Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет физико-технический

УТВЕРЖДАЮ:
Проректор по учебной работе, качеству образования первый проректор

Хагуров Т.А

« 24 » 2018 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.Б.10 «ОБЩИЙ ФИЗИЧЕСКИЙ ПРАКТИКУМ» (код и наименование дисциплины в соответствии с учебным планом) Направление подготовки/ специальность 03.03.03 «Радиофизика» (код и наименование направления подготовки/специальности) Направленность (профиль) / специализация "Радиофизические методы по областям применения (биофизика)" (наименование направленности (профиля) специализации) Программа подготовки академическая (академическая /прикладная) Форма обучения очная (очная, очно-заочная, заочная) Квалификация (степень) выпускника бакалавр (бакалавр, магистр, специалист)

Рабочая программа дисциплины «Общий физический практикум» составлена
в соответствии с федеральным государственным образовательным стандар-
том высшего образования (ФГОС ВО) по направлению подготовки 03.03.03
«Ралиофизика»
код и наименование направления подготовки
Программу составили:
В.А. Исаев доктор физмат. наук, доцент,
заведующий кафедрой физики и информационных систем и.О. Фамилия, должность, ученая степень, ученое звание подпись
Л.Ф. Добро, кандидат пед. наук, доцент кафедры физики
<u>и информационных систем</u> И.О. Фамилия, должность, ученая степень, ученое звание подпись
Ю.А. Половодов, кандидат пед. наук, доцент кафедры физики
<u>и информационных систем</u> И.О. Фамилия, должность, ученая степень, ученое звание подпись
М.А. Жужа, кандидат физмат. наук, доцент кафедры
палиофизики и нанотехнологий
И.О. Фамилия, должность, ученая степень, ученое звание подпись
В.П. Прохоров, кандидат физмат. наук, доцент кафедры
оптоэлектроники
И.О. Фамилия, должность, ученая степень, ученое звание подпись
Рабочая программа дисциплины «Общий физический практикум»
утверждена на заседании кафедры физики и информационных систем
протокол № <u>15 «6» апреля 2018 г.</u>
Завелующий кафедрой (разработчика) Богатов Н.М.
фамилия, инициалы подпись
Рабочая программа обсуждена на заседании кафедры физики
и информационных систем протокол № 15 «6» апреля 2018 г.
Заведующий кафедрой (разработчика) Богатов Н.М.
фамилия, инициалы подпись
Утверждена на заседании учебно-методической комиссии физико-
технического факультета
протокол № 10 «12» апреля 2018 г.
Председатель УМК факультета Богатов Н.М.
Председатель у ГУГК факультета Вогатов П.П. фамилия, инициалы подпись
Репеизенты:

гецензенты:

Тумаев Е.Н., доктор физико-математических наук, профессор, профессор кафедры теоретической физики и компьютерных технологий ФТФ ФГБОУ ВО «КубГУ»

Григорьян Л.Р., кандидат физ.-мат. наук, директор ООО НПФ «Мезон»

1. Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Учебная дисциплина Б1.В.10 «Общий физический практикум» ставит своей целью сформировать у студентов базовые теоретические знания об основных явлениях, понятиях, моделях, законах и методах механики, молекулярной физики, электричества и магнетизма, оптики, специальные вопросы атомной и ядерной физики, а также дать навыки выполнения практического выполнения лабораторных работ.

1.2 Задачи дисциплины

- изучение теоретических основ, понятий, законов и методов исследований механики, молекулярной физики, электричества и магнетизма, оптики, специальных вопросов атомной и ядерной физики;
- ознакомление с границами применимости физических моделей и теорий, используемых для описания физических явлений;
- овладение навыками и методами выполнения лабораторных работ по основным разделам механики, молекулярной физики, электричества и магнетизма, оптики, специальных вопросов атомной и ядерной физики;
- приобретение умения использовать законы физики для решения естественнонаучных и технических задач;
- приобретение навыков поиска дополнительной информации по механики, молекулярной физики, электричества и магнетизма, оптики, специальных вопросов атомной и ядерной физики, связанной с их историей и современными достижениями.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Общий физический практикум» относится к вариативной части Блока 1 модуля «Общая физика» учебного плана.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

№	Индекс	Содержание	В результат	е изучения учебной	дисциплины
	компе-	компетенции	C	бучающиеся должн	Ы
П.П.	тенции	(или её части)	знать	уметь	владеть
1	ОПК-1	способностью к овла- дению базовыми зна- ниями в области мате- матики и естественных наук, их использова- нию в профессиональ- ной деятельности	математику и естественные науки, их использованию в профессиональной деятельности	знания в области математики и естественных наук, их использованию	способностью к овладению базо- выми знаниями в области матема- тики и естествен- ных наук, их ис- пользованию в профессиональ- ной деятельности
2.	ОПК-2	способностью само- стоятельно приобретать новые знания, исполь- зуя современные обра- зовательные и инфор- мационные технологии	основные мето- ды управления малыми науч- ными группами	руководить науч- ными проектами и научной работой малых коллекти- вов	навыками лидера и руководителя малых научных групп и проектов

3.	ПК-1	способностью пони-	принципы рабо-	применять на	способностью
		мать принципы работы	ты и методы	практике принци-	понимать прин-
		и методы эксплуатации	эксплуатации	пы работы и ме-	ципы работы со-
		современной радио-	современной	тоды эксплуата-	временной аппа-
		электронной и оптиче-	аппаратуры и	ции современной	ратуры и обору-
		ской аппаратуры и обо-	оборудования	аппаратуры и	дования
		рудования		оборудования	
4	ПК-2	способностью исполь-	принципы рабо-	применять на	Современными
		зовать основные мето-	ты и методы	практике методы	методами радио-
		ды радиофизических	эксплуатации	радиофизических	физических из-
		измерений	современной	измерений с по-	мерений
			измерительной	мощью современ-	
			аппаратуры и	ной аппаратуры и	
			оборудования	оборудования	

Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ Общая трудоёмкость дисциплины составляет 15 зач.ед. (540 часов), их распределе-

ние по видам работ представлено в таблице.

mo no suguir puco i	представлено в таолиц	Всего		(Семестрь	J	
Вид учебной работ	Ы				(часы)		
		часов	1	2	3	4	5
Контактная работ	а, в том числе:	373	76,2	76,2	76,2	68,2	76,2
Аудиторные занят	гия (всего):	352	72	72	72	64	72
Занятия лекционно	го типа	-	ı	-	=	-	ı
Лабораторные заня	RUT	352	72	72	72	64	72
Занятия семинарско	ого типа	-	-	-	-	-	-
Иная контактная	работа:	21	4,2	4,2	4,2	4,2	4,2
Контроль самостоя	тельной работы (КСР)	20	4	4	4	4	4
Промежуточная атт	гестация (ИКР)	1	0,2	0,2	0,2	0,2	0,2
Самостоятельная	работа, в том числе:	167	31,8	31,8	31,8	39,8	31,8
Подготовка к защи	ге лабораторных работ	167	31,8	31,8	31,8	39,8	31,8
	час.	540	108	108	108	108	108
Общая трудоем- кость	в том числе кон- тактная работа	373	76,2	76,2	76,2	68,2	76,2
	зач. ед.	15	3	3	3	3	3

2.2 Структура дисциплин Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы дисциплины (механика), изучаемые в 1 семестре (для студентов $O\Phi O$):

	And	(.,			•		
			Количество часов					
			A 371	TITON	TIOU.	Внеауди-		
$N_{\underline{0}}$	Наименование разделов (тем)	Всего	-	_		торная		
		Всего Аудиторная работа Всего Л ПЗ ЛР 2 3 4 5 6 ости малых тел правильной геомет- рости звука методом стоячей волны 3,6 - - 2	работа					
			Л	П3	ЛР	CPC		
1	2	3	4	5	6	7		
	Измерение плотности малых тел правильной геометрической формы	5,6	-	-	4	1,6		
2	Определение скорости звука методом стоячей волны	3,6	-	-	2	1,6		
3	Определение длин кометных хвостов	5,6	-	_	4	1,6		

		Количество часов					
№	Наименование разделов (тем)	Всего	-	цитор работ:		ая Внеауди- торная работа	
			Л	ПЗ	ЛР	CPC	
4	Определение момента инерции тел методом крутильных колебаний	5,6	-	-	4	1,6	
5	Измерение ускорения свободного падения с помощью машины Атвуда	5,6	-	-	4	1,6	
6	Проверка закона сохранения импульса	5,6	-	-	4	1,6	
7	Определение скорости полета пули с помощью крутильного баллистического маятника	5,6	-	-	4	1,6	
8	Определение коэффициента трения качения	5,6	-	-	4	1,6	
9	Исследование К.П.Д. мотора с помощью ленточного тормоза	5,6	-	-	4	1,6	
10	Оборотный маятник	5,6	-	-	4	1,6	
11	Определение главных моментов инерции стального параллелепипеда	5,6	-	-	4	1,6	
12	Маятник Максвелла	5,6	-	-	4	1,6	
13	Маятник Обербека	5,6	-	-	4	1,6	
	Механический гистерезис	3,6	-	-	2	1,6	
	Определение жёсткости пружин	5,6	-	-	4	1,6	
16	Затухающие колебания	5,6	-	-	4	1,6	
17	Законы столкновений. Проверка закона сохранения импульса	5,6	-	-	4	1,6	
18	Определение модуля Юнга	5,6	-	-	4	1,6	
19	Связанные колебания двух маятников	5,6	-	-	2	1,6	
20	Определение жёсткости пружины графическим способом	3,4	-	-	2	1,4	
	Итого по дисциплине:	103,8	-	-	72	31,8	

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины (молекулярная физика), изучаемые во 2 семестре (для студентов $O\Phi O$):

			Кол	ичест	во час	сов
№	Наименование разделов	Всего	Аудиторная работа			Внеауди- торная ра- бота
			Л	П3	ЛР	CPC
1	2	3	4	5	6	7
1	Измерение атмосферного давления	8	-	-	6	2
2	Определение влажности воздуха	9	-	-	6	3
3	Определение коэффициента внутреннего трения, средней длины свободного пробега и эффективного диаметра молекул воздуха	10,8	-	-	8	2,8
4	Определение отношения удельных теплоемкостей	11	-	-	8	3
5	Определение коэффициента внутреннего трения жидкости по методу Стокса.	9	-	-	6	3
6	Измерение физических характеристик воды	9	-	-	6	3
7	Определение коэффициента поверхностного натяжения воды	9	-	-	6	3
8	Определение радиуса капилляра	11	-	-	8	3

	Определение температурного коэффициента линейного расширения металла	9	-	-	6	3
110	Определение коэффициента теплопроводности твердых тел	9	-	-	6	3
11	Определение теплоемкости металла	9	-	-	6	3
	Итого по дисциплине:	103,8	-	-	72	31,8

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины (электричество и магнетизм), изучаемые в 3 семестре (∂ ля студентов $O\Phi O$):

			Кол	Количество часов		
№	Наименование разделов (тем)	Всего	-	удиторная работа		Внеауди- торная работа
			Л	ПЗ	ЛР	CPC
1	2	3	4	5	6	7
1	Работа с осциллографом	7	ı	-	5	2
2	Измерение электрического сопротивления с помощью моста Уитстона	9	-	-	6	3
3	Сопротивление электролитов	7	-	-	5	2
4	Измерение индуктивности катушки	7	ı	-	5	2
5	Измерение электрической ёмкости конденсатора с помощью моста Сотти	8	-	-	5	3
6	Измерение магнитной проницаемости тора	7	ı	-	5	2
7	Сопротивление металлов	7	-	-	5	2
8	Измерение больших сопротивлений	7	ı	-	5	2
9	Мощность в цепи переменного тока	7	-	-	5	2
10	Измерение BAX диодов	7	-	-	5	2
11	Измерение BAX транзисторов	7,8	ı	-	5	2,8
12	Измерение горизонтальной составляющей магнитного поля Земли	7	-	-	5	2
13	Эквипотенциальные поверхности	7	-	-	5	2
14	Элементы электрической цепи	9	-	-	6	3
	Итого по дисциплине:	103,8	-	-	72	31,8

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины (оптика), изучаемые в 4 семестре (∂ ля студентов $O\Phi O$):

			Количество ча			сов
	Наименование разделов	Всего	Аудиторна работа		Аудиторная работа	
			Л	П3	ЛР	CPC
1	2	3	4	5	6	7
1	Определение показателя преломления твердых и жидких оптических сред.	7	-	-	4	3
2	Изучение законов фотоэффекта	7	_	-	4	3
3	Проверка закона Малюса. Изучение вращения плоскости поляризации	7	-	-	4	3
4	Изучение зрительной трубы и микроскопа	6	ı	-	4	2
5	Определение концентрации раствора поляриметром	6		-	4	2
6	Изучение явления дифракции	7	-	-	4	3
7	Исследование оптических систем	6,8	ı	-	4	2,8

8	Спектрофотометр ФМ-56. Оптические характеристики стекол	6	-	-	4	2
9	Проверка закона Брюстера	7	-	-	4	3
10	Изучение законов фотоэффекта	6	-	-	4	2
11	Определение преломляющего угла бипризмы Френеля	6	-	-	4	2
12	Исследование погрешностей оптических систем	6	-	-	4	2
13	Проверка закона Ламберта	7	ı	-	4	3
	Определение радиуса кривизны линзы с помощью колец Ньютона	6	ı	-	4	2
15	Сравнение дифракционного и дисперсионного спектров	7	-	-	4	3
16	Изменение скорости света	6	-	-	4	2
	Итого по дисциплине:	103,8		-	64	39,8

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины (специальные вопросы атомной и ядерной физики), изучаемые в 5 семестре (∂ ля студентов $O\Phi$ O):

			Колі	ичест	во ча	сов
№	Наименование разделов (тем)	взделов (тем)		цитор работ:	Внеауди- торная работа	
			Л	ПЗ	ЛР	CPC
1	2	3	4	5	6	7
1	Определение отношения заряда электрона к его массе методом магнетрона	8	-	-	5	3
2	Атомные модели Дж. Томсона и Э. Резерфорда	6	-	-	4	2
3	Опыт Франка и Герца	7	-	-	5	2
4	Изучение сериальных закономерностей в спектре атома водорода	7	-	-	5	2
5	Спектр атома водорода. Атом Бора	7	-	-	5	2
6	Изучение спектра атома натрия	7	-	-	5	2
7	Изучение неон-гелиевого лазера	7,8	-	-	5	2,8
8	Погрешности при ядерно-физических измерениях	6	-	-	4	2
9	Изучение газоразрядного счетчика	6	-	-	4	2
10	Изучение сцинтилляционного детектора	7	-	-	5	2
11	Определение активности источника	7	-	-	5	2
12	Изучение сцинтилляционного гамма-спектрометра	7	-	-	5	2
13	Изучение распространения бета-излучения в некоторых материалах и в воздухе	7	-	-	5	2
14	Изучение углового распределения космических лучей	7	-	-	5	2
15	Дозиметрические величины и их измерения	7			5	2
	Итого по дисциплине:	103,8	-	-	72	31,8

2.3 Содержание разделов дисциплины

2.3.1 Занятия лекционного типа

Занятия лекционного типа - не предусмотрены.

2.3.2 Занятия семинарского типа

Занятия семинарского типа - не предусмотрены.

2.3.3 Лабораторные занятия

Наименование разделов дисциплины (механика), изучаемых в 1 семестре (для студентов $O\Phi O$):

<u>№</u> π/π	№ раздела дисциплины	Наименование лабораторных работ	Форма теку- щего контроля
1	2	3	4
1	Динамика материальной точки	Измерение ускорения свободного падения с помощью машины Атвуда. Оборотный маятник.	Отчет и защита лабораторной работы
2	Законы сохранения	Исследование К.П.Д. мотора с помощью ленточного тормоза. Проверка закона сохранения импульса. Законы столкновений. Проверка закона сохранения импульса.	Отчет и защи- та лаборатор- ной работы
4	Неинерциальные системы отсчета	Определение главных моментов инерции стального параллелепипеда. Маятник Максвелла. Маятник Обербека.	Отчет и защи- та лаборатор- ной работы
5	Кинематика аб- солютно твердого тела	Определение скорости полета пули с помощью кругильного баллистического маятника.	Отчет и защи- та лаборатор- ной работы
6	Динамика абсо- лютно твердого тела	Определение моментов инерции твердых тел с помощью крутильных колебаний.	Отчет и защита лабораторной работы
7	Основы механики деформируемых тел	Измерение плотности малых тел правильной геометрической формы. Определение длин кометных хвостов. Определение коэффициента трения качения. Механический гистерезис. Определение жёсткости пружин. Определение модуля Юнга. Определение жёсткости пружины графическим способом.	Отчет и защи- та лаборатор- ной работы
8	Колебания и вол- ны	Определение скорости звука методом стоячей волны. Затухающие колебания. Связанные колебания двух маятников.	Отчет и защи- та лаборатор- ной работы

Наименование разделов дисциплины (молекулярная физика), изучаемых во 2 семестре (для студентов $O\Phi O$):

№	Наименование раздела	Наименование лабораторных работ	Форма текуще- го контроля
1	2	3	4
1	Идеальный газ	Определение универсальной газовой постоянной. Проверка закона Бойля-Мариотта. Определение неизвестного объема сосуда. Измерение атмосферного давления. Определение атмосферного давления, используя закон Бойля-Мариотта и Uобразную трубку. Определение влажности воздуха. Определение влажности воздуха в комнате, измеряя давление насыщенного пара.	Отчет и защита лабораторной работы
2	Явления переноса в газах	Определение теплопроводности воздуха. Определение коэффициента внутреннего трения, средней длины свободного пробега и эффективного диаметра молекул воздуха. Определение параметров молекул, входящих в состав воздуха, используя формулу Пуазейля для процесса прохождения воздуха через тонкий капилляр. Определение вязкости воздуха по его течению в капилляре. Изучение ла-	Отчет и защита лабораторной работы

		минарного и турбулентного течения газа.	
3	Тормо нимериме		Отнот и зачите
3	Термодинамика	Определение отношения удельных теплоемкостей.	Отчет и защита
		Определение показателя адиабаты методом Клемана-Дезорма. Определение показателя адиабаты по	лабораторной работы
		, , , ,	раооты
		скорости звука при разных температурах. Опреде-	
		ление температурного коэффициента давления. На-	
		хождение мощности, теплоемкости и КПД нагрева-	
4	D	теля. Определение теплоемкости воды.	0
4	Реальные газы,	Определение коэффициента внутреннего трения	Отчет и защита
	жидкости и твер-	жидкости по методу Стокса. Вычисление коэффи-	лабораторной
	дые тела	циента внутреннего трения глицерина, измеряя	работы
	Реальные газы,	скорость падения в нем свинцового шарика. Изме-	
	жидкости и твер-	рение физических характеристик воды Нахождение	
	дые тела	удельной теплоты испарения воды. Измерение фи-	
		зических характеристик воды. Исследование по-	
		верхностного натяжения и вязкости воды в диапа-	
		зоне температур.	
		Определение коэффициента поверхностного натя-	
		жения воды. Определение коэффициента поверх-	
		ностного натяжения воды методами отрыва капли и	
		проволочной петли. Определение радиуса капилля-	
		ра. Определение радиуса капилляра с использова-	
		нием формулы Пуазейля для протекания жидкости	
		по капилляру. Определение температурного коэф-	
		фициента линейного расширения металла. Опреде-	
		ление коэффициента линейного расширения алю-	
		миниевого, медного и железного стержней в диапа-	
		зоне температур 20–100 °C. Определение коэффи-	
		циента теплопроводности твердых тел. Определе-	
		ние коэффициента теплопроводности органическо-	
		го стекла методом сравнения с эталонным образ-	
		цом из эбонита. Свойства твердого тела. Определе-	
		ние теплоемкости и теплоты плавления металла.	
		Определение теплоемкости металла. Определение	
		удельной теплоемкости алюминия и железа кало-	
		риметрическим методом. Свойства твердого тела.	
		Определение теплопроводности металлов и ди-	
		электриков.	
	Harricarianari	разделов писциплицці (электрицество и магцетизм)	изущаемиу в 3

Наименование разделов дисциплины (электричество и магнетизм), изучаемых в 3 семестре (∂ ля студентов $O\Phi O$):

	Fr (entremy entrem e = e).			
№	Наименование	Наименование лабораторных работ	Форма текуще-	
- ' -	раздела (темы)	Transienobamie stacoparophibix pacor	го контроля	
1	2	3	4	
		Работа с осциллографом.	Отчет и защита	
1	Электростатика	Эквипотенциальные поверхности.	лабораторной	
			работы	
	Постоянин ий энок	Сопротивление металлов.	Отчет и защита	
2		Сопротивление металлов. Измерение больших сопротивлений.	лабораторной	
	трический ток	измерение оольших сопротивлении.	работы	
3	Стационарное маг-	Измерение горизонтальной составляющей магнит-	Отчет и защита	
	нитное поле в ва-	учето пода Зомии	лабораторной	
	кууме	ного поля Земли.	работы	

	Электромагнитная	П	Отчет и защита
4	индукция	Измерение индуктивности катушки.	лабораторной работы
5	Электрическое по- ле в веществе. Ди- электрики	Измерение электрического сопротивления с по- мощью моста Уитстона.	Отцет и защита
6	Магнитное поле в веществе. Магнетики	Измерение магнитной проницаемости тора.	Отчет и защита лабораторной работы
7	<u> </u>	Сопротивление электролитов. Мощность в цепи переменного тока.	Отчет и защита лабораторной работы
8	Уравнения Мак- свелла. Электро- магнитные волны	Измерение электрической ёмкости конденсатора с помощью моста Сотти.	Отчет и защита лабораторной работы
9	лей тока. Контакт-	Измерение вольт-амперных характеристик диодов. Измерение вольт-амперных характеристик транзисторов. Элементы электрической цепи.	Отчет и защита лабораторной работы

Наименование разделов дисциплины (оптика), изучаемых в 4 семестре (∂ ля студентов $O\Phi O$):

№	Наименование	Наименование лабораторных работ	Форма текуще-
	раздела		го контроля
1	2	3	4
1	Поляризация све- та	Проверка закона Малюса. Изучение вращения плоскости поляризации. Определение концентрации раствора поляриметром. Проверка закона Брюстера.	Отчет и защита лабораторной работы
2	Интерференция света	Определение преломляющего угла бипризмы Френеля. Определение радиуса кривизны линзы с помощью колец Ньютона.	Отчет и защита лабораторной работы
3	Квантовая оптика	Изучение законов теплового излучения. Изучение законов фотоэффекта. Изменение скорости света.	Отчет и защита лабораторной работы
4	Дифракция света	Изучение явления дифракции. Сравнение дифракционного и дисперсионного спектров.	Отчет и защита лабораторной работы
5	Геометрическая оптика	Определение показателя преломления твердых и жидких оптических сред. Изучение зрительной трубы и микроскопа. Исследование оптических систем. Исследование погрешностей оптических систем.	лабораторной
6	Дисперсия света	Сравнение дифракционного и дисперсионного спектров. Спектрофотометр ФМ-56. Оптические характеристики стекол. Проверка закона Ламберта.	

Наименование разделов дисциплины (специальные вопросы атомной и ядерной физики), изучаемых в 5 семестре (∂ *ля студентов ОФО*):

	Наименование		Форма текуще-
№	раздела	Содержание раздела	ГО
	раздела		контроля
1	Введение в атом-	Определение отношения заряда электрона к его	Отчет и защита

	ную физику	массе методом магнетрона.	лабораторной
			работы
2	Планетарная модель атома Резерфорда—Бора	Атомные модели Дж. Томсона и Э. Резерфорда. Опыт Франка и Герца.	Отчет и защита лабораторной работы
3	Уравнения Шредингера и квантовая теория атома водорода	Изучение сериальных закономерностей в спектре атома водорода. Спектр атома водорода. Атом Бора.	Отчет и защита лабораторной работы
4	Многоэлектрон- ные атомы	Изучение спектра атома натрия.	Отчет и защита лабораторной работы
5	Оптические кван- товые генераторы	Изучение неон-гелиевого лазера.	Отчет и защита лабораторной работы
6	Радиоактивность	Определение активности источника.	Отчет и защита лабораторной работы
7	Взаимодействие ядерного излучения с веществом	Погрешности при ядерно-физических измерениях. Изучение газоразрядного счетчика. Изучение сцинтилляционного детектора.	Отчет и защита лабораторной работы
8	Эксперименты в физике высоких энергий	Изучение сцинтилляционного гамма-спектрометра. Изучение распространения бета-излучения в некоторых материалах и в воздухе.	Отчет и защита лабораторной работы
9	Современные астрофизические представления. Открытые вопросы физики ядра и частиц	Изучение углового распределения космических лучей. Дозиметрические величины и их измерения.	Отчет и защита лабораторной работы

2.3.4 Примерная тематика курсовых работ (проектов) Курсовые работы не предусмотрены.

Перечень учебно-методического обеспечения для самостоятельной ра-2.4 боты обучающихся по дисциплине (модулю)

Перечень учебно-методического обеспечения дисциплины, изучаемой в 1 семестре (для студентов $O\Phi O$):

$N_{\underline{0}}$	Вид СРС	Перечень учебно-методического обеспечения дисциплины по вы-
		полнению самостоятельной работы
1	2	3
1	Проработка	1. Иродов, И.Е. Механика. Основные законы [Электронный ре-
	учебного (теоре-	сурс]: учеб. пособие - Электрон. дан Москва: Издательство "Ла-
	тического) мате-	боратория знаний", 2017 312 с Режим доступа:
	риала	https://e.lanbook.com/book/94115
		2. Иродов, И.Е. Задачи по общей физике: Учебное пособие [Элек-
		тронный ресурс]: учеб. пособие - Электрон. дан Санкт-
		Петербург: Лань, 2018. — 420 с. — Режим доступа:
		https://e.lanbook.com/book/99230
		5. Калашников, Н.П. Основы физики: в 2 т. Том 1 [Электронный
		ресурс]: учеб. / Н.П. Калашников, М.А. Смондырев Электрон.
		дан Москва: Издательство "Лаборатория знаний", 2017 545 с
		Режим доступа: https://e.lanbook.com/book/94088

2	Подготовка к те-	1. Гринкруг, М.С. Лабораторный практикум по физике [Электрон-
	кущему контро-	ный ресурс]: учеб. пособие / М.С. Гринкруг, А.А. Вакулюк. —
	ЛЮ	Электрон. дан. — Санкт-Петербург: Лань, 2012. — 480 с. — Режим
		доступа: https://e.lanbook.com/book/3811
		2. Савельев, И.В. Курс общей физики. В 3 т. Том 1. Механика. Мо-
		лекулярная физика: Учебное пособие [Электронный ресурс] : учеб.
		пособие — Электрон. дан. — Санкт-Петербург: Лань, 2018. — 436
		с. — Режим доступа: https://e.lanbook.com/book/98245
		3. Савельев, И.В. Сборник вопросов и задач по общей физике
		[Электронный ресурс] : учеб. пособие — Электрон. дан. — Санкт-
		Петербург: Лань, 2016. — 292 с. — Режим доступа:
		https://e.lanbook.com/book/71766

Перечень учебно-методического обеспечения дисциплины, изучаемой в 2 семестре (для студентов $O\Phi O$):

(оля с	студентов ОФО):	
$N_{\underline{0}}$	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	Проработка учебного (теоретического) материала	1. Жужа М.А. Молекулярная физика: тексты лекций / М.А. Жужа. – Краснодар: Кубанский гос. ун-т, 2011. 2. Жужа М.А. Молекулярная физика: лабораторные работы / М.А. Жужа, Е.Н. Жужа, Г.П. Ильченко. – Краснодар: Кубанский гос. ун-т, 2014. 3. Савельев, И.В. Курс физики (в 3 тт.). Том 1. Механика. Молекулярная физика [Электронный ресурс]: учеб. пособие — Электрон. дан. — Санкт-Петербург: Лань, 2017. — 356 с. — Режим доступа: https://e.lanbook.com/book/95163
2	Подготовка к те- кущему контролю	1. Сытин, В.Г. Молекулярная физика в жизни, технике и природе [Электронный ресурс] : учеб. пособие — Электрон. дан. — Санкт-Петербург: Лань, 2016. — 624 с. — Режим доступа: https://e.lanbook.com/book/75531 2. Миронова, Г.А. Молекулярная физика и термодинамика в вопросах и задачах [Электронный ресурс] : учеб. пособие / Г.А. Миронова, Н.Н. Брандт, А.М. Салецкий. — Электрон. дан. — Санкт-Петербург: Лань, 2012. — 480 с. — Режим доступа: https://e.lanbook.com/book/3718 3 Савельев, И.В. Курс физики (в 3 тт.). Том 1. Механика. Молекулярная физика [Электронный ресурс] : учебное пособие / И.В. Савельев. — Электрон. дан. — Санкт-Петербург : Лань, 2018. — 356 с. — Режим доступа: https://e.lanbook.com/book/106894. Учебные материалы в электронном виде (лекции и тест) на сайте Moodle КубГУ: http://moodle.kubsu.ru

Перечень учебно-методического обеспечения дисциплины, изучаемой в 3 семестре (для студентов $O\Phi O$):

No॒	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1	тического) мате-	1. Савельев, И.В. Курс общей физики. В 5-и тт. Том 2. Электричество и магнетизм [Электронный ресурс]: учеб. пособие — Электрон. дан. — Санкт-Петербург: Лань, 2017. — 352 с. — Режим доступа: https://e.lanbook.com/book/705 3. Иродов, И.Е. Задачи по общей физике: учебное пособие для ву-

			зов [Электронный ресурс] : учеб. пособие — Электрон. дан. — Москва: Издательство "Лаборатория знаний", 2017. — 434 с. —
			Режим доступа: https://e.lanbook.com/book/94101
		Подготовка к те- кущему контро- лю	1. Савельев, И.В. Курс общей физики. В 5-и тт. Том 2. Электриче-
			ство и магнетизм [Электронный ресурс] : учеб. пособие — Элек-
2			трон. дан. — Санкт-Петербург: Лань, 2011. — 352 с. — Режим
	2		доступа: https://e.lanbook.com/book/705
	2		2. Иродов, И.Е. Задачи по общей физике: учебное пособие для ву-
			зов [Электронный ресурс] : учеб. пособие — Электрон. дан. —
			Москва: Издательство "Лаборатория знаний", 2017. — 434 с. —
			Режим доступа: https://e.lanbook.com/book/94101

Перечень учебно-методического обеспечения дисциплины, изучаемой в 4 семестре (для студентов $O\Phi O$):

	,	
No	Наименование	Перечень учебно-методического обеспечения дисциплины
145	раздела	по выполнению самостоятельной работы
1	2	3
1	Проработка учебного (теоре- тического) мате- риала	1. Оптика: лабораторный практикум. Ч. 1 / Добро, Людмила Федоровна, Н.М. Богатов, О. Е. Митина; Л.Ф. Добро, Н.М. Богатов, О.Е. Митина; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т Краснодар: [Кубанский государственный университет], 2012 94 с.: ил Библиогр.: 93 с. 2. Иродов, И.Е. Волновые процессы. Основные законы [Электронный ресурс]: учеб. пособие — Электрон. дан. — Москва: Издательство "Лаборатория знаний", 2015. — 265 с. — Режим доступа: https://e.lanbook.com/book/66334
2	Подготовка к те- кущему контро- лю	1. Иродов, И.Е. Задачи по общей физике: учебное пособие / И.Е. Иродов; И. Е. Иродов Изд. 8-е, стер СПб. [и др.]: Лань, 2016 416 с. 3. Учебные материалы в электронном виде (лекции и тест) на сайте Moodle КубГУ: http://moodle.kubsu.ru

те Moodle КубГУ: http://moodle.kubsu.ru
Перечень учебно-методического обеспечения дисциплины, изучаемой в 5 семестре (для студентов ОФО):

_	,	
No	Наименование	Перечень учебно-методического обеспечения
п/п	раздела (темы)	дисциплины по выполнению
		самостоятельной работы
		1. Барков А.П., Дорош В.С., Лысенко В.Е., Никитин В.А., Прохо-
	Проработка учебного (теоретического) материала	ров В.П., Хотнянская Е.Б. Атомная физика: учебно-методическое
		пособие. – Краснодар: Кубанский гос. ун-т, 2016.
		2. Электронный курс «Физика атома» (включает в себя: 1) элек-
		тронный курс лекций; 2) контрольные вопросы по разделам
		учебного курса; 3) практические задания по разделам учебного
		курса; 4) тесты по разделам учебного курса); режим доступа:
		http://moodle.kubsu.ru/
1		3. Иродов И.Е. Квантовая физика. Основные законы: учебное по-
		собие [Электронный ресурс]: учеб. пособие – Электрон. дан. –
		Москва: Издательство «Лаборатория знаний», 2017. – 261 с. –
		Режим доступа:
		https://e.lanbook.com/book/94103
		4. Иродов И.Е. Задачи по общей физике [Электронный ресурс]:
		учеб. пособие – Электрон. дан. – Москва: Издательство "Лабора-
		тория знаний", 2014. – 431 с. – Режим доступа:
		https://e.lanbook.com/book/66335

2	Подготовка к те- кущему контролю	1. Будкер Д. Атомная физика [Электронный ресурс]: учеб. пособие / Д. Будкер, Д. Кимбелл, Д. ДеМилль. — Электрон. дан. — Москва: Физматлит, 2010. — 396 с. — Режим доступа: https://e.lanbook.com/book/48253 2. Шпольский Э.В. Атомная физика. Том 1. Введение в атомную физику [Электронный ресурс]: учеб. — Электрон. дан. — Санкт-Петербург: Лань, 2010. — 560 с. — Режим доступа: https://e.lanbook.com/book/442 3. Шпольский Э.В. Атомная физика. Том 2. Основы квантовой механики и строение электронной оболочки атома [Электронный ресурс]: учеб. — Электрон. дан. — Санкт-Петербург: Лань, 2010. — 448 с. — Режим доступа: https://e.lanbook.com/book/443
---	-------------------------------------	---

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- -в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3 Образовательные технологии

При реализации учебной работы по освоению дисциплины «Общий физический практикум» используются современные образовательные технологии:

- информационно-коммуникационные технологии;
- проблемное обучение.

Лабораторные занятия проводятся в специализированных лабораториях на лабораторных установках индивидуально или группами студентов из 2 человек.

Эффективность учебной деятельности студентов оценивается по балльнорейтинговой системе.

В учебном процессе используются следующие активные и интерактивные формы проведения занятий: дискуссия, поисковая беседа, творческие инструменты ТРИЗ, разбор конкретных ситуаций, работа в малых группах.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

4.1 Фонд оценочных средств для проведения текущего контроля Механика

- 1. Физические величины и их измерения. Системы единиц.
- 2. Определите природу звука.
- 3. Что такое высота звука?
- 4. Что такое интерференция и дифракция волн?

- 5. Что такое стоячие волны?
- 6. Какие системы отсчета и системы координат вы знаете?
- 7. Описание движения материальной точки в векторной и координатной форме. Вектор перемещения. Скорость. Ускорение. Разложение вектора полного ускорения на нормальное и тангенциальное.
- 8. Что такое продольные и поперечные волны, амплитуда, фаза и скорость распространения волны?
 - 9. Что такое векторы угловой скорости и углового ускорения?
 - 10. Что такое мгновенная ось вращения?
 - 11. Определите силу Стокса.
 - 12. Что такое лобовое сопротивление и подъемная сила?
 - 13. Что такое вязкость жидкости?
 - 14. Дайте определение ламинарного и турбулентного течения.
 - 15. Что такое число Рейнольдса?
 - 16. Сформулируйте принцип относительности Галилея.
 - 17. Причина постоянства скорости света.
 - 18. Определите следствие из преобразований Лоренца.
- 19. Относительность одновременности. Длина движущегося тела. Темп хода движущихся часов. Сложение скоростей.
 - 20. Сформулируйте законы Бернулли.
- 21. Свойства жидкостей и газов. Законы гидростатики. Стационарное движение жидкости. Уравнение неразрывности.
- 22. Силы и взаимодействия. Четыре типа взаимодействий и их сравнительная характеристика.
 - 23. Сформулируйте законы Ньютона.
- 24. Деформация сплошных сред. Упругая и остаточная деформация. Количественная характеристика деформаций. Закон Гука, модуль Юнга. Энергия упругих деформаций.
- 25. Неинерциальные вращающиеся системы координат. Кориолисово ускорение. Силы инерции во вращающейся системе координат. Неинерциальная система координат, связанная с поверхностью Земли.
 - 26. Момент импульса. Момент силы. Уравнение моментов.
- 27. Момент силы, действующей на систему. Центр масс. Уравнение моментов для системы материальных точек.
- 28. 2.Определение неинерциальных систем. Силы инерции. Неинерциальные системы, движущиеся прямолинейно. Невесомость. Гравитационная и инертная массы. Принцип эквивалентности.
 - 29. Затухающие колебания. Логарифмический декремент затухания.
 - 30. Система материальных точек. Импульс системы. Момент импульса.
- 31. Работа силы. Кинетическая энергия. Силовое поле. Работа в потенциальном поле.
 - 32. Сложение перпендикулярных колебаний. Фигуры Лиссажу.
 - 33. Векторная диаграмма. Представление колебаний в комплексной форме.
 - 34. Сложение колебаний одного направления. Биения.
- 35. Связь силы с потенциальной энергией. Нормировка потенциальной энергии. Энергия взаимодействия.
- 36. Математическая сущность законов сохранения. Законы сохранения энергии, импульса и момента импульса в нерелятивистском случае.
 - 37. Математический и физический маятники.
- 38. Общие сведения о колебаниях. Уравнения гармонических колебаний. Гармонический осциллятор. Энергия колебаний.
- 39. Соотношение между массой и энергией. Связь законов с симметрией пространства и времени.

- 40. Закон всемирного тяготения. Гравитационная энергия. Законы Кеплера.
- 41. 2.Сухое трение. Вязкое трение. Трение качения. Работа сил трения. Явление застоя. Явление заноса. Формула Стокса.
- 42. Движение тела, закрепленного в точке. Гироскопы. Гироскопический эффект. Прецессия и нутация оси гироскопа.
 - 43. Выведите уравнение Мещерского.
 - 44. Выведите формулу Циолковского.
- 45. Общие сведения о релятивистском движения тел переменной массы. Общая характеристика различных видов реактивных двигателей.
 - 46. Аналоги поступательного и вращательного движения.
- 47. .Кинетическая энергия вращающегося твердого тела. Работа и мощность во вращательном движении.
- 48. Уравнение движения твердого тела. Понятие о тензоре инерции. Главные оси и главные моменты инерции.
- 49. Вынужденные колебания Переходный режим. Амплитудная и фазовая резонансные кривые. Добротность.
 - 50.Вычисление момента инерции относительно оси. Теорема Гюйгенса Штейнера

Молекулярная физика

- 1. Опишите простейшую модель вещества идеальный газ.
- 2. Какие упрощения делались при выводе барометрической формулы?
- 3. Как можно приблизительно оценить высоту атмосферы?
- 4. Объясните физический смысл распределения Больцмана.
- 5. Каков физический смысл функции распределения молекул по скоростям?
- 6. Приведите примеры использования вакуума в технических устройствах.
- 7. В чём сущность явлений переноса? Каковы они и при каких условиях возникают?
- 8. Почему диффузия жидкостей происходит значительно медленнее, чем диффузия газов?
- 9. Что называют коэффициентом диффузии (вязкости, теплопроводности)? От каких параметров он зависит для газов?
 - 10. Как вязкость газов зависит от температуры?
 - 11. Почему теплоёмкость C_p больше теплоёмкости C_v ?
- 12. Что происходит с температурой газа, если он расширяется при постоянном давлении?
 - 13. Что происходит с температурой газа, если он расширяется адиабатически?
- 14. В дизельном двигателе воздух подвергается очень сильному и быстрому сжатию. Для чего это делается?
- 15. Какие конструкции «вечных двигателей» «созданы» по законам молекулярной физики?
- 16. Объясните различие экспериментальных изотерм и изотерм, соответствующих уравнению Ван-дер-Ваальса.
 - 17. Какую жидкость можно налить в стакан выше его краёв?
- 18. Почему у всех веществ поверхностное натяжение уменьшается с увеличением температуры?
- 19. Жидкие лекарства часто отмеряют каплями. Является ли это достаточно точной мерой?
 - 20. Что такое «биметалл» и где он применяется?

Электричество и магнетизм

- 1. Электрическое поле. Закон Кулона, полевая трактовка закона Кулона, напряженность электрического поля, принцип суперпозиции.
- 2. Понятие потока вектора напряженности электростатического поля. Теорема Остроградского Гаусса. Формулировка и доказательство теоремы.

- 3. Теорема Остроградского Гаусса. Формулировка и примеры применения к расчету электростатических полей: плоскости и шара.
- 4. Потенциал. Потенциальный характер электростатического поля, понятие потенциала, разность потенциалов.
- 5. Потенциал точечного заряда, вычисление потенциала для случаев поля, создаваемого системой точечных зарядов и плоским конденсатором; связь между напряженностью и потенциалом.
 - 6. Электрический диполь. Поле диполя.
 - 7. Электрический диполь во внешнем электрическом поле.
- 8. Проводники в электростатическом поле. Поле внутри и на поверхности проводника.
- 9. Электроемкость, конденсаторы, расчет электроемкости. Соединение конденсаторов.
- 10. Энергия электрического поля. Энергия заряженного проводника, энергия заряженного конденсатора, энергия электрического поля.
- 11. Диэлектрики в электрическом поле. Молекулярная картина поляризации диэлектрика, величины, характеризующие поляризацию диэлектрика.
- 12. Постоянный электрический ток. Законы Ома и Джоуля Ленца в интегральной и дифференциальной формах.
 - 13. Правила Кирхгофа.
- 14. Магнитное поле токов в вакууме. Понятие магнитного поля, закон Био Савара Лапласа, расчет вектора магнитной индукции для конечного отрезка тока и кругового тока.
- 15. Теорема о циркуляции вектора магнитной индукции, вихревой характер магнитного поля, применение теоремы о циркуляции к расчету магнитного поля в соленоиде, внутри прямого проводника.
- 16. Магнитный момент кругового тока. Магнитный диполь, поле диполя, магнитный диполь во внешнем магнитном поле.
- 17. Действие магнитного поля на токи и заряды. Проводник в магнитном поле, взаимодействие 2-х проводников с током.
- 18. Работа при перемещении проводника с током в магнитном поле, рамка в магнитном поле.
 - 19. Сила Лоренца.
- 20. Электромагнитная индукция. Опыты Фарадея, правило Ленца, формула для ЭДС электромагнитной индукции, трактовка Максвелла явления электромагнитной индукции.
- 21. Самоиндукция. Индуктивность, формула для ЭДС самоиндукции, исчезновение и установление тока в цепи, содержащей индуктивность.
- 22. Переменный ток. Характеристика переменного тока, цепь, содержащая активное сопротивление, емкость и индуктивность, резонанс напряжений.
 - 23. Мощность в цепи переменного тока.
 - 24. Электрические колебания. Идеальный колебательный контур.
- 25. Волны. Распространение волн, уравнение плоской и сферической волн, фазовая скорость, волновое уравнение.
- 26. Электромагнитные волны. Ток смещения, уравнение Максвелла и их физический смысл, вывод волнового уравнения из уравнений Максвелла.
 - 27. Свойства электромагнитных волн.
- 28. Магнитное поле в веществе. Вектор намагничивания. Основные законы магнитного поле в веществе.
 - 29. Природа электрического тока в металлах и полупроводниках.
 - 30. Электрические явления в контактах.
 - 31. Термоэлектричество. Явления Пельтье и Томсона.

- 32. Колебания при наличии затухания.
- 33. Резонанс токов в цепи переменного тока.

Оптика

- 1. В чем заключается закон преломления света?
- 2. От чего зависит величина кажущегося поднятия предмета, рассматриваемого через стекло?
 - 3. Что называется предельным углом полного внутреннего отражения?
 - 4. Как зависит показатель преломления раствора от концентрации?
 - 5. Как устроена зрительная труба?
 - 6. Что называется увеличением оптической трубы?
 - 7. Что называется полем зрения трубы?
 - 8. Чем отличается зрительная труба Кеплера от трубы Галилея?
 - 9. Что такое апертурная диафрагма?
 - 10. Что такое числовая апертура?
 - 11. В чем заключается условие синусов?
 - 12. Чем отличается апохромат от ахромата?
 - 13. Каково устройство окулярного микрометра?
 - 14. В чем состоит явление интерференции света?
 - 15. Дайте определение интерференции.
- 16. Какие волны называются когерентными? Как формулируются условия когерентности двух волн.
- 17. Как вычисляется суммарная интенсивность при наложении двух монохроматических волн одинаковой частоты, поляризованных в одной плоскости?
- 18. При каких условиях возникают и как рассчитываются min и max интенсивности при интерференции двух волн?
- 19. Постройте ход лучей в схеме Юнга, рассчитать разность хода лучей и ширину интерференционной полосы.
- 20. Постройте ход лучей в бипризме Френеля, выведите формулы для расчета ширины интерференционной полосы и максимального числа интерференционных полос.
- 21. Приведите оптическую схему интерферометра Майкельсон, объясните принцип его действия.
 - 22. Для чего используются интерферометры?
 - 23. В чем заключается принцип Гюйгенса Френеля?
 - 24. Чем отличается дифракции Френеля от дифракции Фраунгофера?
- 25. Как формулируется условие возникновения максимумов и минимумов при дифракции света на щели?
 - 26. Как влияет ширина щели на дифракционную картину?
- 27. Как построить векторную диаграмму для определений амплитуды колебаний в случае дифракции от щели?
- 28. Что представляет собой дифракционная решетка, дать определение параметров, характеризующих дифракционную решетку? (постоянная, период, разрешающая способность, угловая и линейная дисперсия).
- 29. Как выглядит дифракционная картина при дифракции на решетке? Дать качественное и количественное описание.
 - 30. Какая связь существует между дифракцией и интерференцией?
 - 31. Какой свет называется плоскополяризованным?
 - 32. В чём состоит явление двойного лучепреломления?
 - 33. Что такое оптическая ось?
 - 34. Какие плоскости в кристалле называют главными?
 - 35. Почему интенсивность света пропорциональна квадрату амплитуды вектора \vec{E} ?
 - 36. Как формулируется закон Брюстера?
 - 37. Какие существуют способы получения плоскополяризованного света?

- 38. Какие вещества называются оптически активными?
- 39. Чем отличается эллиптически поляризованный свет от линейно поляризованного?
 - 40. Как изготавливается призма Николя и в чем заключается принцип ее работы?
 - 41. Какие материалы применяются для изготовления поляроидов?
 - 42. Какие кристаллы называются положительными, а какие отрицательными?
 - 43. Чем отличается спектральная светимость тела от интегральной?
 - 44. Что называется коэффициентом поглощения тела?
 - 45. Какое тело называется абсолютно черным и какое серым?
 - 46. В чем суть закона Кирхгофа?
 - 47. Изложите первый и второй законы Вина.
- 48. Как формулируется закон Стефана-Больцмана для абсолютно черного и серого тел?
 - 49. Приведите формулу Планка, описывающую излучение абсолютно черного тела.
- 50. Какие законы могут быть положены в основу бесконтактного измерения температуры тел?
 - 51. Что такое яркость тела? Как связаны яркость и светимость?
 - 52. Какие тела называются ламбертовскими? Как звучит закон Ламберта?
- 53. В чём заключается явление внутреннего фотоэффекта? В каких фотоприемниках оно используется.
 - 54. В чем заключается явление вентильного фотоэффекта?
 - 55. Какова суть законов фотоэффекта?
 - 56. Как формулируется уравнение Эйнштейна для фотоэффекта?
 - 57. Что называется работой выхода электрона из металла?
- 58. Из каких участков состоит вольтамперная характеристика вакуумного фотоэлемента?
 - 59. Что понимают под красной границей фотоэффекта?
 - 60. Что понимают под термином задерживающее напряжение?

Специальные вопросы атомной и ядерной физики

- 1. Каков физический смысл чисел *m* и *n* в обобщенной формуле Бальмера?
- 2. Каковы длины волн самых коротковолновой и длинноволновой линий серии Пашена?
 - 3. Какова длина волны, соответствующая границе серии Бальмера?
 - 4. Какова частота головной линии серии Лаймана?
- 5. Атомы водорода находятся в состоянии с n = 5. Сколько линий содержит его спектр излучения?
 - 6. В чем состоит суть комбинационного принципа Ритца?
- 7. Используя комбинационный принцип, покажите на одном из примеров, как можно получить частоту для второй длинноволновой линии серии Пашена.
 - 8. Каковы различия между моделью атома Резерфорда и теорией Бора?
- 9. Почему модель атома Резерфорда несовместима с представлениями классической физики?
- 10. Разъясните смысл постулатов Бора. Как с их помощью объяснить линейчатый спектр атома водорода?
- 11. Исходя из теории Бора, определите скорость движения электрона на произвольном энергетическом уровне.
- 12. Определите максимальную длину волны света, при которой возможна ионизация атома водорода, находящегося в основном состоянии.
- 13. Какую энергию (в эВ) должен иметь фотон, чтобы перевести атом водорода из основного состояния в состояние с n = 5?
 - 14. Сравните первый боровский радиус для атома водорода и для He^+ .
 - 15. В чем заключаются противоречия и недостатки теории атома Бора?

- 16. В чем сущность опытов Франка и Герца?
- 17. Какие основные выводы можно сделать на основании опытов Франка и Герца?
- 18. При каком ускоряющем потенциале будет наблюдаться резкое падение анодного тока в опытах Франка и Герца, если трубку заполнить атомарным водородом?
- 19. Объясните, на каких участках вольтамперной характеристики имеют место упругие и на каких неупругие столкновения электронов с атомами.
 - 20. В чем заключается статистическая интерпретация волновой функции?
 - 21. Для каких частиц справедливо уравнение Шредингера?
 - 22. Почему уравнение Шредингера сформулировано как волновое уравнение?
- 23. Запишите временное и стационарное уравнения Шредингера и проанализируйте их.
 - 24. Совершите переход от временного уравнения Шредингера к стационарному.
- 25. Запишите одномерное временное и стационарное уравнения Шредингера и проанализируйте их.
- 26. Запишите временное и стационарное уравнения Шредингера в операторной форме и проанализируйте их.
- 27. Какой вывод можно сделать, сравнив стационарное уравнение Шредингера с уравнением для собственных значений и собственных функций?
 - 28. Что можно сказать об операторной форме уравнения Шредингера?
 - 29. Какая частица является свободной?
- 30. Покажите, что энергетический спектр свободно движущейся частицы является непрерывным.
- 31. Найдите собственные значения энергии частицы в одномерной «потенциальной яме» с бесконечно высокими «стенками».
- 32. Какова наименьшая энергия частицы в «потенциальной яме» с бесконечно высокими «стенками»?
- 33. Объясните, почему наинизшее состояние осциллятора не может обладать нулевой энергией.
 - 34. Какими свойствами микрочастиц обусловлен туннельный эффект?
- 35. Запишите стационарное уравнение Шредингера для водородоподобной системы. Приведите примеры водородоподобных систем.
- 36. Почему наиболее подходящей координатной системой для рассмотрения атома водорода является сферическая? Проанализируйте (качественно) ход решения стационарного уравнения Шредингера для атома водорода в сферических координатах. Какие выводы следуют из его решения?
- 37. Запишите собственные значения энергии электрона в атоме водорода, определяемые решением уравнения Шредингера, и проанализируйте их. В чем отличие и сходство с результатами теории Бора?
- 38. Какие величины для электрона в атоме определены, если известны квантовые числа n, l и m_l ?
- 39. Почему квантовая механика не использует представление об электронных орбитах? Что характеризуют квантовые числа n, l и m?
- 40. Какие величины, характеризующие электрон в атоме водорода, квантуются? Запишите соответствующие формулы.
- 41. Представьте символическую запись электронов в состояниях с: 1) n = 3, l = 0, 1, 2; 2) n = 4, l = 2; 3) n = 2, l = 1.
- 42. Каков физический смысл распределения плотности заряда в электронном облаке?
- 43. Сформулируйте правила отбора для орбитального и магнитного квантовых чисел. Всегда ли они выполняются? Как может изменяться главное квантовое число?
- 44. Какие переходы соответствуют серии Пашена? Используйте символическую запись состояний.

- 45. Каков квантово-механический смысл первого боровского радиуса?
- 46. В чем отличие выводов квантовой механики и теории Бора для 1*s*-состояния электрона в атоме водорода?
- 47. Электрон в атоме водорода находится в ls-состоянии. Определите наиболее вероятное расстояние электрона от ядра.
- 48. В чем физический смысл постоянной радиоактивного распада? Как можно прийти к выводу, что радиоактивные свойства элемента обусловлены структурой его ядра? Можно ли указать, какие ядра и когда распадутся в радиоактивном образце за рассматриваемое время? Почему?
 - 49. Что такое активность и удельная активность препарата?
 - 50. Какие характеристики радиоактивного распада определяют его интенсивность?
- 51. Нарисуйте график зависимости $\ln A (A \text{активность препарата})$ от времени. Какие данные могут быть из него получены?
- 52. Как и во сколько раз изменится число ядер радиоактивного вещества за время, равное двум периодам полураспада?
 - 53. Как (по какому закону) изменяется со временем активность нуклида?
- 54. Выразите среднее время жизни радиоактивного ядра через постоянную радиоактивного распада.
- 55. Что продолжительнее четыре периода полураспада или три средних времени жизни радиоактивного ядра?
- 56. Какая доля нуклида распадется на протяжении двух средних времен жизни радиоактивного ядра?
- 57. Каково соотношение между средним временем жизни радиоактивного ядра и периодом полураспада?
- 58. Какая доля начального количества радиоактивного изотопа распадется за время, равное средней продолжительности жизни этого изотопа?
- 59. Как изменится энергия испускаемых α-частиц с увеличением периода полураспада радиоактивного элемента? Ответ обоснуйте.
- 60. Как объяснить огромное различие в периодах полураспада α-радиоактивных ядер?
- 61. Наблюдается ли радиоактивный распад свободных протонов? нейтронов? Почему?
 - 62. Как можно отличить β-электроны от электронов конверсии?
- 63. Что лежит в основе методов наблюдения и регистрации радиоактивных излучений?
- 64. Каков принцип действия полупроводникового счетчика? В чем преимущество использования твердой среды по сравнению с газом?
 - 65. В чем сходство и различие электронных и трековых детекторов?
- 66. Какие возможности для исследования открываются при помещении камеры Вильсона в магнитное поле?
 - 67. Приведите, пояснив, основные характеристики детекторов.
- 68. Дайте характеристику явления, лежащего в основе работы черенковского счетчика.
 - 69. В чем сходство и различие вильсоновской и диффузионной камер?
 - 70. Как в черенковском счетчике можно разделить частицы по массам?
- 71. Чем лучше регистрировать высокоэнергетичные микрочастицы: камерой Вильсона или пузырьковой камерой? Почему?
- 72. Какие из приведенных счетчиков могли бы быть объединены единым названием «газоразрядные счетчики»?
 - 73. В чем общность и различие всех рассмотренных трековых детекторов?
- 74. Почему пропорциональная камера одновременно выполняет функции трекового детектора?

- 75. В каких трековых детекторах при прочих равных условиях длина трека самая короткая? Почему?
- 76. Можно ли с помощью счетчиков Гейгера–Мюллера измерять энергию частиц? Почему?

4.2 Фонд оценочных средств для проведения промежуточной аттестации

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература

Механика

- 1. Иродов, И.Е. Механика. Основные законы [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : Издательство "Лаборатория знаний", 2017. 312 с. Режим доступа: https://e.lanbook.com/book/94115
- 2. Калашников, Н.П. Основы физики: в 2 т. Том 1 [Электронный ресурс] : учеб. / Н.П. Калашников, М.А. Смондырев. Электрон. дан. Москва : Издательство "Лаборатория знаний", 2017. 545 с. Режим доступа: https://e.lanbook.com/book/94088
- 3. Савельев, И.В. Сборник вопросов и задач по общей физике [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2016. 292 с. Режим доступа: https://e.lanbook.com/book/71766
- 4. Савельев, И.В. Курс физики (в 3 тт.). Том 1. Механика. Молекулярная физика [Электронный ресурс] : учебное пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург : Лань, 2018. 356 с. Режим доступа: https://e.lanbook.com/book/106894. Загл. с экрана.

Молекулярная физика

1. Жужа, Михаил Александрович Молекулярная физика: тексты лекций /М.А. Жужа; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т -Краснодар: [Кубанский государственный университет], 2011.

- 2. Иродов, И.Е. Физика макросистем. Основные законы [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : Издательство "Лаборатория знаний", 2015. 210 с. Режим доступа: https://e.lanbook.com/book/84090
- 3. Алешкевич, В.А. Курс общей физики. Молекулярная физика [Электронный ресурс] : учеб. Электрон. дан. Москва : Физматлит, 2016. 312 с. Режим доступа: https://e.lanbook.com/book/91145
- 4. Гринкруг, М.С. Лабораторный практикум по физике [Электронный ресурс] : учеб. пособие / М.С. Гринкруг, А.А. Вакулюк. Электрон. дан. Санкт-Петербург : Лань, 2012. 480 с. Режим доступа: https://e.lanbook.com/book/3811
- 5. Савельев, И.В. Сборник вопросов и задач по общей физике [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2016. 292 с. Режим доступа: https://e.lanbook.com/book/71766

Электричество и магнетизм

- 1. Сивухин, Д.В. Общий курс физики. Учеб. пособие: Для вузов. В 5 т. Т.ІІІ. Электричество [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : Физматлит, 2015. 656 с. Режим доступа: https://e.lanbook.com/book/72015
- 2. Алешкевич, В.А. Электромагнетизм [Электронный ресурс] : учеб. Электрон. дан. Москва : Физматлит, 2014. 404 с. Режим доступа: https://e.lanbook.com/book/59683
- 3. Гринкруг, М.С. Лабораторный практикум по физике [Электронный ресурс] : учеб. пособие / М.С. Гринкруг, А.А. Вакулюк. Электрон. дан. Санкт-Петербург : Лань, 2012. 480 с. Режим доступа: https://e.lanbook.com/book/3811
- 4. Савельев, И.В. Сборник вопросов и задач по общей физике [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2016. 292 с. Режим доступа: https://e.lanbook.com/book/71766

Оптика

- 1. Иродов, И.Е. Волновые процессы. Основные законы [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : Издательство "Лаборатория знаний", 2015. 265 с. Режим доступа: https://e.lanbook.com/book/66334
- 2. Гринкруг, М.С. Лабораторный практикум по физике [Электронный ресурс] : учеб. пособие / М.С. Гринкруг, А.А. Вакулюк. Электрон. дан. Санкт-Петербург : Лань, 2012. 480 с. Режим доступа: https://e.lanbook.com/book/3811
- 3. Савельев, И.В. Сборник вопросов и задач по общей физике [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2016. 292 с. Режим доступа: https://e.lanbook.com/book/71766

Специальные вопросы атомной и ядерной физики

- 1. Барков А.П., Дорош В.С., Лысенко В.Е., Никитин В.А., Прохоров В.П., Хотнянская Е.Б. Атомная физика: учебно-методическое пособие.— Краснодар: Кубанский гос. унт., 2016.
- 2. Иродов, И.Е. Квантовая физика. Основные законы: учебное пособие [Электронный ресурс]: учеб. пособие Электрон. дан. Москва: Издательство "Лаборатория знаний", 2017. 261 с. Режим доступа: https://e.lanbook.com/book/94103
- 3. Иродов, И.Е. Задачи по квантовой физике [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : Издательство "Лаборатория знаний", 2015. 220 с. Режим доступа: https://e.lanbook.com/book/84093
- 4. Практикум по решению задач по общему курсу физики. Основы квантовой физики. Строение вещества. Атомная и ядерная физика [Электронный ресурс] : учеб. пособие / Н.П. Калашников [и др.]. Электрон. дан. Санкт-Петербург : Лань, 2014. 240 с. Режим доступа: https://e.lanbook.com/book/49468
- 5. Гринкруг, М.С. Лабораторный практикум по физике [Электронный ресурс] : учеб. пособие / М.С. Гринкруг, А.А. Вакулюк. Электрон. дан. Санкт-Петербург : Лань, 2012. 480 с. Режим доступа: https://e.lanbook.com/book/3811

- 6. Савельев, И.В. Курс общей физики. В 3 т. Том 3. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2017. 320 с. Режим доступа: https://e.lanbook.com/book/92652
- 7. Савельев, И.В. Сборник вопросов и задач по общей физике [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2016. 292 с. Режим доступа: https://e.lanbook.com/book/71766

5.2 Дополнительная литература

Механика

- 1. Волькенштейн В.С. Сборник задач по общему курсу физики / В.С. Волькенштейн. СПб: Книжный мир: [Профессия], 2006.
- 2. Трофимова Т.И. Сборник задач по курсу физики с решениями: учеб. пособие для вузов / Т.И. Трофимова, З.Г. Павлова. М.: Высшая школа, 2004.
- 3. Савельев И.В. Курс общей физики/ Савельев И.В. В 3 кн. -М. Астрель, АСТ, 2005.
- 4. Сивухин Д.В. Общий курс физики. Механика/ Сивухин Д.В. Т.3. М.: Физматлит, 2005
- 5. Богатов Н.М. Механика: лабораторный практикум/ Богатов Н.М., Добро Л.Ф., Онищук С.А., Савченко В.Ф. Кубанский государственный университет, 2003. 103с.

Молекулярная физика

- 1. Курс физики: учеб. пособие для студентов вузов / А.А. Детлаф, Б.М. Яворский. М.: Высшая школа, 2005.
- 2. Ремизов А.Н. Курс физики: учебник для студентов вузов / А.Н. Ремизов, А.Я. Потапенко. М.: Дрофа, 2004.
- 3. Фриш С.Э. Курс общей физики: учебник: [в 3 т.] / С.Э. Фриш, А.В. Тимофеева. Т.1. Физические основы механики. Молекулярная физика. Колебания и волны. СПб.: [и др.]: Лань, 2007.
- 4. Трофимова Т.И. Сборник задач по курсу физики с решениями: учеб. пособие для вузов / Т.И. Трофимова, З.Г. Павлова. М.: Высшая школа, 2008.
- 5. Копытов Г.Ф. Молекулярная физика: Лабораторный практикум / Г.Ф. Копытов, М.Г. Барышев, М.А. Жужа, Г.П. Ильченко. Краснодар: Кубанской гос. ун-т, 2004.

Электричество и магнетизм

- 1. Пиралишвили, Ш.А. Электричество и магнетизм [Электронный ресурс] : учеб. пособие / Ш.А. Пиралишвили, Е.В. Шалагина, Н.А. Каляева, Е.А. Попкова. Электрон. дан. Санкт-Петербург: Лань, 2017. 160 с.
- 2. Электричество и магнетизм: практикум по решению задач / Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кемеровский государственный университет»; сост. Ю.И. Полыгалов. Кемерово: Кемеровский государственный университет, 2014. 80 с.

Оптика

- 1. Трофимова Т.И. Сборник задач по курсу физики с решениями: учеб. пособие для вузов / Т.И. Трофимова, 3.Г. Павлова. М.: Высшая школа, 2004.
- 2. Ландсбер Г. С. Оптика: учебное пособие для студентов физических спец. вузов / Ландсберг, Григорий Самуилович; Г. С. Ландсберг. Изд. 6-е, стер. М. : ФИЗМАТЛИТ , 2006. 848 с.
- 3. Савельев И.В. Курс общей физики. В 5-ти книгах. Кн.4. Оптика. М.: Апрель: 2002.
- 4. Ремизов А.Н. Медицинская и биологическая физика : учебник по физике для студентов мед. вузов / / Ремизов, Александр Николаевич., А. Г. Максина, А. Я. Потапенко ; А. Н. Ремизов, А. Г. Максина, А. Я. Потапенко. Изд. 4-е, перераб. и доп. М.: Дрофа , 2003. 559 с.

5. Калитеевский, Н. И. Волновая оптика: учебное пособие для студентов вузов // Калитеевский, Николай Иванович; Н. И. Калитеевский. - Изд. 5-е, стер. - СПб. [и др.]: Лань , 2008. - 466 с.

Специальные вопросы атомной и ядерной физики

- 1. Будкер Д. Атомная физика [Электронный ресурс]: учеб. пособие / Д. Будкер, Д. Кимбелл, Д. ДеМилль. Электрон. дан. Москва: Физматлит, 2010. 396 с.
- 2. Шпольский Э.В. Атомная физика. Том 1. Введение в атомную физику [Электронный ресурс]: учеб. Электрон. дан. Санкт-Петербург: Лань, 2010. 560 с. –
- 3. Шпольский Э.В. Атомная физика. Том 2. Основы квантовой механики и строение электронной оболочки атома [Электронный ресурс]: учеб. Электрон. дан. Санкт-Петербург: Лань, 2010. 448 с.

5.3 Периодические издания:

- 1. В мире науки
- 2. Журнал экспериментальной и теоретической физики
- 3. Известия российской академии наук. Серия физическая
- 4. Инженерно-физический журнал
- 5. Письма в журнал экспериментальной и теоретической физики
- 6. Успехи физических наук ежемесячный журнал. Электронная версия журнала: аннотации, статьи в формате pdf.
 - 7. Известия высших учебных заведений. Ядерная энергетика
 - 8. Инженерно-физический журнал
 - 9. Письма в журнал «Физика элементарных частиц и атомного ядра
 - 10. Письма в журнал экспериментальной и теоретической физики
 - 11. Физика элементарных частиц и атомного ядра
 - 12. Ядерная физика
 - 13. Ядерная физика и инжиниринг
 - 14. Биофизика.
 - 15. Вестник МГУ. Серия: Физика. Астрономия.
 - 16. Журнал прикладной механики и технической физики.
 - 17. Журнал технической физики.
 - 18. Известия ВУЗов. Серия: Физика.
 - 19. Инженерная физика.
 - 20. Медицинская физика.
 - 21. Приборы и техника эксперимента.
 - 22. Физика. Реферативный журнал. ВИНИТИ.
 - 23. Вестник СПбГУ.Серия: Физика. Химия.
 - 24. Журнал экспериментальной и теоретической физики.
 - 25. Известия ВУЗов. Серия: Физика.
 - 26. Журнал прикладной механики и технической физики.
 - 27. Журнал технической физики.
 - 28. Известия ВУЗов. Серия: Физика.
 - 29. Приборы и техника эксперимента.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

6 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1. Электронная библиотека ЮРАЙТ: www.biblio-online.ru
- 2. Электронно-библиотечная система ЛАНЬ: https://e.lanbook.com
- 3. Информационная система «Единое окно доступа к образовательным ресурсам»:

http://window.edu.ru/window

4. Библиотека электронных учебников:

http://www.book-ua.org/

5. Аннотированный тематический каталог Интернет ресурсов по физике:

http://www.college.ru/

6. Федеральный образовательный портал:

http://www.edu.ru/db/portal/sites/res_page.htm

7. Каталог научных ресурсов:

http://www.scintific.narod.ru/literature.htm

8. Большая научная библиотека:

http://www.sci-lib.com/

9. Естественно-научный образовательный портал:

http://www.en.edu.ru/catalogue/

10. Учебно-образовательная физико-математическая библиотека сайта EqWorld:

http://eqworld.ipmnet.ru/ru/library/physics/

11. Лекции по физике для ВУЗов:

http://physics-lectures.ru/

13. Техническая библиотека:

http://techlibrary.ru/

14. «Ядерная физика в Интернете»:

http://nuclphys.sinp.msu.ru/

7 Методические указания для обучающихся по освоению дисциплины (модуля)

Для успешного освоения дисциплины «Общий физический практикум» при самостоятельной работе студент должен иметь:

- 1) конспект лекций в бумажном или электронном виде;
- 2) учебное пособие в соответствии со списком литературы;
- 3) тетради для лабораторных работ (требования по выполнению и оформлению лабораторных работ имеются в лаборатории молекулярной физики).

Студенту необходимо систематически работать по изучению теоретического материала, освоению типовых приемов решения задач по физике и приобретению навыков экспериментальной работы.

Самостоятельная работа содержит следующие виды учебной деятельности студентов:

- теоретическую самоподготовку к учебным занятиям и к экзамену по конспектам и учебной литературе;
 - оформление отчетов по результатам лабораторных работ;
 - поиск информации по заданной теме в сети Интернет.

ФГОС ВО требует подготовки бакалавров к научно-исследовательской и инновационной видам профессиональной деятельности, а физика является одной из основ научно-технического прогресса. Поэтому для развития творческого мышления и в качестве методики практического применения полученных на лекциях знаний студентам рекомендуется изучение и применение теории решения изобретательских задач (ТРИЗ). Для выполнения ТРИЗ-заданий студентам необходимо иметь начальные знания о ТРИЗ. Для этого рекомендуется самостоятельно: 1) изучить электронную книгу «Введение в ТРИЗ. Основные понятия и подходы» (http://www.altshuller.ru/e-books/); 2) изучить материалы Википедии (http://ru.wikipedia.org/wiki/), начиная со слова «ТРИЗ»; 3) прочесть книги по ТРИЗ из библиотеки КубГУ; 4) посетить соответствующие ТРИЗ-сайты.

Успешность освоения студентом учебной дисциплины отражается в его *рейтинге* – сумме баллов, которая формируется в течение семестра по результатам выполнения домашних работ и творческих заданий, тестирования, контрольных работ, устных опросов, внутрисеместровой аттестации, защит лабораторных работ и активности на семинарских

занятиях.

На самостоятельную работу студентов, согласно требованиям ФГОС ВО по направлению радиофизика отводится около 46% времени от общей трудоемкости дисциплины. Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов;
- проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе различных способов взаимодействия.

В соответствии с этим при проведении оперативного контроля могут использоваться контрольные вопросы как к выполняемым работам лабораторного практикума, так и к соответствующим разделам основной дисциплины.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю)

8.1 Перечень информационных технологий

- 1. Консультирование посредством электронной почты.
- 2. Использование электронной презентации на сайте Moodle КубГУ.

8.2 Перечень необходимого программного обеспечения

1. Среда модульного динамического обучения Moodle.

8.3 Перечень информационных справочных систем

- 1. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
- 2. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)
- 3. Электронный каталог научной библиотеки КубГУ

(http://212.192.134.46/MegaPro/Web).

- 4. Электронная библиотечная система «Университетская библиотека ONLINE» (http://biblioclub.ru/index.php?page=main-ub-red).
- 5. Электронная библиотечная система издательства «Лань» (https://e.lanbook.com).
 - 6 Электронная библиотечная система «Юрайт» (https://www.biblio-online.ru).

9 Материально-техническая база, необходимая для осуществления образовательного процесса по лисциплине (модулю)

N	Вид работ	Материально-техническое обеспечение дисциплины и оснащен-
٦,	Бид расот	ность
1.	Лабораторные	Специализированная лаборатория механики (216С), оснащенная лабораторными комплексами ЛКТ и необходимым лабораторным оборудованием. Специализированная лаборатория молекулярной физики (227С), ос-

		нащенная лабораторными комплексами ЛКТ и необходимым лабо-
		раторным оборудованием.
		раторным осорудованием. Специализированная лаборатория электричества и магнетизма
		(318С), оснащенная лабораторными комплексами ЛКТ и необходи-
		мым лабораторным оборудованием.
		Специализированная лаборатория Оптики физики (312С), оснащен-
		ная лабораторными комплексами ЛКО и необходимым лаборатор-
		ным оборудованием.
		Специализированная лаборатория атомной и ядерной физики
		(225С), оснащенная лабораторными комплексами ЛКТ и необходи-
		мым лабораторным оборудованием.
		Аудитория 314С, оснащенная компьютерной техникой с подключе-
2	Самостоятельная	нием к сети Интернет.
∠.	работа	Аудитория 204С, оснащенная компьютерной техникой с подключе-
		нием к сети Интернет.