biblio-online.ru/book/135DA3BB-EA04-4A61-AE45-E4E44754DDB8.
- 2. Бессонов, Л. А. Теоретические основы электротехники. Электрические цепи: учебник для бакалавров / Л. А. Бессонов. 12-е изд., испр. и доп. М.: Издательство Юрайт, 2016. 701 с. (Серия: Бакалавр. Академический курс). ISBN 978-5-9916-3210-2. Режим доступа: www.biblio-online.ru/book/3CBB2966-5FBB-43BB-AFF3-40C9B30AF300.
- 3. Литвинов, С.А., Яковенко, Н.А. Теоретические основы электротехники: лабораторный практикум. Краснодар: Кубанский гос. ун-т, 2017.

5.2 Дополнительная литература:

1. Соболев, В.Н. Теория электрических цепей [Электронный ресурс] : учебное пособие / В.Н. Соболев. — Электрон. дан. — Москва : Горячая линия-Телеком, 2014. — 502 с. — Режим доступа: https://e.lanbook.com/book/55667. — Загл. с экрана.

- 2. Бычков, Ю.А. Основы теоретической электротехники [Электронный ресурс]: учебное пособие / Ю.А. Бычков, В.М. Золотницкий, Э.П. Чернышев. Электрон. дан. Санкт-Петербург: Лань, 2009. 592 с. Режим доступа: https://e.lanbook.com/book/36. Загл. с экрана.
- 3. Бычков, Ю.А. Справочник по основам теоретической электротехники [Электронный ресурс] : учебное пособие / Ю.А. Бычков. Электрон. дан. Санкт-Петербург : Лань, 2012. 368 с. Режим доступа: https://e.lanbook.com/book/3187. Загл. с экрана.
- 4. Попов В.П. Основы теории цепей. Южный федеральный ун-т. 7-е изд., перераб. и доп. Москва: Юрайт, 2015.

5.3. Периодические издания:

- 1. Журнал «Электроника».
- 2. Журнал «Радиотехника и электроника»
- 3. Журнал «Радиотехника».
- 5. Журнал «Микроэлектроника».
- 6. Известия ВУЗов». Серия: «Радиоэлектроника».

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. http://www.elektro-journal.ru. Журнал «ЭЛЕКТРО. Электротехника, электроэнергетика, электротехническая промышленность».
 - 2. http://www.infonewworld.ru/tech/. «Техника и электроника» Интернет журнал.
 - 3. http://www.electronics.ru. Электроника НТБ научно-технический журнал.
- 4. http://window.edu.ru/window Информационная система «Единое окно доступа к образовательным ресурсам»

7. Методические указания для обучающихся по освоению дисциплины (модуля)

На самостоятельную работу студентов по дисциплине «Теоретические основы электротехники» согласно требованиям ФГОС ВО для бакалавриата по направлению подготовки 11.03.04 «Электроника и наноэлектроника», направленность (профиль) «Нанотехнологии в электронике», отводится около 28,5 % времени (41 час. СРС) от общей трудоемкости дисциплины (144 час.). Самостоятельная работа студентов при освоении дисциплины является составной частью учебной работы и имеет целью закрепление и углубление полученных знаний и навыков, поиск и приобретение новых знаний.

Самостоятельная работа осуществляется в формах:

- проработка учебного (теоретического) материала 11 часов;
- выполнение индивидуальных расчетно-графических заданий 14 часов;
- подготовка к текущему контролю 16 часов.

Самостоятельная работа студента под руководством преподавателя протекает в форме делового взаимодействия: студент получает непосредственные указания, рекомендации преподавателя об организации самостоятельной деятельности, а преподаватель выполняет функцию управления через учет, контроль и коррекцию ошибочных действий в процессах проведения опроса по лекционному курсу или проверки расчетно-графического задания на практических занятиях. В процессе выполнения расчетно-графических заданий к лабораторным работам студент должен выбирать способы решения поставленных задач, выполнять операции контроля правильности решения поставленной задачи, совершенствовать навыки реализации теоретических знаний. Оперативный контроль качества самостоятельной работы и успеваемости студента осуществляется с помощью автоматизированных тестов к лабораторным работам.

Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов;
- проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе различных способов взаимодействия в открытой информационной среде.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю)

При осуществлении образовательного процесса по дисциплине согласно требованиям ФГОС ВО для бакалавриата по направлению подготовки 11.03.04 «Электроника и наноэлектроника», направленность (профиль) «Нанотехнологии в электронике» используются интегрированные технологии организации процесса, т.е. различные сочетания аудиторных и дистанционных занятий. Лекторы и преподаватели, ведущие практические и семинарские занятия, до начала семестра составляют и размещают на сервере график учебного процесса, где детально описывают порядок изучения дисциплины в данном семестре. Основной фактический материал, заранее подготовленный лектором И снабженный необходимым количеством иллюстраций и интерактивных элементов, размещается на сервере вместе с методическими рекомендациями по его самостоятельному изучению.

При осуществлении образовательного процесса используются следующее программное обеспечение: Microsoft Office (Excel, Word), электронные ресурсы сайта КубГУ.

8.1 Перечень необходимого программного обеспечения

- 1. Операционная система MS Windows.
- 2. Интегрированное офисное приложение MS Office.
- 3. Программное обеспечение для организации управляемого и безопасного доступа в Интернет.
- 4. Программное обеспечение для безопасной работы на компьютере файловый антивирус, почтовый антивирус, веб-антивирус и сетевой экран.

8.2 Перечень необходимых информационных справочных систем

- 1. http://window.edu.ru/ Единое окно доступа к образовательным ресурсам.
- 2. http://old.kubsu.ru/University/library/ Научная Библиотека КубГУ.
- 3. http://www.biblio-online.ru Электронная библиотека ЮРАЙТ.
- 4. https://e.lanbook.com Электронно-библиотечная система ЛАНЬ:
- 5. http://www.elibrary.ru Электронная библиотечная система eLIBRARY.RU.
- 6. http://www.en.edu.ru/catalogue/ Естественно-научный образовательный портал.
- 7. http://techlibrary.ru/ Техническая библиотека.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Успешная реализация преподавания дисциплины «Электроника» предполагает наличие минимально необходимого для реализации программы подготовки бакалавров перечня материально-технического обеспечения:

- лекционные аудитории (оборудованные видеопроекционным оборудованием для презентаций, средствами звуковоспроизведения, экраном, и имеющие выход в Интернет);
- описания лабораторных работ по дисциплине «Электроника» с учебнометодическими указаниями к их выполнению;
 - программы контроля знаний студентов;
 - наличие необходимого лицензионного программного обеспечения.

При использовании электронных изданий вуз должен обеспечить каждого обучающегося во время самостоятельной подготовки рабочим местом в компьютерном классе с выходом в Интернет в соответствии с объемом изучаемых дисциплин.

No	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность			
1.	Лекционные занятия	Лекционная аудитория 315С, оборудованная видеопроекционным оборудованием для презентаций, средствами			
2.	Семинарские занятия	звуковоспроизведения, экраном Компьютерный класс ауд. 133С для проведения практических работ с использованием мультимедийных технологий: баз знаний, компьютерных средств моделирова-			
3.	Лабораторные	ния, тестовых программ. Лаборатория, укомплектованная специализированной			
	занятия	мебелью и техническими средствами обучения: «Лаборатории цифровой и аналоговой электроники» ауд. 327С с лабораторными стендами «Электронные приборы», производства СПбГУТ им. проф. М.А. Бонч-Бруевича.			
4.	Текущий контроль, промежуточная аттестация	Аудитория 133С, оборудованная видеопроекционным оборудованием для презентаций, средствами звуковоспроизведения, экраном.			
5.	Самостоятельная работа	Компьютерный класс ауд. 207С, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет» и доступом в электронную информационно-образовательную среду университета.			