АННОТАЦИЯ

дисциплины «Метод базисных потенциалов в задачах естествознания»

Объем трудоемкости: 3 зачетные единицы (108 часов, из них – 68 часа аудиторной нагрузки: лекционных 32 часа, лабораторных занятий 32 часа; 39,8 часа самостоятельной работы; 4 часа КСР; 0,2 часа ИКР)

Цель дисциплины:

Развитие профессиональных компетентностей; формирование у студентов правильных представлений об основных задачах математической физики и методе базисных потенциалов в задачах естествознания, формирование у студентов навыков по практическому применению метода базисных потенциалов и алгоритмов решения задач математической физики при решении прикладных задач естествознания.

Задачи дисциплины:

Освоение студентами основ теоретических знаний в области математической физики; выработка устойчивого интереса к теоретическим и практическим вопросам применения метода базисных потенциалов при решении в разнообразных прикладных задачах естествознания; развитие логико-математического мышления; приобретение умений и навыков по применению алгоритмов задач математической физики.

Место дисциплины в структуре ООП ВО

Дисциплина «Метод базисных потенциалов в задачах естествознания» относится к вариативной части (Дисциплина по выбору) Блока 1 «Дисциплины (модули)» учебного плана. Для ее изучения требуется освоение следующих предшествующих дисциплин: «Математический анализ», «Дифференциальные уравнения», «Уравнения в частных производных», «Основы компьютерных наук», «Технологии программирования и работы на ЭВМ» и «Численные методы». Кроме того, данная дисциплина в соответствии с учебным планом является предшествующей для изучения дисциплин «Задачи и алгоритмы гидродинамики», «Задачи и алгоритмы аэродинамики», «Моделирование в задачах электрохимии» и «Методы потенциала в задачах естествознания».

Требования к уровню освоения дисциплины

В процессе освоения данной дисциплины формируются и демонстрируются следующие общекультурные и профессиональные компетенции:

- выпускник должен обладать готовностью использовать фундаментальные знания в области математического анализа, алгебры, аналитической геометрии, дифференциальных уравнений, численных методов, теоретической механики в будущей профессиональной деятельности (ОПК-1);
- выпускник должен обладать способностью передавать результат проведенных физико-математических и прикладных исследований в виде конкретных рекомендаций, выраженных в терминах предметной области изучавшегося явления (ПК-6);
- выпускник должен обладать способностью использовать методы математического и алгоритмического моделирования при анализе управленческих задач в научно-технической сфере, в экономике, бизнесе и гуманитарных областях знаний (ПК-7).

Освоение указанных компетенций позволяет слушателям:

знать:

- основные понятия, концепции, результаты, задачи и методы классического математического анализа, основные понятия, принципиальные результаты и методы алгебры и аналитической геометрии, свойства математических объектов в этой области, формулировки ключевых утверждений, методы их доказательства, возможные сферы их приложений;
- основные понятия теории обыкновенных дифференциальных уравнений и теории уравнений математической физики, определения и свойства математических объектов в этих областях, формулировки ключевых утверждений, методы их доказательства, возможные сферы их приложений;
- профессиональную терминологию, корректное использование методов математического моделирования при решении теоретических и прикладных задач, способы воздействия на аудиторию;
- методы математического и алгоритмического моделирования экономических и социальных процессов;

уметь:

- применять основные методы анализа к исследованию функций и функциональных классов, уметь решать стандартные задачи алгебры;
- решать задачи вычислительного и теоретического характера в области обыкновенных дифференциальных уравнений и уравнений математической физики;
- публично представлять, объяснять, защищать построенную математическую модель и выбранный алгоритм; объяснять учебный и научный материал; вести корректную дискуссию в процессе представления математической модели и алгоритмов;
- анализировать управленческие задачи в научно-технической сфере, в экономике, бизнесе и гуманитарных областях знаний;

владеть (иметь практический опыт):

- навыками использования фундаментальных математических знаний в области профессиональной деятельности;
- навыками доказательства оптимальность выбранного алгоритма, метода, путем объяснения его задачи и функции;
- профессиональной терминологией при презентации построенных моделей;
- способностью использовать методы математического и алгоритмического моделирования при анализе управленческих задач в научно технической сфере, в экономике, бизнесе и гуманитарных областях знаний.

Структура дисциплины

Вид учебной работы		Всего	Семестры (часы)			
		часов	6			
Контактная работа, в том числе:		68,2	68,2			
Аудиторные занятия (всего):		64	64	1	-	-
Занятия лекционного типа		32	32	1	-	-
Лабораторные занятия		32	32	ı	-	-
Занятия семинарского типа (семинары,		-	-	-	-	-
практические занятия)						
Иная контактная работа:						
Контроль самостоятельной работы (КСР)		4	4	-	-	-
Промежуточная аттестация (ИКР)		0,2	0,2	ı	-	-
Самостоятельная работа, в том числе:		39,8	39,8			
Курсовая работа		-	-	ı	-	-
Проработка учебного (теоретического) материала		13,8	13,8	ı	-	-
Выполнение индивидуальных заданий (подготовка		13	13	-	-	-
сообщений, презентаций)						
Реферат		-	-	ı	-	-
Подготовка к текущему контролю		13	13	ı	-	-
Контроль:						
Подготовка к экзамену		-	-	1	_	_
Общая	час.	108	108	-	-	-
трудоемкость	трудоемкость в том числе контактная работа		68,2			
	зач. ед	3	3			

Основные разделы дисциплины:

Ma		Количество часов					
No Door	Наименование разделов	Всего	Аудиторная			Самостоятельная	
разд ела			работа			работа	
			Л	П3	ЛР	CPC	
1	2	3	4	5	6	7	
1.	Задачи естествознания	30	10	-	10	10	
2.	Элементы теории потенциала	30	10	-	10	10	
3.	Полные системы потенциалов	17,8	4	-	4	9,8	
4.	Алгоритмы задач математической физики	26	8	-	8	10	
	Итого по дисциплине:	103,8	32	-	32	39,8	

Изучение дисциплины заканчивается аттестацией в форме зачета.

Основная литература:

- 1. Дзержинский Р. И., Логинов В. А. Уравнения математической физики: курс лекций. М.: 2015. 67 с. доступно: www.biblioclub.ru Университетская библиотека ONLINE.
- 2. Кудряшов С. Н., Радченко Т. Н. Основные методы решения практических задач в курсе «Уравнения математической физики»: учебное пособие. Ростов-/Д: Издательство Южного федерального университета, 2011. 308 с. доступно: www.biblioclub.ru Университетская библиотека ONLINE.

Составитель:

к.ф.-м.н., доц. Янковская Л.К