Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кубанский государственный университет» Факультет компьютерных технологий и прикладной математики

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.Б.12 «МЕТОДЫ ОПТИМИЗАЦИИ»

Направление подготовки 01.03.02 Прикладная математика и информатика

Профиль Системный анализ, исследование операций и управление" (Математическое и информационное обеспечение экономической деятельности)

Программа подготовки Академическая

Форма обучения Очная

Квалификация выпускника Бакалавр

Рабочая программа дисциплины «Методы оптимизации» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 01.03.02 Прикладная математика и информатика профиль Системный анализ, исследование операций и управление (Математическое и информационное обеспечение экономической деятельности)

Программу составила:

Н.М. Сеидова, канд. физ.-мат. наук, доц. КПМ

Медя

Рабочая программа рассмотрена и утверждена на заседании кафедры (разработчика) прикладной математики от 29.06.2017, протокол № 22.

Заведующий кафедрой прикладной математики д-р физ.-мат. наук, профессор

М.Х. Уртенов

Рабочая программа рассмотрена и утверждена на заседании кафедры (выпускающей) прикладной математики от 29.06.2017, протокол № 22.

Заведующий кафедрой прикладной математики д-р физ.-мат. наук, профессор

М.Х. Уртенов

Рабочая программа утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики от 29.06.2017 г., протокол № 4.

Председатель УМК факультета компьютерных технологий и прикладной математики к.ф.-м.н., доцент

К.В. Малыхин,

Рецензенты:

Шапошникова Татьяна Леонидовна.

Доктор педагогических наук, кандидат физико-математических наук, профессор. Почетный работник высшего профессионального образования РФ. Директор института фундаментальных наук (ИФН) ФГБОУ ВО «КубГТУ».

Марков Виталий Николаевич.

Доктор технических наук. Профессор кафедры информационных систем и программирования института компьютерных систем и информационной безопасности (ИКСиИБ) ФГБОУ ВО «КубГТУ».

ЦЕЛИ И ЗАДАЧИ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цели изучения дисциплины определены государственным образовательным стандартом высшего образования и соотнесены с общими целями ООП ВО по направлению подготовки «Прикладная математика и информатика», в рамках которой преподается дисциплина.

1.1 Целью освоения учебной дисциплины «Методы оптимизации» является формирование у студентов знаний по основам теории оптимизации и знаний об основных подходах к практическому решению оптимизационных задач, что позволит развить компетентности способности понимать и применять в исследовательской и прикладной деятельности современный математический аппарат, а также способности работы с информацией из различных источников, включая сетевые ресурсы сети Интернет, для решения задач профессиональной деятельности в составе научно-исследовательского и производственного коллектива.

1.2. Задачи дисциплины. В ходе изучения дисциплины ставятся задачи научить студентов:

- 1) знать содержание программы курса, формулировки задач, методы их исследования;
- 2) выбирать подходящие методы для решения экстремальных задач;
- 3) уметь применять на практике конкретные вычислительные методы к анализу и решению оптимизационных задач;
- 4) изучать самостоятельно научную и учебно-методическую литературу по профилю из различных источников, включая сетевые ресурсы сети Интернет, для решения профессиональных и социальных задач.

1.3. Место учебной дисциплины в структуре ООП ВО

Дисциплина «Методы оптимизации» относится к базовой части учебного плана.

Данная дисциплина («Методы оптимизации») тесно связана с дисциплинами математического и естественнонаучного цикла: «Математический анализ», «Алгебра и геометрия», «Численные методы». Знания, полученные при освоении дисциплины «Математическое программирование», используются при изучении дисциплины «Математические методы и модели исследования операций», «Теория риска и моделирование рисковых ситуаций». В совокупности изучение этой дисциплины готовит обучаемых как к различным видам практической экономической деятельности, так и к научно-теоретической и исследовательской деятельности.

1.4 ТРЕБОВАНИЯ К УРОВНЮ ОСВОЕНИЯ СОДЕРЖАНИЯ ДИСЦИ-ПЛИНЫ.

Компетенции обучающегося, формируемые в результате освоения курса «Методы оптимизации»:

ОПК-1	способностью использовать базовые знания естественных наук, математики и информатики, основные факты, концепции, принципы теорий, связанных с прикладной математикой и информатикой
ПК-4	способностью работать в составе научно-исследовательского и производственного коллектива и решать задачи профессиональной деятельности

В результате освоения дисциплины студент должен:

•	• Структура компетенции		
	• Знать	• Уметь:	• Владеть:
ОПК-1	 иметь представление о месте и роли изучаемой дисциплины среди других наук; знать содержание программы курса, формулировки задач, методы их исследования 	• уметь применять на практике конкретные вычислительные методы к анализу и решению оптимизационных задач.	 навыком корректиров- ки процесса решения за- дачи изменением пара- метров алгоритма навыками работы с но- вой информацией для ана- лиза и решения оптимиза- ционных задач.
ПК-4	 классификацию задач оптимизации; теоретические положения, лежащие в основе построения методов решения; основные методы решения типовых оптимизационных задач 	 выбрать метод для решения конкретной задачи оптимизации; использовать типовые алгоритмы для решения задач; оценить качество работы алгоритма при решении задачи 	• способностью работать в составе научно- исследовательского и производственного коллектива и решать задачи профессиональной деятельности с использованием методов оптимизации

 Структура и содержание дисциплины
 Распределение трудоёмкости дисциплины по видам работ
 Общая трудоёмкость дисциплины составляет 4 зач.ед. (144 часа), их распределение по видам работ представлено в таблице.

Вид работы		Трудоемкость, часов	
Контактная работа, в то	ом числе:	68,3	
Аудиторная работа:		64	
Лекции (Л)		32	
Практические занятия (<i>Π3)</i>		
Лабораторные работы (ПР)	32	
Иная контактная работ	a:		
Контроль самостоятельно	ой работы (КСР)	4	
Промежуточная аттестац	ия (ИКР)	0,3	
Самостоятельная работ	Самостоятельная работа (СР):		
Курсовой проект (КП), ку	-		
Самоподготовка (прорабо	10		
ала и материала учебнико			
бораторным и практиче			
Выполнение индивидуал	20		
Реферат		-	
Подготовка к текущему в	сонтролю	10	
Контроль:			
Подготовка и сдача экзам	35,7		
Общая трудоемкость	144		
	в том числе контактная работа	68,3	
	зач. ед	4	
Вид итогового контроля	Вид итогового контроля		

¹ При наличии экзамена по дисциплине

2.2 Структура дисциплины:

Разделы дисциплины, изучаемые в 6 семестре

	т азделы дисциплины, изучаемые в о семестре							
			Все- Аудиторные занятия			CP	Эк-	
№ n/ n	Наименование раздела, темы	го тру- доем- ем- кост ь	Bce- ro	Лек ции	Ла- бора- тор- ные	KC P		за- мен
	1 Безусловная одномерная оп-							
	тимизация							
1.	Формулировка математической задачи оптимизации. Классические методы решения задач одномерной оптимизации	10	6	2	4	0	2	2
2.	Численные методы решения за- дач одномерной оптимизации	16	10	6	4	0	4	2
	2 Безусловная многомерная							
	оптимизация	6	-		-			
3.	Классические методы решения задач многомерной оптимизации.	8	2	2	0	0	4	2
4.	Классификация и обзор методов безусловной оптимизации	8	2	2	0	0	0	4
5.	Численные методы безусловной оптимизации функции многих переменных. Методы первого порядка.	22	12	4	8	0	6	4
6.	Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.	26	14	4	8	2	6	6
	3 Нелинейное программирова-							
	ние							
7.	Классификация задач нелинейно- го программирования.	14	6	6	0	0	4	4
1	2	3	4	5	6	7	8	9
8.	Задачи линейного программирования	18	8	4	4	0	6	4
	4 Специальные методы опти-							
	мизации	4.7		2	4	0	4	4
9.	Задача целочисленного линейного программирования	14	6	2	4	0	4	4
10.	Задачи линейного программирования в условиях неопределенности.	15,7	8	2	4	2	4	3,7
11.	Промежуточная аттестация (ИКР)	0,3	0,3					
	Итого:	144	68,3	32	32	4	40	35,7

2.3. Содержание разделов дисциплины

1 Безусловная одномерная оптимизация

Тема 1. Формулировка математической задачи оптимизации. Классические методы решения задач одномерной оптимизации.

Теорема Мак-Лорена. Классический метод нахождения экстремума функции одного переменного. Унимодальные функции. Свойства унимодальных функций.

Тема 2. Численные методы решения задач одномерной оптимизации.

Методы нулевого порядка. Метод перебора. Метод дихотомии. Метод золотого сечения. Метод Фибоначчи. Метод Розенброка. Метод деформируемого многоугольника. Метод тяжелого шарика.

2 Безусловная многомерная оптимизация

Тема 1 Классические методы решения задач многомерной оптимизации.

Теоремы о необходимом и достаточном условии экстремума. Классический алгоритм. Леммы о направлениях спуска. Классический метод нахождения экстремума функции нескольких переменных.

Тема 2 Классификация и обзор методов безусловной оптимизации.

Tema 3. Численные методы безусловной оптимизации функции многих переменных. Методы первого порядка.

Метод градиентного спуска. Метод наискорейшего спуска. Метод Флетчера-Ривса. Метод Давидона-Флетчера-Пауэлла.

Tema 4. Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.

Метод Ньютона. Метод Ньютона-Равсона. Метод Маркварда.

3 Нелинейное программирование

Тема 1. Классификация задач нелинейного программирования. Теорема Куна-Таккера. Методы поиска условного экстремума.

Метод множителей Лагранжа. Метод штрафных функций. Метод барьерных функций. Метод проекции градиента.

Тема 2. Задачи линейного программирования.

Симплекс метод. Транспортные задачи.

4 Специальные методы оптимизации

Тема 1. Задача целочисленного линейного программирования.

Постановки задачи целочисленного линейного программирования (ЗЦЛП). Методы решения ЗЦЛП. Метод ветвей и границ решения ЗЦЛП. Решение задачи коммивояжера методом ветвей и границ.

Тема 2. Задачи линейного программирования в условиях неопределенности.

Постановки задачи линейного программирования (ЗЛП) в условиях риска и неопределенности. Методы решения ЗЛП в условиях риска и неопределенности. ЗЛП и теория игр.

2.3.1 Занятия лекционного типа

№	Наименование раздела	Содержание раздела	Форма текущего контроля (по неделям се-местра)
1	2	3	4
1	Безусловная одномерная оптимизация	Тема 1. Формулировка математической задачи оптимизации. Классические методы решения задач одномерной оптимизации Тема 2. Численные методы решения задач одномерной оптимизации	1. Опрос по результатам индивидуального задания. (1–3-я неделя 6-го семестра)
2	Безусловная многомерная оптимизация	Тема 1. Классические методы решения задач многомерной оптимизации. Тема 2. Классификация и обзор методов безусловной оптимизации Тема 3. Численные методы безусловной оптимизации функции многих переменных. Методы первого порядка. Тема 4. Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.	1. Опрос по результатам индивидуального задания (4–9-я неделя 6-го семестра)
3	Нелинейное программиро- вание	Тема 1. Классификация задач нелинейного программирования.Тема 2. Задачи линейного программирования	1. Опрос по результатам индивидуального задания. (10–14-я неделя 6-го семестра)
4	Специальные методы опти-мизации	Тема 1. Задача целочисленного линейного программированияТема 2. Задачи линейного программирования в условиях неопределенности.	1. Опрос по результатам индивидуального задания. (15–17-я неделя 6-го семестра)

Практические занятия, защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГ3), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (T) – не предусмотрены.

2.3.2 Занятия семинарского типа

Семинарские занятия – не предусмотрены

2.3.3 Лабораторные занятия

№ п/п	Темы лабораторных занятий	Форма текущего контроля(по неделям семестра)
1	Численные методы решения задач одномерной оптимизации	1 Выполнение практических заданий 2. Отчет по результатам индивидуального задания. (1–2-я неделя 5-го семестра)4
2	Численные методы безусловной оптимизации функции многих переменных. Методы первого порядка.	1 Выполнение практических заданий 2. Отчет по результатам индивидуального задания. (3–6-я неделя 5-го семестра)
3	Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.	1 Выполнение практических заданий 2. Отчет по результатам индивидуального задания. (7–10-я неделя 5-го семестра)
4	Задачи линейного программирования	1 Выполнение практических заданий 2. Опрос по результатам индивидуального задания. (11–12-я неделя 5-го семестра)
5	Задача целочисленного линейного программирования	1 Выполнение практических заданий 2. Отчет по результатам индивидуального задания. (13–14я неделя 5-го семестра)
6	Задачи линейного программирования в условиях неопределенности.	1 Выполнение практических заданий 2. Отчет по результатам индивидуального задания. (15–17-я неделя 5-го семестра)

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГЗ), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (T) – не предусмотрены.

СОДЕРЖАНИЕ ЛАБОРАТОРНОЙ РАБОТЫ

Тема 1. Численные методы решения задач одномерной оптимизации.

Постановка задачи методов нулевого порядка; стратегия поиска минимума; разработка алгоритмов; оценка сходимости методов (метод перебора, метод дихотомии, метод золотого сечения, метод Фибоначчи, метод Розенброка, метод деформируемого много-угольника, метод тяжелого шарика).

Tema 2. Численные методы безусловной оптимизации функции многих переменных. Методы первого порядка.

Постановка задачи методов первого порядка; стратегия поиска минимума; разработка алгоритмов; оценка сходимости методов (метод градиентного спуска, метод наискорейшего спуска, метод Флетчера-Ривса, метод Давидона-Флетчера-Пауэлла).

Тема 3. Численные методы безусловной оптимизации функции многих переменных. Методы второго порядка.

Постановка задачи методов второго порядка; стратегия поиска минимума; разработка алгоритмов; оценка сходимости методов (метод Ньютона, метод Ньютона-Равсона, метод Маркварда).

Тема 4. Задачи линейного программирования.

Постановка задачи линейного программирования; стратегия поиска; разработка алгоритмов (симплекс метод, транспортные задачи).

Тема 5. Задача целочисленного линейного программирования.

Постановки задачи целочисленного линейного программирования (ЗЦЛП). Метод ветвей и границ решения ЗЦЛП. Решение задачи коммивояжера методом ветвей и границ.

Тема 6. Задачи линейного программирования в условиях неопределенности.

Постановки задачи линейного программирования (ЗЛП) в условиях риска и неопределенности. Методы решения ЗЛП в условиях риска и неопределенности.

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы (КР) – не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающегося по дисциплине

Целью самостоятельной работы студента является углубление знаний, полученных в результате аудиторных занятий. Вырабатываются навыки самостоятельной работы. Закрепляются опыт и знания, полученные во время лабораторных занятий.

No	Наименование раздела	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1.	Безусловная одно- мерная оптимиза- ция	1. Сеидова, Наталья Михайловна Численные методы решения задач одномерной безусловной оптимизации / Сеидова, Наталья Михайловна, Калайдина, Галина Вениаминовна; Н. М. Сеидова, Г. В. Калайдина; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т Краснодар: [Кубанский государственный университет], 2012 37 с. 2. Летова, Т.А. Методы оптимизации. Практический курс: учебное пособие / Т.А. Летова, А.В. Пантелеев М.: Логос, 2011 424 с (Новая университетская библиотека) ISBN 978-5-98704-540-4; То же [Электрон-ный ресурс] URL: https://biblioclub.ru/index.php?page=book_red&id=84995&sr=1 (10.02.2018).

1	2	3
2.	Безусловная многомерная оптимизация	1. Летова, Т.А. Методы оптимизации. Практический курс: учебное пособие / Т.А. Летова, А.В. Пантелеев М.: Логос, 2011 424 с (Новая университетская библиотека) ISBN 978-5-98704-540-4; То же [Электронный ресурс] URL: https://biblioclub.ru/index.php?page=book_red&id=84995&sr=1 (10.02.2018). 2. Сухарев, А. Г. Методы оптимизации [Электронный ресурс]: учебник и практикум для бакалавриата и магистратуры / А. Г. Сухарев, А. В. Тимохов, В. В. Федоров 3-е изд., испр. и доп М.: Юрайт, 2017 367 с https://biblioonline.ru/book/FBDEF0DD-58E4-4241-BFEC-5A6E28E22FE5.
3.	Нелинейное про- граммирование	1. Летова, Т.А. Методы оптимизации. Практический курс: учебное пособие / Т.А. Летова, А.В. Пантелеев М.: Логос, 2011 424 с (Новая университетская библиотека) ISBN 978-5-98704-540-4; То же [Электрон-ный ресурс] URL: https://biblioclub.ru/index.php?page=book_red&id=84995&sr=1 (10.02.2018). 2. Сухарев, А. Г. Методы оптимизации [Электронный ресурс]: учебник и практикум для бакалавриата и магистратуры / А. Г. Сухарев, А. В. Тимохов, В. В. Федоров 3-е изд., испр. и доп М.: Юрайт, 2017 367 с https://biblio-online.ru/book/FBDEF0DD-58E4-4241-BFEC-5A6E28E22FE5.
4.	Специальные методы оптимизации	1. Летова, Т.А. Методы оптимизации. Практический курс: учебное пособие / Т.А. Летова, А.В. Пантелеев М.: Логос, 2011 424 с (Новая университетская библиотека) ISBN 978-5-98704-540-4; То же [Электрон-ный ресурс] URL: https://biblioclub.ru/index.php?page=book_red&id=84995&sr=1 (10.02.2018). 2. Сухарев, А. Г. Методы оптимизации [Электронный ресурс]: учебник и практикум для бакалавриата и магистратуры / А. Г. Сухарев, А. В. Тимохов, В. В. Федоров 3-е изд., испр. и доп М.: Юрайт, 2017 367 с https://biblio-online.ru/book/FBDEF0DD-58E4-4241-BFEC-5A6E28E22FE5.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (OB3) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

3.ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

С точки зрения применяемых методов используются как традиционные информационно-объяснительные *лекции*, так и интерактивная подача материала с мультимедийной системой. Компьютерные технологии в данном случае обеспечивают возможность разнопланового отображения алгоритмов и демонстрационного материала. Такое сочетание позволяет оптимально использовать отведенное время и раскрывать логику и содержание дисциплины.

Лекции представляют собой систематические обзоры теории оптимизации с подачей материала в виде презентаций.

Лабораторное занятие позволяет научить студента применять теоретические знания при решении и исследовании конкретных задач. Лабораторные занятия проводятся в компьютерных классах, при этом практикуется работа в группах. Подход разбора конкретных ситуаций широко используется как преподавателем, так и студентами при проведении анализа результатов самостоятельной работы.

Оценка самостоятельной работы студентов происходит по средствам оценки индивидуальных ответов и дополнений на занятиях по рассмотренным тематикам.

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

4. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

4.1 Фонд оценочных средств для проведения текущей аттестации

Учебная деятельность проходит в соответствии с графиком учебного процесса. Процесс самостоятельной работы контролируется во время аудиторных занятий и индивидуальных консультаций. Самостоятельная работа студентов проводится в форме изучения отдельных теоретических вопросов по предлагаемой литературе.

Фонд оценочных средств дисциплины состоит из средств текущего контроля (см. список лабораторных работ, задач и вопросов) и итоговой аттестации (зачет, экзамен).

В качестве оценочных средств, используемых для текущего контроля успеваемости, предлагается перечень вопросов, которые прорабатываются в процессе освоения курса. Данный перечень охватывает все основные разделы курса, включая знания, получаемые во время самостоятельной работы. Кроме того, важным элементом технологии является самостоятельное решение студентами и сдача заданий. Это индивидуальная форма обучения. Студент рассказывает свое решение преподавателю, отвечает на дополнительные вопросы.

4.1.1 Перечень примерных заданий для самостоятельной работы

Целью самостоятельной работы студента является углубление знаний, полученных в результате аудиторных занятий. Вырабатываются навыки самостоятельной работы. Закрепляются опыт и знания, полученные во время лабораторных занятий.

- **Задание 1.** Доказать свойства унимодальных функций. Используя классический метод, решить задачу нахождения экстремума функции одного.
- **Задание 2.** Написать и отладить программу численного решения задачи нахождения минимума функции одного переменного, используя метод дихотомии, метод золотого сечения, метод Фибоначчи.
- Задание 3. Используя классический метод, решить задачу нахождения экстремума функции многих переменных.
- **Задание 4.** Написать и отладить программу численного решения задачи нахождения минимума функции многих переменных, используя метод наискорейшего спуска, метод Ньютона, метод Ньютона-Равсона и метод Флетчера-Ривса.
- **Задание 5.** Используя метод множителей Лагранжа, решить задачу нахождения условного минимума функции многих переменных.
- Задание 6. Написать и отладить программу численного решения задачи нахождения условного минимума функции многих переменных, используя метод штрафных функций.

<u>Индивидуальная задача 1.</u> Найти минимум функции одного переменного f(x) ($\delta = 0,2; \ \varepsilon = 0,5$) (задание 1, 2).

1. $f(x) = x^2 - 2x + 3$, $[-2; 8]$	11. $f(x) = x^2 - 6x + 13$, [0;10]
2. $f(x) = x^2 - 2x + 5$, $[-2; 8]$	12. $f(x) = 2x^2 - 12x + 19$, [0;10]
3. $f(x) = 2x^2 - 2x + 3/2$, $[-2; 8]$	13. $f(x) = x^2 - 4x + 6$, [0;10]
4. $f(x) = x^2 + 6x + 13$, $[-6; 4]$	14. $f(x) = x^2 + 2$, $[-3; 7]$
5. $f(x) = x^2 - 4x + 7$, [0;10]	15. $f(x) = x^2 + 2x + 4$, $[-3, 7]$
6. $f(x) = x^2 + 4x + 5$, $[-4; 6]$	16. $f(x) = 2x^2 + 2x + 5/2$, $[-3, 7]$
7. $f(x) = 2x^2 + 2x + 7/2$, $[-3, 7]$	17. $f(x) = 3x^2 - x + 4$, $[-4; 6]$
8. $f(x) = x^2 - 6x + 12$, [1;11]	18. $f(x) = x^2 + 4x - 1/4$, $[-2; 8]$
9. $f(x) = x^2 + 4x + 6$, $[-4; 6]$	19. $f(x) = x^2 + 3x - 10$, $[-2; 8]$
10. $f(x) = 2x^2 - 2x + 5/2$, $[-1; 9]$	20. $f(x) = x^2 + 6x + 2$, $[-4; 6]$

<u>Индивидуальная задача 2.</u> Найти минимум функции двух переменных $f(x_1, x_2)$ в $(x_1^{(0)}, x_2^{(0)})$ (задание 3, 4).

1. $f(x) = x_1^2 + 5x_2^2 - x_1x_2 + x_1, x_0 = (-1,2;1)$	11. $f(x) = 2x_1^2 + 3x_2^2 - x_1x_2 + x_1,$ $x_0 = (1; 3)$
2. $f(x) = x_1^2 + 4x_2^2 - x_1x_2 + x_1,$ $x_0 = (3, 1)$	12. $f(x) = 3x_1^2 + 4x_2^2 - 2x_1x_2 + x_1,$ $x_0 = (2, 1, 5)$
3. $f(x) = x_1^2 + 7x_2^2 - x_1x_2 + x_1,$ $x_0 = (1,1;1,1)$	13. $f(x) = x_1^2 + 5x_2^2 + x_1x_2 + x_1,$ $x_0 = (1; 1)$
4. $f(x) = x_1^2 + 8x_2^2 - x_1x_2 + x_1, x_0 = (1,5; 0,1)$	14. $f(x) = x_1^2 + 4x_2^2 + x_1x_2 + x_1, x_0 = (3; 1)$
5. $f(x) = 2x_1^2 + x_2^2 - x_1x_2 + x_1, x_0 = (2; 2)$	15. $f(x) = x_1^2 + 6x_2^2 + x_1x_2 + x_1, x_0 = (1,5; 1,1)$
6. $f(x) = 3x_1^2 + x_2^2 - x_1 x_2 + x_1, x_0 = (1,5;1,5)$	16. $f(x) = x_1^2 + 7x_2^2 + x_1x_2 + x_1, x_0 = (1,1;1,1)$
7. $f(x) = 5x_1^2 + x_2^2 - x_1 x_2 + x_1, x_0 = (1,5;1)$	17. $f(x) = x_1^2 + 8x_2^2 + x_1x_2 + x_1, x_0 = (1,5;0,5)$
8. $f(x) = 6x_1^2 + x_2^2 - x_1x_2 + x_1, x_0 = (2, 1)$	18. $f(x) = 2x_1^2 + x_2^2 + x_1 x_2 + x_1, x_0 = (2; 2)$
9. $f(x) = 7x_1^2 + x_2^2 - x_1x_2 + x_1, x_0 = (1; 2)$	19. $f(x) = 3x_1^2 + x_2^2 + x_1 x_2 + x_1, x_0 = (1,5;1,5)$
10. $f(x) = 8x_1^2 + x_2^2 - x_1x_2 + x_1, x_0 = (2; 2)$	20. $f(x) = 5x_1^2 + x_2^2 + x_1x_2 + x_1,$ $x_0 = (1,5;1)$

<u>Индивидуальная задача 3.</u> Найти условный минимум функции многих переменных $f(x_1, x_2)$ (задание 5, 6).

	$f(x) = x_1^2 + 5x_2^2 - x_1x_2 + x_1,$ $x_1 + x_2 = 1$	11. $f(x) = 2x_1^2 + 3x_2^2 - x_1x_2 + x_1,$ $x_1 + 2x_2 = 1$
2.	$f(x) = x_1^2 + 4x_2^2 - x_1x_2 + x_1,$ $2x_1 + x_2 = 1$	12. $f(x) = 3x_1^2 + 4x_2^2 - 2x_1x_2 + x_1, x_1 + x_2 = 1$
3.	$f(x) = x_1^2 + 7x_2^2 - x_1x_2 + x_1,$ $x_1 + x_2 = 2$	13. $f(x) = x_1^2 + 5x_2^2 + x_1x_2 + x_1, 2x_1 + 3x_2 = 1$

4. $ f(x) = x_1^2 + 8x_2^2 - x_1x_2 + x_1, $ $2x_1 + 3x_2 = 1 $	14. $f(x) = x_1^2 + 4x_2^2 + x_1x_2 + x_1, x_1 + x_2 = 2$
$\int_{5.}^{6} f(x) = 2x_1^2 + x_2^2 - x_1 x_2 + x_1,$	15. $f(x) = x_1^2 + 6x_2^2 + x_1x_2 + x_1, x_1 + 3x_2 = 1$
$x_1 + x_2 = 3$	$x_1 + 3x_2 = 1$
$\int_{6.} f(x) = 3x_1^2 + x_2^2 - x_1 x_2 + x_1,$	16. $f(x) = x_1^2 + 7x_2^2 + x_1x_2 + x_1, x_1 + x_2 = 1$
$2x_1 + x_2 = 1$	$x_1 + x_2 = 1$
$f(x) = 5x_1^2 + x_2^2 - x_1x_2 + x_1,$	17. $f(x) = x_1^2 + 8x_2^2 + x_1x_2 + x_1, 3x_1 + x_2 = 2$
$x_1 + x_2 = 1$	$3x_1 + x_2 = 2$
$f(x) = 6x_1^2 + x_2^2 - x_1x_2 + x_1,$	18. $f(x) = 2x_1^2 + x_2^2 + x_1 x_2 + x_1, x_1 + x_2 = 5$
$2x_1 + 3x_2 = 1$	$x_1 + x_2 = 5$
$\int_{9.} f(x) = 7x_1^2 + x_2^2 - x_1x_2 + x_1,$	$f(x) = 3x_1^2 + x_2^2 + x_1x_2 + x_1,$
$x_1 + x_2 = 2$	$2x_1 + x_2 = 1$
$f(x) = 8x_1^2 + x_2^2 - x_1x_2 + x_1,$	$f(x) = 5x_1^2 + x_2^2 + x_1x_2 + x_1,$
$2x_1 + x_2 = 3$	$x_1 + x_2 = 1$

4.2 Фонд оценочных средств для проведения промежуточной аттестации ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ВОПРОСОВ К ЗАЧЁТУ/ЭКЗАМЕНУ

- 1. Одномерный поиск. Теорема Мак-Лорена.
- 2. Унимодальные функции. Свойства унимодальных функций.
- 3. Метод дихотомии.
- 4. Метод Фибоначчи.
- 5. Метод золотого сечения.
- 6. Теоремы о необходимом и достаточном условии экстремума. Классический алгоритм.
- 7. Леммы о направлениях спуска (безусловная оптимизация).
- 8. Градиентный метод.
- 9. Обобщенный метод Ньютона.
- 10. Метод тяжелого шарика.
- 11. Метод сопряженных градиентов.
- 12. Классификация и обзор методов безусловной оптимизации.
- 13. Классификация задач нелинейного программирования. Леммы 1 и 2 о возможных направлениях (условная оптимизация).
- 14. Теорема 1 о необходимом условии условного минимума.
- 15. Теорема Фаркаша. Теорема 2 о необходимом условии условного минимума.
- 16. Правило множителей Лагранжа для задач с ограничениями типа равенства.
- 17. Правило множителей Лагранжа для задач с ограничениями типа неравенства.
- 18. Выпуклые функции.
- 19. Теорема Куна-Таккера.
- 20. Теория двойственности. Теорема двойственности. Двойственные методы.
- 21. Метод проекций.
- 22. Метод внутренних и внешних штрафных функций.
- 23. Метод возможных направлений.
- 24. Постановки транспортной задачи. Методы решения транспортной задачи.

- 25. Постановки задачи целочисленного линейного программирования (ЗЦЛП). Методы решения ЗЦЛП.
- 26. Метод ветвей и границ решения ЗЦЛП.
- 27. Решение задачи коммивояжера методом ветвей и границ.
- 28. Постановки задачи линейного программирования ЗЛП в условиях риска и неопределенности. Методы решения ЗЛП в условиях риска и неопределенности.
- 29. ЗЛП и теория игр.

Основные требования к результатам освоения дисциплины представлены в таблице в виде признаков сформированности компетенций. Требования формулируются по двум уровням: пороговый и повышенный и в соответствии со структурой, принятой в ФГОС ВО: знать, уметь, владеть.

Название компетенции (или ее части)	Структура компетенции	Основные признаки сформированности компетенции
ОПК-1: Способностью использовать базовые знания естественных наук, математики и информатики, основные факты, концепции, прин-	Знать основные информационные ресурсы для получения новых знаний.	Имеет представление об основных информационных ресурсы для получения новых знаний. Знает различные средства получения, переработки и представления информации с помощью информационно-коммуникационных технологий
ципы теорий, связанных с прикладной математикой и информатикой	Уметь получать новые знания и умения с помощью информационных технологий для решения профессиональных и социальных задач Владеть навыками работы с различными источниками информации, включая сетевые ресурсы сети Интернет	Умеет получать новые знания и умения с помощью информационных технологий Умеет применять полученные знания для использования в практической деятельности анализа и решения оптимизационных задач. Может изучать самостоятельно научную и учебно-методическую литературу по профилю Владеет навыками работы с новой информацией для решения профессиональных и социальных задач
ПК-4: способностью работать в составе научно- исследовательского и производственного коллектива и решать задачи	Знать основные технологии и методы формализованного описания оптимальных процессов, применяемых в современной экономической и социальной практике	Знает основы математического аппарата современных методов формализованного описания и исследования оптимизационных задач. Знает основные методы решения задач оптимизации.
профессиональной деятельности	Уметь применять на практике конкретные вычислительные методы решения оптимизационных задач. Владеть навыком коррек-	Умеет применять на практике конкретные вычислительные методы к анализу и решению оптимизационных задач. Умеет формулировать новую задачу при рассмотрении двух или нескольких методик исследования оптимальных процессов Владеет методами оценки качества работы алгоритма при решении задачи

тировки процесса решения	Может проанализировать, а затем выбрать	
задачи изменением пара-	из нескольких методов оптимизации	
метров алгоритма.	наиболее подходящий к конкретной про-	
	блеме.	

5.УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

5.1 Основная литература:

- 1. Сеидова, Наталья Михайловна Численные методы решения задач одномерной безусловной оптимизации / Сеидова, Наталья Михайловна, Калайдина, Галина Вениаминовна; Н. М. Сеидова, Г. В. Калайдина; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар: [Кубанский государственный университет], 2012. 37 с.
- 2. Летова, Т.А. Методы оптимизации. Практический курс: учебное пособие / Т.А. Летова, А.В. Пантелеев. М.: Логос, 2011. 424 с. (Новая университетская библиотека). ISBN 978-5-98704-540-4; То же [Электрон-ный ресурс]. URL: https://biblioclub.ru/index.php?page=book_red&id=84995&sr=1 (10.02.2018).
- 3. Сухарев, А. Г. Методы оптимизации [Электронный ресурс] : учебник и практикум для бакалавриата и магистратуры / А. Г. Сухарев, А. В. Тимохов, В. В. Федоров. 3-е изд., испр. и доп. М. : Юрайт, 2017. 367 с. https://biblio-online.ru/book/FBDEF0DD-58E4-4241-BFEC-5A6E28E22FE5.

5.2 Дополнительная литература:

- 1. Островский, Геннадий Маркович. Оптимизация технических систем / Островский, Геннадий Маркович, Зиятдинов, Надир Низамович, Лаптева, Татьяна Владимировна; Г. М. Островский, Н. Н. Зиятдинов, Т. В. Лаптева. Москва: КНОРУС, 2012. 422 с.: ил. Библиогр.: с. 404-411. ISBN 9785406010945.
- 2. Засядко, Ольга Владимировна. Исследование операций: [практикум] / Засядко, Ольга Владимировна, Усатиков, Сергей Васильевич; О. В. Засядко, С. В. Усатиков; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар: [Кубанский государственный университет], 2014. 194 с.: ил. Библиогр.: с. 15-16.
- 3. Зайцев, Михаил Григорьевич. Методы оптимизации управления и принятия решений: примеры, задачи, кейсы/ Зайцев, Михаил Григорьевич, С. Е. Варюхин; М. Г. Зайцев, С. Е. Варюхин; Рос. акад. народного хоз-ва и гос. службы при Президенте Рос. Федерации. [3-е изд., испр. и доп.]. М.: Дело, 2011. 639 с.: ил. (Учебники Президентской Академии). ISBN 9785774904921.
- 4. Далингер, В. А. Информатика и математика. Решение уравнений и оптимизация в mathcad и maple [Электронный ресурс] : учебник и практикум для прикладного бакалавриата / В. А. Далингер, С. Д. Симонженков. 2-е изд., испр. и доп. М. : Юрайт, 2018. 161 с. https://biblio-online.ru/book/373E27B2-F2B8-4BC9-9D66-EFFA2353B4D1.
- 5. Методы оптимизации [Электронный ресурс] : учебник и практикум для бакалавриата и магистратуры / Ф. П. Васильев, М. М. Потапов, Б. А. Будак, Л. А. Артемьева ; под ред. Ф. П. Васильева. М. : Юрайт, 2018. 375 с. https://biblio-online.ru/book/CAA9AF22-E3BB-454A-BE5C-BB243EAAE72A.

5.3 Электронная Библиотека КубГУ

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. Методы оптимизации [Электронный ресурс] // И.Н. Мастяева, О. Н. Семенихина; И.Н. Мастяева, О.Н. Семенихина. М.: Автономная некоммерческая организация высшего проф. образования "Евразийский открытый ин-т" (ЕАОИ), 2006
- 2. Википедия, свободная энциклопедия. [Электронный ресурс]. Wikipedia http://ru.wikipedia.org
 - 3. http://math.nsc.ru/LBRT/k5/opt.html (Методы оптимизации, учебное пособие)
 - 4. http://csit.narod.ru/research/Metopt.htm (Методы оптимизации на англ. яз.)
 - 5. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)/

7. Методические указания для обучающихся по освоению дисциплины

Учебная деятельность проходит в соответствии с графиком учебного процесса. Процесс самостоятельной работы контролируется во время аудиторных занятий и индивидуальных консультаций. Самостоятельная работа студентов проводится в форме изучения отдельных теоретических вопросов по предлагаемой литературе и выполнении практических заданий по разобранным во время аудиторных занятий примерам.

Фонд оценочных средств дисциплины состоит из средств текущего контроля (см. список лабораторных работ, задач и вопросов) и итоговой аттестации (зачета, экзамена).

В качестве оценочных средств, используемых для текущего контроля успеваемости, предлагается перечень вопросов, которые прорабатываются в процессе освоения курса. Данный перечень охватывает все основные разделы курса, включая знания, получаемые во время самостоятельной работы. Кроме того, важным элементом технологии является самостоятельное решение студентами и сдача заданий. Это полностью индивидуальная форма обучения. Студент рассказывает свое решение преподавателю, отвечает на дополнительные вопросы.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса

8.1 Перечень информационных технологий.

Использование электронных презентаций при проведении лекционных и практических занятий.

8.2 Перечень необходимого программного обеспечения.

- 1. Операционная система MS Windows.
- 2. Интегрированное офисное приложение MS Office.
- 3. Программное обеспечение для организации управляемого коллективного и безопасного доступа в Интернет.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Nº	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность	
1.	1. Лекционные занятия Лекционная аудитория, оснащенная презентаци никой (проектор, экран, компьютер/ноутбук)		

		ствующим программным обеспечением (ПО), доска Ауд. 129, 131, 3016, 305, 307
2.	Лабораторные занятия	Лаборатория, укомплектованная техническими средствами обучения — компьютерами с соответствующим программным обеспечением, маркерная доска. Ауд. 101, 106, 106а
3.	Групповые (индивиду- альные) консультации	Аудитория, укомплектованная маркерной доской и оснащенная компьютером. Ауд. 129
4.	Текущий контроль, промежуточная аттестация	Аудитория, укомплектованная маркерной доской и оснащенная компьютером. Ауд. 129
5.	Самостоятельная работа	Кабинет для самостоятельной работы, оснащенный компьютерной техникой с возможностью подключения к сети «Интернет», программой экранного увеличения и обеспеченный доступом в электронную информационнообразовательную среду университета. 102-А и читальный зал