АННОТАЦИЯ ДИСЦИПЛИНЫ Б1.Б.04.01МАТЕМАТИЧЕСКИЙ АНАЛИЗ

для направления подготовки: **03.03.02Физика** профиль подготовки **Фундаментальная физика**

Курс 1. Семестр 1,2. Количество з.е. 13

Цель дисциплины: изучение теоретических основ математического анализа, освоение методов исследования функций и формирование у студентов навыков корректного использования математических формул и методов вычисления, способности применять базовые знания для практического использования математических методов при анализе, решении и создании математических моделей типовых профессиональных задач.

Задачи дисциплины:

- формирование знаний о действительных числах и операциях с действительными числами;
- формирование знаний о свойствах пределов последовательностей и пределов функций одной и многих переменных; овладение методами вычисления пределов;
- формирование знаний о локальных и глобальных свойствах непрерывных функций одной и многих переменных; умений и навыков построения графиков функций, заданных явно, параметрическими уравнениями, в поляной системе координат.
- формирование знаний о производных, их геометрическом и физическом смысле, дифференцируемых функциях одной и нескольких переменных, а также навыков их применения к исследованию свойств функций, отысканию их приближенных значений.
- формирование знаний об интегрировании функций одной и многих переменных, включая определенные, криволинейные, кратные и поверхностные интегралы; овладения навыками их вычисления и применения;
- формирование представлений об основных элементах теории поля, овладение навыками применения формулы Грина, Стокса и Остроградского-Гаусса;
- формирование знаний о числовых, функциональных и степенных рядах, умений и навыков использования представления функций в виде ряда Тейлора;
- формирование знаний о рядах Фурье, навыков разложения функций в ряды Фурье Место дисциплины в структуре ООП ВО:

Дисциплина «Математический анализ» относится к базовой части профессионального Блока 1 для направления **03.03.02 Физика**, являющегося структурным элементом ООП ВО

Для изучения дисциплины **«Математический анализ»** требуются знания из курса математики средней школы в объеме, включающем алгебру, начала анализа, тригонометрию, планиметрию и стереометрию.

Знания, полученные в этом курсе, используются в функциональном анализе, теории функций, дифференциальной геометрии и топологии, дифференциальных уравнениях, уравнениях математической физики, теории чисел, методах оптимизации, в физических дисциплинах, таких как оптика, теоретическая механика др.

Результаты обучения (знания, умения, опыт, компетенции)

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций: ОПК-2.

$N_{\underline{0}}$	Индекс	Содержание	В результате изучения учебной дисциплины обучающиеся					
п.п	компе-	компетенции	должны					
	тенции	(или её части)	знать	уметь	владеть			
1.	ОПК-2	способность	*фундаментальные	*выявлять математиче-	*навыками			
		использовать	понятия, основные	скую сущность проблем,	корректного			

$N_{\underline{0}}$		Содержание	В результате изучен	ния учебной дисциплины об	учающиеся
П.П		компетенции		должны	
	тенции	(или её части)	знать	уметь	владеть
		впрофессио-	•	возникающих в ходе про-	использова-
		нальной дея-		фессиональной деятель-	ния методов
		тельности ба-	•	ности, и корректно ис-	математиче-
		зовые знания		пользовать для их реше-	ского анали-
			*понятие действитель-		зак построе-
		тальных раз-		математический аппарат;	нию и ана-
		делов мате-	_	*производить арифметиче-	лизу мате-
		матики, соз-	· · · · · · · · · · · · · · · · · · ·	ские действия над действи-	матических
			• основные понятия	тельными числами;	моделей фи-
		матические		• производить операции	зических
		модели типо-	1 /	над функциями, находить	процессов и
		вых профес-	±	область определения и	применять
		сиональных	пространства,	множество значений, ус-	их впрофессиональной
		задач и ин- терпретиро-	• понятие функции,	танавливать четность и нечетность, периодич-	деятельно-
		вать полу-	композиции функ- ции, обратной функ-	нечетность, периодич-	сти
		ченные ре-	ции, ооратной функ-	функций;	V 1111
		зультаты с	метрическими урав-	• находить пределы число-	
		учетом гра-	нениями, неявно и	вых последовательностей	
		ниц приме-	уравнениями в по-	и функций;	
		нимости мо-	• 1	• исследовать непрерыв-	
		делей	свойства функций;	ность функций в точке и	
			• определение преде-	на множестве;	
			ла последовательно-	• находить производные и	
			сти и функции, их	дифференциалы функций,	
			свойства; методы	используя производные	
			нахождения преде-	основных элементарных	
			лов функции одной	функций и правила диф-	
			и многих перемен-	ференцирования;	
			ных;	• использовать геометриче-	
			• понятие непрерыв-	ский и механический	
			ности функции в	смысл производной в ре-	
			точке и на множест-	шении прикладных зада-	
			ве, свойства непре-	чах;использовать диффе-	
			рывных функций	ренциал для приближён-	
			одной и многих пе-	ных вычислений значений	
			ременных;	функций;	
				• проводить исследование	
			цируемости функ-	поведения функций с по-	
			ции, дифференциа-	мощью производных, вы-	
			ла, правила диффе- ренцирования,	полнять построение гра-	
			ренцирования,	фиков функций, находить наибольшее и наимень-	
			• теометрический и механический смысл	шее значения функций на	
			производной и диф-	отрезке;	
			ференциала функ-	• оценивать с помощью	
			ции одной и многих	формулы Тейлора по-	
			переменных;	грешность при замене	
			• формулу Тейлора;	функции многочленом;	
	<u> </u>		Toping Tomiopu,	TJ,	

№ п.п	Индекс компе-	Содержание компетенции	В результате изучения учебной дисциплины обучающиеся должны					
	тенции	(или её части)	знать	уметь	владеть			
			разложения основ-	• находить первообразную				
			ных элементарных	функции и неопределён-				
			функций по форму-	ный интеграл, используя				
			ле Тейлора;	основные методы интег-				
			• понятие экстремума	рирования;				
			функции одной и	• вычислять определённый				
			многих переменных;	интеграл, используя фор-				
			теоремы об исследо-	мулы Ньютона-Лейбница,				
			вании функции на	методы замены перемен-				
			экстремум;	ной и интегрирование по				
			• понятие первооб-	частям;				
			разной и неопреде-	• находить несобственные				
			лённого интеграла,	интегралы и исследовать				
			их свойства; основ-	их сходимость;				
			ные методы интег-	• находить частные произ-				
			рирования;	водные и дифференциалы				
			• определение и свой-	функции многих пере-				
			ства интеграла Ри-	менных;				
			мана; приложения	• находить локальный и				
			определенного инте-	условный экстремумы				
			грала к геометриче-	функций многих пере-				
			ским и физическим	менных; наибольшее и				
			задачам;	наименьшее значения				
			• понятие несобствен-	функций на компакте;				
			ного интеграла пер-	• вычислять двойные и				
			вого и второго рода,	тройные интегралы, ис-				
			их свойства, вычис-	пользуя замену перемен-				
			ление и признаки	ных: полярные, цилинд-				
			сходимости;	рические и сферические				
			• понятие двойного,	координаты;				
			тройного интеграла;	• применять интегралы				
			их свойства и при-	функций одной и многих				
			ложения к геомет-	переменных в геометри-				
			рическим и физиче-	ческих и физических за-				
			ским задачам;	дачах;				
			• понятие криволи-	• вычислять криволиней-				
			нейного и поверхно-	ные интегралы, сводя их к				
			стного интегралов	определенным интегра-				
			первого и второго	лам;				
			рода, их свойства и	• использовать в решении				
			применения;	задач условия независи-				
			• основные понятия	мости криволинейного				
			теории поля, век-	интеграла от пути интег-				
			торные интерпрета-	рирования;находить рабо-				
			ции формул Остро-	ту силового поля;				
			градского и Стокса	• вычислять площадь по-				
			и их приложения;	верхности;				
			• определение число-	• вычислять поверхност-				
			вого ряда, суммы					

No	Индекс	Содержание	В результате изучения учебной дисциплины обучающиеся					
П.П	компе-	компетенции	должны					
	тенции	(или её части)	знать	уметь	владеть			
			ряда, свойства и	ные интегралы и приме-				
			признаки сходимо-	нять их в геометрических				
			сти рядов; понятие	и физических задачах;				
			абсолютной и ус-	• использовать основные				
			ловной сходимости	понятия теории поля и				
			ряда;	применять формулы Гри-				
			• понятие функцио-	на, Остроградского и				
			нального ряда, сум-	Стокса в геометрических				
			мы ряда, равномер-	и физических задачах;				
			ной сходимости,	• находить суммы число-				
			свойства и признаки	вых рядов и исследовать				
			сходимости;	ряды на сходимость;				
			• определение сте-	• находить радиус и об-				
			пенного ряда, ряда	ласть сходимости степен-				
			Тейлора, основные	ного ряда, разлагать эле-				
			разложения элемен-	ментарные функции в				
			тарных функций в	степенные ряды;				
			степенные ряды;	*применять ряды в при-				
			• понятие тригоно-	ближённых вычислениях;				
			метрического ряда	*представлять функции				
			Фурье и условия его	тригонометрическим ря-				
			сходимости.	дом Фурье.				

Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины 1. Разделы дисциплины, изучаемые в первом семестре

1.	газделы дисциплины, изуч	іасмыс в і	тервом	ССМССТР	C		
		Количество часов					
№	Памуманаранна разнанар		P	Аудиторн	Самостоятельная		
раздела	Наименование разделов	Всего	p	абота	работа		
			Л	П3	ЛР	CPC	
1.	2	3	4	5	6	7	
1	Введение в анализ	20	6	6		8	
2.	Предел последователь-	26	8	8		10	
۷.	ности						
3.	Предел и непрерывность	56	18	18		20	
٥.	функции	30	10	10		20	
4.	Дифференцирование		10	12	2		
4.	функций одной перемен-	42				20	
	ной						
5.	Неопределённый инте-	40	10	10		20	
<i>J</i> .	грал	40	10	10		20	
6.	Определённый интеграл	69	20	18		31	
0.	и его приложения.	09	20	10		JI	
	Итого:		72	72		109	

2. Разделы дисциплины, изучаемые во второмсеместре

раз- дела	делов	Bcero	Аудиторная работа			Самостоятельная работа
			Л	ПЗ	ЛР	CPC
1	2	3	4	5	6	7
7	Функции многих пере- менных	18	8	8		2
8	Дифференцирование функций многих переменных	22	10	10		2
9	Кратные интегралы и их приложения.	30	12	12		6
10	Криволинейные интегралы.	14	6	6		2
11	Поверхностные интегралы. Элементы теории поля	24	10	10		4
12	Ряды	43	18	18		6
	Итого:		64	64		23
	Всего по дисциплине:		136	136		132

Примечание: Л — лекции, ПЗ — практические занятия / семинары, ЛР — лабораторные занятия, СРС — самостоятельная работа студента

Курсовые проекты или работы: не предусмотрены

Вид аттестации: экзамен в первом и втором семестрах. Основная литература:

- 1. Кудрявцев Л. Д.Курс математического анализа: учебник для бакалавров: учебник для студентов вузов, обучающихся по естественнонаучным и техническим направлениям и специальностям Т. 3 /Л. Д. Кудрявцев; Моск. физико-техн. ин-т (Гос. ун-т) 6-е изд. Москва: Юрайт, 2012
- 2. Демидович Б.П. Сборник задач и упражнений по математическому анализу. М.: $2009.-558~\mathrm{c}.$
- 3. Берман Г.Н.Сборник задач по курсу математического анализа : задачник Москва : Эколит, 2015. 432 с
- 4. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Том 1. Предел. Непрерывность. Дифференцируемость. М.: Физматлит, 2010.-496 с.

(http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=2226).

5. Кудрявцев Л.Д., Кутасов А.Д., Чехлов В.И., Шабунин М.И. Сборник задач по математическому анализу. Том 2. Интегралы. Ряды. М.: Физматлит, 2009. – 504 с. (http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=2227).

Автор РПД доцент, канд. физ.-мат. наук

Ям Л.А. Яременко