Аннотация дисциплины

Б1.В.04 «ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ»

Направление подготовки бакалавров 09.03.03 «Прикладная математика» Курс <u>2</u> Семестр <u>4</u> Трудоемкость <u>5</u> з.е.

Цель дисциплины: развитие логического мышления, овладение основными методами численного анализа и их применения при решении математических задач, умение самостоятельно расширять знания в области численного исследования прикладных (в том числе, и экономических) задач.

Задачи дисциплины:

- 1) изучение основных понятий и методов численного решения типовых математических задач;
- 2) овладение практическими навыками в реализации численных алгоритмов;
- 3) обучение основам проведения вычислительного эксперимента, а также анализа численного решения задач прикладного характера.

Место дисциплины в структуре ООП ВО:

Дисциплина «Вычислительные методы» относится к вариативной части (Б1.В) учебного плана.

Для изучения данной учебной дисциплины студент должен владеть обязательным минимумом содержания основной образовательной программы по математике и компьютерным наукам для данного направления, который формируются предшествующими дисциплинами: «Векторная алгебра», «Анализ функций действительных переменных», «Дискретные математические системы», «Дифференциальные уравнения», «Программирование на языке Паскаль».

Перечень последующих учебных дисциплин, для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной: «Нечеткие и нейросетевые технологии в экономике», «Методы математической физики», «Эконометрика», «Финансовая математика» / «Математические модели социальных процессов», «Системы искусственного интеллекта» / «Технологии распределенных вычислений», «Методы социально-экономического прогнозирования» / «Имитационное моделирование экономических процессов».

Результаты обучения (знания, умения, опыт, компетенции):

Изучение данной учебной дисциплины направлено на формирование у обучающихся общих профессиональных компетенций (ОПК) и профессиональных компетенций (ПК):

ОПК-3	способностью использовать основные законы естественнонаучных дисциплин и
	современные информационно-коммуникационные технологии в профессио-
	нальной деятельности
ПК-7	способностью проводить описание прикладных процессов и информационного
	обеспечения решения прикладных задач

В результате изучения дисциплины студент должен:

знать	уметь	владеть		
- основные понятия о погрешности и прибли-	- обоснованно	численными мето-		
женных вычислениях;	выбрать числен-	дами решения за-		
- основные требования, предъявляемые к вы-	ный метод, разра-	дач линейной ал-		
числительным схемам: корректность, устойчи-	ботать алгоритм	гебры, дифферен-		

знать	уметь	владеть
вость, сходимость;	решения постав-	циальных уравне-
- вычислительные методы в алгебре;	ленной задачи;	ний и систем, оп-
- методы приближенного вычисления сеточных	- составить и от-	тимизационных
функций;	ладить программу	задач для функции
- методы и алгоритмы приближенного интегри-	на алгоритмиче-	одной и несколь-
рования и дифференцирования;	ском языке Пас-	ких переменных,
- вычислительные схемы и алгоритмы решения	каль для решения	методами дискрет-
обыкновенных дифференциальных уравнений;	несложных вы-	ной математики и
- приемы программирования для персональных	числительных за-	функционального
ЭВМ (ІВМ-совместимых компьютерах)	дач	анализа

Содержание и структура дисциплины

No		Количество часов				
	Наименование разделов, тем	Ауд		Аудиторная		Самостоят.
раз- дела	паименование разделов, тем	Всего	p	абот	a	работа
дела			Л	ПЗ	ЛР	CPC
	Введение	2	1	-	0	1
1.	Правила приближённых вычислений погрешностей при вычислениях	5	1	-	2	2
	1. Правила приближённых вычислений и оценка погрешностей при вычислениях	5	1	-	2	2
2.	Приближение функций	8	2	_	2	4
	1. Аппроксимация сеточных функций и интер-					-
	полирование. 2. Интерполяционные многочлены Лагранжа и Ньютона. Схема Эйткена	8	2	-	2	4
3.	Численное решение систем линейных алгебраических уравнений	22	6	-	6	10
	1. Численное решение систем линейных алгебра- ических уравнений (СЛАУ). Основные понятия	5	2	-	0	3
	2. Метод Гаусса и его модификации	9	2	-	4	3
	3. Метод простой итерации. 4. Метод Зейделя	8	2	-	2	4
4.	Численное решение систем нелинейных уравнений	10	2	-	2	6
	1. Численное решение систем нелинейных уравнений. Метод Ньютона. 2. Метод простой итерации для системы двух уравнений	10	2	-	2	6
5.	Численное дифференцирование	8	2	-	2	4
	1. Численное дифференцирование. Формула численного дифференцирования. 2. Выбор оптимального шага численного дифференцирования	8	2	-	2	4
6.	Численное интегрирование	14	4	-	4	6
	1. Приближённое вычисление интегралов. Квадратурные формулы с равноотстоящими узлами. 2. Выбор шага интегрирования. Квадратурная формула Гаусса	7	2	-	2	3

	ИТОГО по дисциплине:	180	34	0	34	63
	Контроль (экзамен)	44,7	-	-	-	-
	ИКР	0,3	-	_	_	-
	КСР	4	-	-	-	-
	Всего по разделам дисциплины:	131	34	0	34	63
	5. Метод сеток для уравнений гиперболического типа	7	2	-	2	3
	4. Метод сеток для уравнений параболического типа 5. Метод сеток для уравнений зупарболического	6	1	-	2	3
	3. Метод прогонки для уравнения теплопроводности	7	2	-	2	3
	2. Метод сеток для задачи Дирихле	5	1	-	2	2
	1. Уравнения с частными производными. Метод сеток	5	2	-	0	3
9.	Численное решение уравнений с частными про-изводными	30	8	-	8	14
	3. Метод прогонки. 4. Метод Галёркина	8	2	-	2	4
	1. Краевые задачи. Постановка задачи. 2. Метод конечных разностей	8	2	-	2	4
8.	Краевые задачи для обыкновенных дифференциальных уравнений	16	4	-	4	8
	4. Метод Эйлера и его модификации. 5. Методы Рунге-Кутта. 6. Методы Адамса	10	2	-	4	4
	1. Численное решение обыкновенных дифференциальных уравнений (ОДУ). Задача Коши. 2. Интегрирование уравнений с помощью рядов. 3. Метод последовательных приближений	6	2	-	0	4
7.	Численное решение обыкновенных дифферен- циальных уравнений	16	4	-	4	8
	3. Интегрирование с помощью степенных рядов. 4. Интегралы от разрывных функций и с бесконечными пределами	7	2	-	2	3

Сокращения: Л — лекции, ПЗ — практические занятия, ЛР — лабораторные работы, СРС — самостоятельная работа студентов, КСР — контролируемая самостоятельная работа, ИКР — иная контактная работа.

Курсовые проекты или работы: не предусмотрены

Интерактивные образовательные технологии, используемые в аудиторных занятиях:

Лекционные материалы реализуются с помощью электронных презентаций. При реализации учебной работы по дисциплине «Вычислительные методы» используются следующие образовательные технологии: интерактивная подача материала с мультимедийной системой; разбор конкретных исследовательских задач.

Вид аттестации: экзамен.

Основная литература

- 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.Г. Численные методы: учебное пособие для студентов вузов. 7-е изд. М.: БИНОМ. Лаборатория знаний, 2011. 636 с. (15+60 экз.)
- 2. Амосов А.А. Вычислительные методы [Электронный ресурс]: учебное пособие / А.А. Амосов, Ю.А. Дубинский, Н.В. Копченова. СПб.: Лань, 2014. 672 с. Режим доступа: https://e.lanbook.com/book/42190#authors.
- 3. Бахвалов Н.С. Численные методы [Электронный ресурс]: учеб. пособие / Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. М.: Издательство "Лаборатория знаний", 2015. 639 с. Режим доступа: https://e.lanbook.com/book/70767.
- 4. Бахвалов Н.С. Численные методы. Решения задач и упражнения [Электронный ресурс]: учеб. пособие / Н.С. Бахвалов, А.А. Корнев, Е.В. Чижонков. М.: Издательство "Лаборатория знаний", 2016. 355 с. Режим доступа: https://e.lanbook.com/book/90239.
- 5. Шевцов Г.С. Численные методы линейной алгебры [Электронный ресурс]: учеб. пособие / Г.С. Шевцов, О.Г. Крюкова, Б.И. Мызникова. СПб.: Лань, 2011. 496 с. Режим доступа: https://e.lanbook.com/book/1800.

Автор: доцент кафедры прикладной математики, к.ф.-м.н., Письменский А.В.