Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Физико-технический факультет

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования — первый проректор проректор (Статов А.Г.)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.02.02 УСТРОЙСТВА СВЧ И АНТЕННЫ

(код и наименование дисциплины в соответствии с учебным планом)

Направление подготовки / специально	СТЬ
11.03.01 Pa	диотехника
	ия подготовки/специальности)
Направленность (профиль) / специали	зация
Радиотехнические средства п	ередачи, приема и обработки сигналов
•	нности (профиля) специализации)
Программа подготовки	академическая
(a	кадемическая /прикладная)
Форма обучения	очная
(04	ная, очно-заочная, заочная)
Квалификация (степень) выпускника	бакалавр
	(бакалавр магистр специалист)

Рабочая программа дисциплины Б1.В.ДВ.02.02 «Устройства СВЧ и антенны» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 11.03.01 Радиотехника, профиль «Радиотехнические средства передачи, приема и обработки сигналов».

Программу составил:

К.С. Коротков, д-р техн. наук, профессор кафедры оптоэлектроники

Рабочая программа дисциплины Б1.В.ДВ.02.02 «Устройства СВЧ и антенны» утверждена на заседании кафедры оптоэлектроники ФТФ, протокол № 8 от 11 мая 2017 г.

Заведующий кафедрой оптоэлектроники д-р техн. наук, профессор Яковенко Н.А.

Рабочая программа дисциплины обсуждена на заседании кафедры радиофизики и нанотехнологий, протокол № 9 от 02 мая 2017 г. Заведующий кафедрой, д-р физ.-мат. наук Копытов Г.Ф.

Утверждена на заседании учебно-методической комиссии физикотехнического факультета, протокол № 6 от 04 мая 2017 г.

подпись

Председатель УМК ФТФ д-р физ.-мат. наук, профессор Богатов Н.М.

Рецензенты:

Куксенко Б.А., главный инженер АО «КБ «Селена»,

Исаев В.А., д-р физ.-мат. наук, зав. кафедрой теоретической физики и компьютерных технологий .

1. Цели и задачи изучения дисциплины

1.1. Цель дисциплины

Устройства СВЧ и антенны — это один из наиболее важных разделов радиотехники, связанный непосредственно с устройствами приема, передачи и обработки информации на сверхвысоких частотах, являющимся на сегодняшний день самым широко используемым на практике диапазоном частот.

Формирование комплекса устойчивых знаний, умений и навыков решения типовых задач, связанных с проектной, научно-исследовательской, и производственно-технологической деятельностью в области создания и эксплуатации СВЧ-трактов и антенных устройств различного назначения на основе изучения принципов функционирования устройств СВЧ и антенн, изучения аналитических и численных методов их расчёта и эксплуатационных задач их применения.

1.2. Задачи дисциплины

Задачами освоения дисциплины «Устройства СВЧ и антенны» являются:

- ознакомление студентов с теоретическими основами проектирования СВЧ трактов и антенных устройств;
 - формирование навыков анализа и синтеза СВЧ устройств и антенн.
 - изучение аналитических и численных методов расчета СВЧ устройств и антенн.

1.3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Устройства СВЧ и антенны» относится к вариативной части Блока 1 "Дисциплины (модули)" учебного плана.

Дисциплина базируется на знаниях, полученных по стандарту общего среднего образования и является основой для изучения следующих дисциплин: Радиотехнические системы, Устройства приема и обработки сигналов.

Для освоения данной дисциплины необходимо владеть методами математического анализа, аналитической геометрии, линейной алгебры, решением алгебраических, дифференциальных и интегральных уравнений; теории функций комплексного переменного, теории вероятностей и математической статистики; знать основные физические законы; уметь применять математические методы и физические законы для решения практических задач.

В результате изучения настоящей дисциплины студенты должны получить знания, имеющие не только самостоятельное значение, но и обеспечивающие базовую подготовку для усвоения дисциплин базовой и вариативной частей блока 1 «Дисциплины (модули)» учебного плана.

Таким образом, программа дисциплины «Устройства СВЧ и антенны» согласуется со всеми учебными программами дисциплин базовой Б1.Б и вариативной Б1.В частей модуля (дисциплин) Б1 учебного плана.

1.4. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся профессиональных компетенций: ПК-18, ПК-19

	Индекс	Содержание компе-	В результате из	учения учебной дис	шиппины обу-
№	компе-	тенции (или её ча-		чающиеся должны	диниины ооу
п.п.	тенции	сти)	знать	уметь	владеть
1.	ПК-18	способностью вла-		- системно ана-	
1.	1110	деть правилами и			контроля со-
		методами монтажа,		формацию;	ответствия
		настройки и регули-	эксперимен-		разрабатыва-
		ровки узлов радио-	-	теоретические	емых проек-
		технических	следования	знания для гене-	тов техниче-
		устройств и систем	СВЧ-цепей;	рации новых	
		J 1	, ,	идей);	ментации
				,,,	стандартам,
					техническим
					условиям и
					требованиям
2	ПК-19	способностью при-	- как выпол-	 осуществлять 	- программа-
		нимать участие в ор-	нять математи-	сбор и анализ	ми экспери-
		ганизации техниче-	ческое модели-	научно-	ментальных
		ского обслуживания	рование объек-	технической ин-	исследова-
		и настройки радио-	тов и процес-	формации,	ний, включая
		технических	сов по типовым	· ·	выбор техни-
		устройств и систем	методикам, в		ческих
			том числе с ис-		средств и об-
			пользованием	в области радио-	работку ре-
			стандартных		зультатов
			пакетов при-	дить анализ па-	
			кладных про-	тентной литера-	
			грамм	туры	
				-	

2. Структура и содержание дисциплины

2.1. Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет $\underline{\mathbf{4}}$ зач. ед. (144 часа), их распределение по видам работ представлено в таблице (для студентов $O\Phi O$).

Вид учебной работы		Семестры (часы)
	часов	8
Контактная работа, в том числе:		
Аудиторные занятия (всего)	60	60
Занятия лекционного типа	22	22

Занятия семинарского ти	22	22	
Лабораторные занятия			16
Иная контактная работ	a:		
Контроль самостоятельн	ой работы (КСР)	4	4
Промежуточная аттестац	ия (ИКР) в форме экзамена	0,3	0,3
Самостоятельная работ	га, в том числе (всего):	44	44
Курсовая работа		_	_
Проработка учебного (теоретического) материала			20
Выполнение индивидуальных заданий (подготовка сообще-			
ний, презентаций)	_		
Реферат			_
Подготовка к контролю		24	24
Контроль, в том числе:			
Подготовка к экзамену	35,7	35,7	
Общая трудоемкость	час.	144	144
	в том числе контактная работа	64,3	64,3
	зач. ед.	4	4

2.2. Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы (темы) дисциплины, изучаемые в $\underline{8}$ семестре (*очная форма*).

		Количество часов					
№	№ Наименование разделов (тем)			Аудиторная работа		КСР	Самостоятельна я работа
	Линии передачи и элементы СВЧ-тракта	15,25	Л 4	П3 4	<u>ЛР</u> 2	0,25	CPC 5
-	Мотручина анизания мистона		2	2	3	0,25	5
1 4	3. Методы анализа и синтеза устройств СВЧ		2	2	2	0,5	5
4.	4. Управляющие устройства СВЧ		2	2	2	0,5	5
5.	5. Основы теории антенн		2	2	2	0,5	5
6.	Параметры антенных систем в 6. передающем и приемном режимах		4	4	2	0,5	5
7.	7. Линейные излучающие системы		2	2	1	0,5	4
8.	8. Апертурные антенны		2	2	1	0,5	5
9.	Антонии ворнинии и пионоронов		2	2	1	0,5	5
	Итого по дисциплине:	108	22	22	16	4	44

2.3. Содержание разделов дисциплины:

2.3.1. Занятия лекционного типа

Nº	Наименование раздела	Содержание раздела	Форма текущего контроля
1	-	Основные параметры линии передачи (дисперсионная характеристика, затухание, электропрочность и др.). Классификация линий и краткий обзор по диапазонам волн. Единая математическая модель для отрезка линии передачи. Трансформация сопротивлений. Круговая номограмма. Расчет согласующих цепей.	КВ
2		Виды матриц - рассеяния, сопротивлений, проводимостей, передачи. Соотношения между матрицами. Способы измерений элементов матриц (включая автоматизированные). Ограничения на элементы матриц, налагаемые условиями взаимности, симметрии и отсутствия потерь.	КВ
3		Принцип декомпозиции. Метод синфазного и противофазного возбуждения для симметричных восьмиполюсников. Анализ и синтез направленных ответвителей (связанные линии, гибридное кольцо, квадратный мост).	КВ
4	Управляющие устройства СВЧ	Классификация управляющих устройств. Фазовращатели и коммутаторы на управляемых PIN-диодах. Теоретические ограничения на достижимые параметры коммутирующих устройств. Ферритовые приборы - вентили, циркуляторы, фазовращатели.	КВ
5	Основы теории антенн	Структурная схема антенны. Общие алгоритмы нахождения с помощью ЭВМ электромагнитного поля излучающей системы токов в дальней, промежуточной и ближней областях.	КВ
6	ных систем в пе-	Комплексная характеристика направленности. Поляризационные и фазовые свойства. Коэффициент направленного действия (КНД), коэффициент усиления, ширина луча, уровень бокового излучения и другие параметры. Взаимосвязь между параметрами. Методы экспериментального исследования антенных устройств. Антенные полигоны, безэховые камеры, коллиматоры.	КВ
7	Линейные излучающие системы	Идеальный линейный излучатель. Режимы излучения - поперечный, сканирующий, осевой. Ширина луча, КНД. Влияние вида амплитудно-фазового распределения возбуждения на параметры линейной антенны.	КВ
8	Апертурные ан- тенны	Сведение плоских и неплоских апертур к эквива- лентным линейным излучателям. Характеристики направленности, КНД, эффективная поверхность	КВ

		плоского раскрыва. Возможности фокусировки раскрыва в промежуточной и ближней областях излученного поля. Зеркальные, рупорные, линзовые апертурные антенны. Схемы построения одно-,	
		двух- и многозеркальных антенн. Оптимизация облучателей зеркал и линз.	
9	волн	Характерные особенности антенн в зависимости от применяемого диапазона волн. Общие свойства антенн малых электрических размеров. Антенны длинных, средних, коротких волн. УКВ-антенны. Способы увеличения рабочей полосы частот. Логопериодические и логоспиральные антенны.	

2.3.2. Занятия семинарского типа

№	Наименование раздела	Тематика практических занятий (семинаров)	Форма текущего контроля
1	2	3	4
1	Линии передачи и элементы СВЧ- тракта	Типовые элементы трактов различных диапазонов волн (переходы, повороты, стыковочные узлы, нерегулярности, отражающие препятствия и др.). Отрезок направляющей структуры как резонатор. Полые резонаторы: прямоугольный и круглый, коаксиальный и квазистационарный (укороченный). Потери в резонаторах. Собственная, внешняя и нагруженная добротности резонатора. Способы возбуждения и выполнения элементов связи. Представление о методах измерений параметров резонаторов. Применения резонаторов. Фильтры СВЧ.	
2	Матричное опи- сание многопо- люсников СВЧ		
3	Методы анализа и синтеза устройств СВЧ	Алгоритмизация проблемы анализа и синтеза много- полюсников СВЧ и принципы построения соответ- ствующих САПР для отдельных составных узлов СВЧ и для сложных интегрированных трактов. Инте- гральные схемы СВЧ.	- B
4	Управляющие устройства СВЧ	Коммутирующие устройства, использующие новые физические принципы (сегнетоэлектрики, стрикционные материалы, приборы на основе высокотемпературной сверхпроводимости и т.д.).	-
5	Основы теории антенн	Простейшие излучатели линейной и круговой поляризации (вибраторы, рамки, турникеты, элементы Гюйгенса, микрополосковые элементы). Учет влияния плоских и искривленных поверхностей на излучение источников	
6	Параметры ан- тенных систем в передающем и приемном режи- мах	системе в виде четырехполюсника. Эквивалентная	- [

		ность и шумовая температура приемной антенны. Взаимное сопротивление между близко и далеко расположенными излучателями. Эквивалентная отражающая поверхность антенны и способы ее изменения. Проблема электромагнитной совместимости и подходы к решению соответствующих антенных аспектов.	
7	Линейные излу- чающие системы	Равномерная линейная фазированная антенная решетка. Выбор шага решетки. КНД решетки и мощность излучения. Понятие о методах синтеза линейных излучателей и решеток. Антенны осевого излучения - диэлектрические, спиральные, импедансные, директорные. Оптимизация антенн осевого излучения. Волноводно-щелевые антенные решетки. Микрополосковые антенные решетки.	КВ
8	Апертурные ан- тенны	Гибридные зеркальные и линзовые антенны с облучателями в виде решеток. Методы управления сканированием луча. Суммарные и разностные характеристики направленности. Плоские фазированные антенные решетки. Размещение излучателей по раскрыву по критерию отсутствия побочных главных максимумов. Схемы построения и разновидности антенных решеток. Активные фазированные антенные решетки. Многолучевые, переизлучающие. многочастотные, радиооптические антенные решетки. Понятие об адаптивных антенных решетках. Антенны с синтезированной апертурой, с нелинейной обработкой сигнала.	КВ
9		Антенные устройства базовых станций и терминалов систем подвижной радиосвязи, антенные устройства для радиорелейных линий и систем космической радиосвязи. Особенности антенн для подвижных объектов. Пассивные и активные приемные антенны.	КВ

2.3.3. Лабораторные занятия

№	Наименование раздела Наименование лабораторных работ	Форма текущего контроля
1	2 3	4
1	Линии передачи и элементы Изучение измерительной линии СВЧ. СВЧ-тракта	ЛР
2	Матричное описание много- Изучение скалярного анализатора цепей полюсников СВЧ	ЛР
3	Методы анализа и синтеза Изучение векторного анализатора цепей устройств СВЧ	ЛР
4	Методы анализа и синтезаИзучение двойного Т-образного моста. устройств СВЧ	ЛР
5	Методы анализа и синтеза Измерение комплексного коэффициента устройств СВЧ отражения и согласование нагрузки с помощью диаграммы Смита.	ЛР
6	Антенны различных диапа-Изучение рупорной антенны 8-12 ГГц.	ЛР

	зонов волн		
7	Управляющие	устройства Исследование резонатора на железо-	ЛР
	СВЧ	иттриевом гранате.	

Примечание: Ответы на контрольные вопросы (КВ), защита лабораторной работы (ЛР)

В результате выполнения лабораторных работ у студентов формируются и оцениваются все требуемые $\Phi \Gamma O C$ и $O O \Pi$ для направления 11.03.01 Радиотехника (профиль: Радиотехнические средства передачи, приема и обработки сигналов) компетенции: ПК-18, ПК-19.

2.3.4. Примерная тематика курсовых работ (проектов)

Согласно учебному плану курсовые работы (проекты) по данной дисциплине не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

No	Вид СРС	Перечень учебно-методического обеспечения дисциплины по
		выполнению самостоятельной работы
1	Проработка	1 Сомов, А.М. Устройства СВЧ и малогабаритные антенны
		[Электронный ресурс]: учебное пособие / А.М. Сомов, А.Ю. Ви-
	тического мате-	ноградов, Р.В. Кабетов. — Электрон. дан. — М.: Горячая линия-
	риала), подго-	Телеком, 2012. — 444 с. — Режим доступа:
	товка к текущей	http://e.lanbook.com/books/element.php?pl1_id=5201 — Загл. с
	и промежуточ-	экрана.
	ной аттестации	2 Григорьев А. Д. Электродинамика и микроволновая тех-
	(зачёту и вопро-	ника [Текст] : учебник для студентов вузов / А. Д. Григорьев
	сам)	Изд. 2-е, доп СПб. [и др.] : Лань, 2007 703 с., [2] л. цв. ил
		(Учебники для вузов. Специальная литература) Библиогр.: с.
		692-693 ISBN 9785811407064 : 540 р. 50 к.
		3 Методические указания по организации самостоятельной
		работы студентов, утвержденные кафедрой оптоэлектроники,
		протокол № 6 от «01» марта 2017 г.
2	Подготовка к	1 Методические указания по организации самостоятельной
	практическим	работы студентов, утвержденные кафедрой оптоэлектроники,
	-	протокол № 6 от «01» марта 2017 г.
		2 Антенны и устройства (СВЧ): расчет и измерение характеристик
		: учебное пособие для вузов / Ю. Е. Мительман, Р. Р. Абдуллин, С. Г.
		Сычугов, С. Н. Шабунин ; под общ. ред. Ю. Е. Мительмана. — М. :
		Издательство Юрайт, 2018. — 138 с. — (Серия : Университеты Рос-
		сии). — ISBN 978-5-534-03401-1. — Режим доступа: www.biblio-
		online.ru/book/409DAF0A-8B2E-4EFD-B99A-A3AAB4270BA8.
		3 Нефедов, Е. И. Устройства СВЧ и антенны [Текст]: учебное
		пособие для студентов вузов / Е. И. Нефедов М. : Академия,
		2009 376 с. : ил (Высшее профессиональное образование. Ра-
		диоэлектроника) Библиогр.: с. 363-367 ISBN 9785769547102 :
		406.67.
		4 Неганов, В. А. Устройства СВЧ и антенны [Текст] : [учеб-
		ник]. Ч. 1 : Проектирование, конструктивная реализация, приме-
		ры применения устройств СВЧ / В. А. Неганов, Д. С. Клюев, Д.

		П. Табаков ; под ред. В. А. Неганова Изд. стер Москва : URSS : [ЛЕНАНД], 2016 602 с. : ил Библиогр.: с. 580-591 ISBN 978-5-9710-3365-3 : 715 р. 47
вы	полнению ла- раторных ра- т	1 Антенны и устройства (СВЧ): расчет и измерение характеристик : учебное пособие для вузов / Ю. Е. Мительман, Р. Р. Абдуллин, С. Г. Сычугов, С. Н. Шабунин ; под общ. ред. Ю. Е. Мительмана. — М. : Издательство Юрайт, 2018. — 138 с. — (Серия : Университеты России). — ISBN 978-5-534-03401-1. — Режим доступа:www.biblio-online.ru/book/409DAF0A-8B2E-4EFD-B99A-A3AAB4270BA8 2 Методические указания по организации самостоятельной работы студентов, утвержденные кафедрой оптоэлектроники, протокол № 6 от «01» марта 2017 г.

Перечень учебно-методического обеспечения дисциплины по темам программы для проработки теоретического материала

	Наименование	Перечень учебно-методического обеспечения дисциплины по
№		выполнению самостоятельной работы
1	раздела	1 Сомов, А.М. Устройства СВЧ и малогабаритные ан-
1		1
		тенны [Электронный ресурс]: учебное пособие / А.М. Сомов,
		А.Ю. Виноградов, Р.В. Кабетов. — Электрон. дан. — М.: Го-
	П	рячая линия-Телеком, 2012. — 444 с. — Режим доступа:
	_	http://e.lanbook.com/books/element.php?pl1_id=5201 — Загл. с
		экрана.
	тракта	2 Григорьев А. Д. Электродинамика и микроволновая
		техника [Текст] : учебник для студентов вузов / А. Д. Григо-
		рьев Изд. 2-е, доп СПб. [и др.] : Лань, 2007 703 с., [2] л.
		цв. ил (Учебники для вузов. Специальная литература)
		Библиогр.: с. 692-693 ISBN 9785811407064 : 540 р. 50 к.
2		1 Сомов, А.М. Устройства СВЧ и малогабаритные ан-
		тенны [Электронный ресурс]: учебное пособие / А.М. Сомов,
		А.Ю. Виноградов, Р.В. Кабетов. — Электрон. дан. — М.: Го-
		рячая линия-Телеком, 2012. — 444 с. — Режим доступа:
	Матричное описание	http://e.lanbook.com/books/element.php?pl1_id=5201 — Загл. с
	многополюсников	экрана.
	СВЧ	2 Григорьев А. Д. Электродинамика и микроволновая
		техника [Текст] : учебник для студентов вузов / А. Д. Григо-
		рьев Изд. 2-е, доп СПб. [и др.] : Лань, 2007 703 с., [2] л.
		цв. ил (Учебники для вузов. Специальная литература)
		Библиогр.: с. 692-693 ISBN 9785811407064 : 540 р. 50 к.
3		1 Сомов, А.М. Устройства СВЧ и малогабаритные ан-
		тенны [Электронный ресурс]: учебное пособие / А.М. Сомов,
		А.Ю. Виноградов, Р.В. Кабетов. — Электрон. дан. — М.: Го-
		рячая линия-Телеком, 2012. — 444 с. — Режим доступа:
	Методы анализа и	http://e.lanbook.com/books/element.php?p11_id=5201 — Загл. с
	синтеза устройств	экрана.
	СВЧ	2 Григорьев А. Д. Электродинамика и микроволновая
		техника [Текст] : учебник для студентов вузов / А. Д. Григо-
		рьев Изд. 2-е, доп СПб. [и др.] : Лань, 2007 703 с., [2] л.
		цв. ил (Учебники для вузов. Специальная литература)
		Библиогр.: с. 692-693 ISBN 9785811407064 : 540 p. 50 к.

устр	оавляющие оойства СВЧ	1 Сомов, А.М. Устройства СВЧ и малогабаритные антенны [Электронный ресурс]: учебное пособие / А.М. Сомов, А.Ю. Виноградов, Р.В. Кабетов. — Электрон. дан. — М.: Горячая линия-Телеком, 2012. — 444 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=5201 — Загл. с экрана. 2 Григорьев А. Д. Электродинамика и микроволновая техника [Текст]: учебник для студентов вузов / А. Д. Григорьев Изд. 2-е, доп СПб. [и др.]: Лань, 2007 703 с., [2] л. цв. ил (Учебники для вузов. Специальная литература) Библиогр.: с. 692-693 ISBN 9785811407064: 540 р. 50 к.
5 Осн тенн	овы теории ан- н	2 Григорьев А. Д. Электродинамика и микроволновая техника [Текст]: учебник для студентов вузов / А. Д. Григорьев Изд. 2-е, доп СПб. [и др.]: Лань, 2007 703 с., [2] л. цв. ил (Учебники для вузов. Специальная литература) Библиогр.: с. 692-693 ISBN 9785811407064: 540 р. 50 к.
сист	аметры антенных гем в передаю- и и приемном ре- иах	1 Сомов, А.М. Устройства СВЧ и малогабаритные антенны [Электронный ресурс]: учебное пособие / А.М. Сомов, А.Ю. Виноградов, Р.В. Кабетов. — Электрон. дан. — М.: Горячая линия-Телеком, 2012. — 444 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=5201 — Загл. с экрана. 2 Григорьев А. Д. Электродинамика и микроволновая техника [Текст]: учебник для студентов вузов / А. Д. Григорьев Изд. 2-е, доп СПб. [и др.]: Лань, 2007 703 с., [2] л. цв. ил (Учебники для вузов. Специальная литература) Библиогр.: с. 692-693 ISBN 9785811407064: 540 р. 50 к.
	ейные излучаю- с системы	Помов, А.М. Устройства СВЧ и малогабаритные антенны [Электронный ресурс]: учебное пособие / А.М. Сомов, А.Ю. Виноградов, Р.В. Кабетов. — Электрон. дан. — М.: Горячая линия-Телеком, 2012. — 444 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=5201 — Загл. с экрана. 2 Григорьев А. Д. Электродинамика и микроволновая техника [Текст]: учебник для студентов вузов / А. Д. Григорьев Изд. 2-е, доп СПб. [и др.]: Лань, 2007 703 с., [2] л. цв. ил (Учебники для вузов. Специальная литература) Библиогр.: с. 692-693 ISBN 9785811407064: 540 р. 50 к.
8	ртурные антенны	1 Сомов, А.М. Устройства СВЧ и малогабаритные антенны [Электронный ресурс]: учебное пособие / А.М. Сомов, А.Ю. Виноградов, Р.В. Кабетов. — Электрон. дан. — М.: Горячая линия-Телеком, 2012. — 444 с. — Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=5201 — Загл. с экрана. 2 Григорьев А. Д. Электродинамика и микроволновая техника [Текст]: учебник для студентов вузов / А. Д. Григо-

	рьев Изд. 2-е, доп СПб. [и др.] : Лань, 2007 703 с., [2] л.
	цв. ил (Учебники для вузов. Специальная литература)
	Библиогр.: с. 692-693 ISBN 9785811407064 : 540 р. 50 к.
9	1 Сомов, А.М. Устройства СВЧ и малогабаритные ан-
	тенны [Электронный ресурс]: учебное пособие / А.М. Сомов,
	А.Ю. Виноградов, Р.В. Кабетов. — Электрон. дан. — М.: Го-
	рячая линия-Телеком, 2012. — 444 с. — Режим доступа:
Антенны пазличных	http://e.lanbook.com/books/element.php?pl1_id=5201 Загл. с
	экрана.
диапазонов волн	2 Григорьев А. Д. Электродинамика и микроволновая
	техника [Текст] : учебник для студентов вузов / А. Д. Григо-
	рьев Изд. 2-е, доп СПб. [и др.] : Лань, 2007 703 с., [2] л.
	цв. ил (Учебники для вузов. Специальная литература)
	Библиогр.: с. 692-693 ISBN 9785811407064 : 540 р. 50 к.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в форме электронного документа или в печатной форме увеличенным шрифтом.
 Для лиц с нарушениями слуха:
- в форме электронного документа или печатной форме.

Для лиц с нарушениями опорно-двигательного аппарата:

– в форме электронного документа или печатной форме.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

1 Образовательные технологии

В процессе преподавания дисциплины используются следующие методы:

- лекции;
- проведение практических занятий;
- домашние задания;
- опрос;
- индивидуальные практические задания;
- контрольные работы;
- -защита лабораторных работ;
- консультации преподавателей;
- самостоятельная работа студентов (изучение теоретического материала, подготовка к лабораторным занятиям, выполнение домашних работ и индивидуальных типовых расчетов, подготовка к опросу, тестированию и экзамену).

Для проведения всех лекционных и практических (семинарских) занятий используются мультимедийные средства воспроизведения активного содержимого, позволяющего слушателю воспринимать особенности изучаемого материала, зачастую играющие решающую роль в понимании и восприятии, а также формировании профессиональных компетенций. Интерактивные аудиторные занятия с использованием мультимедийных систем позволяют активно и эффективно вовлекать учащихся в учебный процесс и осуществлять обратную связь. Помимо этого, становится возможным эффективное обсуждение сложных и дискуссионных вопросов и проблем.

По изучаемой дисциплине студентам предоставляется возможность открыто пользоваться (в том числе копировать на личные носители информации) подготовленными ведущим данную дисциплину преподавателем материалами в виде электронного комплекса сопровождения, включающего в себя:

- электронные конспекты лекций;
- электронные планы практических (семинарских) занятий;
- электронные варианты учебно-методических пособий для выполнения лабораторных заданий;
 - списки контрольных вопросов к каждой теме изучаемого курса;
- разнообразную дополнительную литературу, относящуюся к изучаемой дисциплине в электронном виде (в различных текстовых форматах *.doc, *.rtf, *.htm, *.txt, *.pdf, *.djvu и графических форматах *.jpg, *.png, *.gif, *.tif).

Сопровождение самостоятельной работы студентов также организовано в следующих формах:

- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний, получаемых по средствам изучения рекомендуемой литературы и осуществляемое путем написания реферативных работ;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

Основные образовательные технологии, используемые в учебном процессе:

- интерактивная лекция с мультимедийной системой с активным вовлечением студентов в учебный процесс и обратной связью;
 - лекции с проблемным изложением;
- обсуждение сложных и дискуссионных вопросов и проблем и разрешение проблем;
- компьютерные занятия в режимах взаимодействия «преподаватель студент», «сту-дент преподаватель», «студент студент»;
- технологии смешанного обучения: дистанционные задания и упражнения, составле-ние глоссариев терминов и определений, групповые методы Wiki, интернеттестирование и анкетирование.

Интерактивные образовательные технологии, используемые в аудиторных занятиях:

- технология развития критического мышления;
- лекции с проблемным изложением;
- использование средств мультимедиа;
- изучение и закрепление нового материала (интерактивная лекция, работа с наглядными пособиями, видео- и аудиоматериалами, использование вопросов, Сократический диалог);
 - работа в малых группах;
 - использование средств мультимедиа (компьютерные классы);

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

2 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

4.1 Фонд оценочных средств для проведения текущей аттестации

Ниже приводятся контрольные вопросы для проведения текущей аттестации во время лекций и практических занятий для всех разделов рабочей программы.

Раздел 1.

- 1 Решение волнового уравнения для произвольной передающей линии.
- 2 Фазовая скорость и длина волны в передающих линиях СВЧ.
- 3 Дисперсия в передающих линиях СВЧ и свойства дисперсионных волн.
- 4 Типы волн распространяющихся по передающим линиям.
- 5 Концепция парциальных волн.
- 6 Типы волн которые могут распространяться в прямоугольном волноводе.
- 7 Структура поля в прямоугольном волноводе типа TE (H10) и токи в его стенках.
- 8 Типы волн в круглом волноводе, волна типа ТЕ
- 9 Высшие типы волн в коаксиальной линии передачи.
- 10 Возбуждение волновод, потери в волноводах и передающих линиях СВЧ.

Раздел 2.

- 11 Матрицы рассеяния и передачи, особенности их применения, сложения и перемножения.
- 12 Способы определения элементов матриц с помощью короткого замыкания, холостого хода и согласованной нагрузки.
- 13 Применение матриц рассеяния для расчёта СВЧ узлов в том числе ориентированными графами.

Раздел 3.

- 14 Волновод в режиме отсечки, запредельный волновод.
- 15 Микрополосковые линии передачи и их особенности.
- 16 Неоднородности в волноводах типа ступеньки, диафрагмы в волноводах.
- 17 Согласование холостой ход и короткое замыкание в волноводе и коаксиале.
- 18 Волноводные разветвители и двойной волноводный тройник.
- 19 Коаксиальные делители мощности в диапазоне СВЧ.
- 20 Векторные диаграммы напряжения и тока в диапазоне СВЧ, коэффициент отражения.
- 21 Принципы построения круговой диаграммы полных сопротивлений
- 22 Основные применения круговых диаграмм.
- 23 Трансформаторы полных сопротивлений, четвертьволновые трансформаторы и их расчёт с помощью диаграммы полных сопротивлений.
- 24 Типы резонаторов СВЧ, волноводные, коаксиальные, микрополосковые и особенности их работы.
- 25 Способы расчёта резонаторов СВЧ, основные параметры резонаторов и способы их измерения.

Раздел 4.

- 26 Классификация управляющих устройств СВЧ, PIN-диодные аттенюаторы.
- 27 Фазовращатели и коммутаторы на базе PIN-диодов.
- 28 Ферритовые устройства СВЧ.

Раздел 5.

- 29 Особенности распространения радиоволн в различных диапазонах частот, основные задачи теории антенн, общие положения.
- 30 Основы теории симметричных вибраторов. Приближённый закон распределения тока в симметричном вибраторе. Диаграмма направленности и коэффициент

усиления СЭВ, входное сопротивление и сопротивление излучения антенны. Основы строгого решения задачи о симметричном электрическом вибраторе. Управляющие устройства СВЧ

31 Структурная схема антенны. Общие алгоритмы нахождения с помощью ЭВМ электромагнитного поля излучающей системы токов в дальней, промежуточной и ближней областях. Простейшие излучатели линейной и круговой поляризации (вибраторы, рамки, турникеты, элементы Гюйгенса, микрополосковые элементы). Учет влияния плоских и искривленных поверхностей на излучение источников.

Раздел 6.

Параметры антенных систем в передающем и приемном режимах Комплексная характеристика направленности. Поляризационные и фазовые свойства. Коэффициент направленного действия (КНД), коэффициент усиления, ширина луча, уровень бокового излучения и другие параметры. Взаимосвязь между параметрами. Методы экспериментального исследования антенных устройств. Антенные полигоны, безэховые камеры, коллиматоры. Автоматизация антенных измерений и антенные эталоны. Обобщенное представление антенны в радиосистеме в виде четырехполюсника. Эквивалентная схема приемной антенны. Поляризационные соотношения при радиоприеме. Эффективная поверхность и шумовая температура приемной антенны. Взаимное сопротивление между близко и далеко расположенными излучателями. Эквивалентная отражающая поверхность антенны и способы ее изменения. Проблема электромагнитной совместимости и подходы к решению соответствующих антенных аспектов.

Раздел 7.

33 Линейные излучающие системы. Идеальный линейный излучатель. Режимы излучения - поперечный, сканирующий, осевой. Ширина луча, КНД. Влияние вида амплитудно-фазового распределения возбуждения на параметры линейной антенны. Равномерная линейная фазированная антенная решетка. Выбор шага решетки. КНД решетки и мощность излучения. Понятие о методах синтеза линейных излучателей и решеток. Антенны осевого излучения - диэлектрические, спиральные, импедансные, директорные. Оптимизация антенн осевого излучения. Волноводнощелевые антенные решетки. Микрополосковые антенные решетки.

Раздел 8.

Апертурные антенны. Сведение плоских и неплоских апертур к эквивалентным линейным излучателям. Характеристики направленности, КНД, эффективная поверхность плоского раскрыва. Возможности фокусировки раскрыва в промежуточной и ближней областях излученного поля. Зеркальные, рупорные, линзовые апертурные антенны. Схемы построения одно-, двух- и многозеркальных антенн. Оптимизация облучателей зеркал и линз. Гибридные зеркальные и линзовые антенны с облучателями в виде решеток. Методы управления сканированием луча. Суммарные и разностные характеристики направленности. Плоские фазированные антенные решетки. Размещение излучателей по раскрыву по критерию отсутствия побочных главных максимумов. Схемы построения и разновидности антенных решеток. Активные фазированные антенные решетки. Многолучевые, переизлучающие. многочастотные, радиооптические антенные решетки. Понятие об адаптив-

ных антенных решетках. Антенны с синтезированной апертурой, с нелинейной обработкой сигнала.

Разлел 9.

- 35 Антенны различных диапазонов волн Характерные особенности антенн в зависимости от применяемого диапазона волн. Общие свойства антенн малых электрических размеров. Антенны длинных, средних, коротких волн. УКВ-антенны. Способы увеличения рабочей полосы частот. Логопериодические и логоспиральные антенны. Антенные устройства базовых станций и терминалов систем подвижной радиосвязи, антенные устройства для радиорелейных линий и систем космической радиосвязи. Особенности антенн для подвижных объектов. Пассивные и активные приемные антенны.
- 36 Рамочные антенны. Антенна Надененко. Дискоконусные антенны. Комбинированные антенны для телевизионного приёма. Параболические антенны. Антенны портативных радиостанций
- 37 Рамочные антенны. Антенна Надененко. Дискоконусные антенны. Комбинированные антенны для телевизионного приёма. Параболические антенны. Антенны портативных радиостанций

4.2 Фонд оценочных средств для проведения промежуточной аттестации

4.2.1 Вопросы, выносимые на экзамен по дисциплине «Устройства СВЧ и антенны» для направления подготовки: 11.03.01 Радиотехника

- 1 Решение волнового уравнения для произвольной передающей линии.
- 2 Фазовая скорость и длина волны в передающих линиях СВЧ.
- 3 Дисперсия в передающих линиях СВЧ и свойства дисперсионных волн.
- 4 Типы волн, распространяющихся по передающим линиям.
- 5 Концепция парциальных волн.
- 6 Типы волн, которые могут распространяться в прямоугольном волноводе.
- 7 Структура поля в прямоугольном волноводе типа TE (H10) и токи в его стенках.
- 8 Типы волн в круглом волноводе, волна типа ТЕ
- 9 Высшие типы волн в коаксиальной линии передачи.
- 10 Возбуждение волновод, потери в волноводах и передающих линиях СВЧ.
- 11 Волновод в режиме отсечки, запредельный волновод.
- 12 Микрополосковые линии передачи и их особенности.
- 13 Неоднородности в волноводах типа ступеньки, диафрагмы в волноводах.
- 14 Согласование холостой ход и короткое замыкание в волноводе и коаксиале.
- 15 Волноводные разветвители и двойной волноводный тройник.
- 16 Коаксиальные делители мощности в диапазоне СВЧ.
- 17 Векторные диаграммы напряжения и тока в диапазоне СВЧ, коэффициент отражения.
- 18 Принципы построения круговой диаграммы полных сопротивлений
- 19 Основные применения круговых диаграмм.
- 20 Трансформаторы полных сопротивлений, четвертьволновые трансформаторы и их расчёт с помощью диаграммы полных сопротивлений.
- 21 Типы резонаторов СВЧ, волноводные, коаксиальные, микрополосковые и особенности их работы.
- 22 Способы расчёта резонаторов СВЧ, основные параметры резонаторов и способы их измерения.

- 23 Матрицы рассеяния и передачи, особенности их применения, сложения и перемножения.
- 24 Способы определения элементов матриц с помощью короткого замыкания, холостого хода и согласованной нагрузки.
- 25 Применение матриц рассеяния для расчёта СВЧ узлов в том числе ориентированными графами.
- 26 Классификация управляющих устройств СВЧ, PIN-диодные аттенюаторы.
- 27 Фазовращатели и коммутаторы на базе PIN-диодов.
- 28 Ферритовые устройства СВЧ.
- 29 Особенности распространения радиоволн в различных диапазонах частот, основные задачи теории антенн, общие положения.
- 30 Основы теории симметричных вибраторов. Приближённый закон распределения тока в симметричном вибраторе. Диаграмма направленности и коэффициент усиления СЭВ, входное сопротивление и сопротивление излучения антенны. Основы строгого решения задачи о симметричном электрическом вибраторе. Управляющие устройства СВЧ
- 31 Структурная схема антенны. Общие алгоритмы нахождения с помощью ЭВМ электромагнитного поля излучающей системы токов в дальней, промежуточной и ближней областях. Простейшие излучатели линейной и круговой поляризации (вибраторы, рамки, турникеты, элементы Гюйгенса, микрополосковые элементы). Учет влияния плоских и искривленных поверхностей на излучение источников.
- Параметры антенных систем в передающем и приемном режимах Комплексная характеристика направленности. Поляризационные и фазовые свойства. Коэффициент направленного действия (КНД), коэффициент усиления, ширина луча, уровень бокового излучения и другие параметры. Взаимосвязь между параметрами. Методы экспериментального исследования антенных устройств. Антенные полигоны, безэховые камеры, коллиматоры. Автоматизация антенных измерений и антенные эталоны. Обобщенное представление антенны в радиосистеме в виде четырехполюсника. Эквивалентная схема приемной антенны. Поляризационные соотношения при радиоприеме. Эффективная поверхность и шумовая температура приемной антенны. Взаимное сопротивление между близко и далеко расположенными излучателями. Эквивалентная отражающая поверхность антенны и способы ее изменения. Проблема электромагнитной совместимости и подходы к решению соответствующих антенных аспектов.
- 33 Линейные излучающие системы. Идеальный линейный излучатель. Режимы излучения поперечный, сканирующий, осевой. Ширина луча, КНД. Влияние вида амплитудно-фазового распределения возбуждения на параметры линейной антенны. Равномерная линейная фазированная антенная решетка. Выбор шага решетки. КНД решетки и мощность излучения. Понятие о методах синтеза линейных излучателей и решеток. Антенны осевого излучения диэлектрические, спиральные, импедансные, директорные. Оптимизация антенн осевого излучения. Волноводнощелевые антенные решетки. Микрополосковые антенные решетки.
- Апертурные антенны. Сведение плоских и неплоских апертур к эквивалентным линейным излучателям. Характеристики направленности, КНД, эффективная поверхность плоского раскрыва. Возможности фокусировки раскрыва в промежуточной и ближней областях излученного поля. Зеркальные, рупорные, линзовые апертурные антенны. Схемы построения одно-, двух- и многозеркальных антенн. Оптимизация облучателей зеркал и линз. Гибридные зеркальные и линзовые антенны с облучателями в виде решеток. Методы управления сканированием луча. Суммарные и разностные характеристики направленности. Плоские фазированные антенные решетки. Размещение излучателей по раскрыву по критерию отсутствия

- побочных главных максимумов. Схемы построения и разновидности антенных решеток. Активные фазированные антенные решетки. Многолучевые, переизлучающие. многочастотные, радиооптические антенные решетки. Понятие об адаптивных антенных решетках. Антенны с синтезированной апертурой, с нелинейной обработкой сигнала.
- 35 Антенны различных диапазонов волн Характерные особенности антенн в зависимости от применяемого диапазона волн. Общие свойства антенн малых электрических размеров. Антенны длинных, средних, коротких волн. УКВ-антенны. Способы увеличения рабочей полосы частот. Логопериодические и логоспиральные антенны. Антенные устройства базовых станций и терминалов систем подвижной радиосвязи, антенные устройства для радиорелейных линий и систем космической радиосвязи. Особенности антенн для подвижных объектов. Пассивные и активные приемные антенны.
- 36 Рамочные антенны. Антенна Надененко. Дискоконусные антенны. Комбинированные антенны для телевизионного приёма. Параболические антенны. Антенны портативных радиостанций

5 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

- 1 Сомов, А.М. Устройства СВЧ и малогабаритные антенны [Электронный ресурс]: учебное пособие / А.М. Сомов, А.Ю. Виноградов, Р.В. Кабетов. Электрон. дан. М.: Горячая линия-Телеком, 2012. 444 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=5201 Загл. с экрана.
- 2 Устройства СВЧ и антенны [Текст] : учебное пособие для студентов вузов / Е. И. Нефедов. М. : Академия, 2009. 376 с. : ил. (Высшее профессиональное образование. Радиоэлектроника). Библиогр.: с. 363-367.
- 3 Григорьев А. Д. Электродинамика и микроволновая техника [Текст] : учебник для студентов вузов / А. Д. Григорьев. Изд. 2-е, доп. СПб. [и др.] : Лань, 2007. 703 с., [2] л. цв. ил. (Учебники для вузов. Специальная литература). Библиогр.: с. 692-693. ISBN 9785811407064 : 540 р. 50 к.

5.2 Дополнительная литература:

- 1 Антенны и устройства (СВЧ): расчет и измерение характеристик : учебное посо-бие для вузов / Ю. Е. Мительман, Р. Р. Абдуллин, С. Г. Сычугов, С. Н. Шабунин ; под общ. ред. Ю. Е. Мительмана. М. : Издательство Юрайт, 2018. 138 с. (Серия : Университеты России). ISBN 978-5-534-03401-1. Режим доступа : www.biblio-online.ru/book/409DAF0A-8B2E-4EFD-B99A-A3AAB4270BA8.
- 2 Нефедов, Е. И. Устройства СВЧ и антенны [Текст] : учебное пособие для студентов вузов / Е. И. Нефедов. М. : Академия, 2009. 376 с. : ил. (Высшее профессиональное образование. Радиоэлектроника). Библиогр.: с. 363-367. ISBN 9785769547102 : 406.67.
- 3 Неганов, В. А. Устройства СВЧ и антенны [Текст] : [учебник]. Ч. 1 : Проектирование, конструктивная реализация, примеры применения устройств СВЧ / В. А. Неганов, Д. С. Клюев, Д. П. Табаков ; под ред. В. А. Неганова. Изд. стер. Москва : URSS : [ЛЕНАНД], 2016. 602 с. : ил. Библиогр.: с. 580-591. ISBN 978-5-9710-3365-3 : 715 р. 47

5.3 Периодические издания:

Радиотехника, Радиотехника и электроника, Измерительная техника

6 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

1 Сайт кафедры теоретической радиотехники Московского авиационного института:

http://www.mai-trt.ru/?option=com_content&task=view&id=44&Itemid=49

7 Методические указания для обучающихся по освоению дисциплины (модуля)

На самостоятельную работу студентов, согласно требованиям ФГОС ВО по направлению 11.03.01 Радиотехника (профиль: Радиотехнические средства передачи, приема и обработки сигналов), отводится около 22,2 % времени (44 час. СРС) от общей трудоемкости дисциплины (144 час.). Сопровождение самостоятельной работы студентов может быть организовано в следующих формах:

- составлением индивидуальных планов самостоятельной работы каждого из студентов с указанием темы и видов занятий, форм и сроков представления результатов;
- проведением консультаций (индивидуальных или групповых), в том числе с применением дистанционной среды обучения.

Критерий оценки эффективности самостоятельной работы студентов формируется в ходе промежуточного контроля процесса выполнения заданий и осуществляется на основе различных способов взаимодействия в открытой информационной среде. В соответствии с этим при проведении оперативного контроля могут использоваться контрольные вопросы как к выполняемым работам лабораторного практикума, так и к соответствующим разделам дисциплины.

Контроль осуществляется посредством выполнения письменных контрольных работ.

По итогам выполнения каждой лабораторной работы студент составляет подробный письменный отчет, опираясь на который должен в беседе с преподавателем продемонстрировать знание теоретического и экспериментального материала, относящегося к работе. Проверка знаний студента основана на контрольных вопросах, приведенных в описании работы и дополнительных вопросах, касающихся соответствующих разделов основной дисциплины.

8 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)

8.1 Перечень необходимого программного обеспечения

- 1 Операционная система MS Windows.
- 2 Интегрированное офисное приложение MS Office.
- 3 Программное обеспечение для организации управляемого и безопасного доступа в Интернет.
- 4 Программное обеспечение для безопасной работы на компьтере файловый антивирус, почтовый антивирус, веб-антивирус и сетевой экран.
- 5 Система компьютерной математики MATHCAD с необходимыми пакетами расширений.
- 6 Система схемотехнического моделирования Ltspice, Microcap.

8.2 Перечень необходимых информационных справочных систем

1 Википедия – свободная энциклопедия. http://ru.wikipedia.org/wiki/

2 Академик – Словари и энциклопедии на Академике http://dic.academic.ru

9 Материально-техническая база, необходимая для осуществления образовательно-го процесса по дисциплине (модулю)

Реализация Профиля предполагает наличие минимально необходимого для реализации бакалаврской программы перечня материально-технического обеспечения:

- лекционные аудитории (оборудованные видеопроекционным оборудованием для презентаций, средствами звуковоспроизведения, экраном, и имеющие выход в Интернет),
- классы, оборудованные стендами для проведения лабораторных работ.

При использовании электронных изданий вуз должен обеспечить каждого обучающегося во время самостоятельной подготовки рабочим местом в компьютерном классе с выхолом в Интернет в соответствии с объемом изучаемых лисшиплин.

выходом в интернет в соответствии с оовемом изучасмых дисциплин.				
№	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность		
1.	Лекционные за-	Лекционная аудитория, оснащенная презентационной техни-		
1.	,	кой (проектор, экран, компьютер/ноутбук) и соответствую-		
	КИТКН			
		щим программным обеспечением (ПО) для воспроизведения		
		файлов формата jpg и avi. Достаточным количеством поса-		
		дочных мест: № 327С		
2.	Практические	Аудитория оснащенная тремя меловыми или маркерными дос-		
	занятия	ками, достаточным количеством посадочных мест со столами:		
		№327C		
3.	Лабораторные	Лаборатория, укомплектованная специализированной мебелью		
	занятия	и техническими средствами обучения. Проведение занятий ла-		
	341771177	бораторного практикума предусмотрено в «Лаборатории ана-		
		логовой и цифровой электроники» №327С на учебном обору-		
		довании.		
5.	Групповые	Помещение с достаточным количеством посадочных мест и		
	(индивидуаль-	меловой или маркерной доской: №327С		
	ные)			
	консультации			
6.	Промежуточная	Помещение с достаточным количеством посадочных мест:		
	аттестация	№327C		
7.	Самостоятель-	Кабинет для самостоятельной работы, оснащенный компью-		
	ная	терной техникой с возможностью подключения к сети «Интер-		
	работа	нет», программой экранного увеличения и обеспеченный до-		
	_	ступом в электронную информационно-образовательную среду		
		университета: № 207с		
		J5 P. 1. 1. 20 / 0		