АННОТАЦИЯ

дисциплины «Математическая статистика в геологии»

Объем трудоемкости: 6 зачетных единиц (216 часов, из них аудиторной нагрузки: лекционных -64 часа, практических -64 часа; 45,8 часов самостоятельной работы, 35,7 часов - контроль, ИКР -0.5, КСР -6 часов).

Цели изучения дисциплины:

- формирование у студентов базовых знаний, умений и навыков по математической статистике достаточных для освоения основной образовательной программы направления 05.03.01 «Геология (Гидрогеология и инженерная геология)»;
- формирование составляющих частей общекультурных и профессиональных компетенций.

Задачи изучения дисциплины:

- подготовка специалистов, способных применять полученные знания для решения прикладных задач, владеющих достаточными знаниями основных теоретических положений курса «Математическая статистика»;
- формирование культуры мышления, способности к анализу, обобщению и восприятию информации, к постановке цели и выбору путей ее достижения;
- обеспечение математическим аппаратом естественнонаучных, общепрофессиональных и специальных дисциплин;
- формирование привычки к строгости в формулировки изложения материала, к логически непротиворечивой цепочке выводов и заключений;
- развитие навыков использования логических символов для сжатой записи рассуждений и теорем;
 - развитие у студентов навыков самообразования.

Место дисциплины в структуре ООП ВО

Дисциплина Б1.В.05 «Математическая статистика» в профессиональной подготовке выпускника определяется необходимостью закладки базовых математических знаний в области статистики и статистического анализа данных для решения прикладных задач.

Необходимым требованием к «входным» знаниям, умениям и опыту деятельности обучающегося при освоении данной дисциплины является уверенное владение знаниями курса «Математика» и умение формулировать профильные прикладные задачи.

Требования к уровню освоения дисциплины

В результате изучения дисциплины «Математическая статистика в геологии» формируются профессиональные (ПК) и общепрофессиональные (ОПК) компетенции обучающихся. Процесс изучения данной дисциплины направлен на формирование у обучающихся элементов следующих компетенций в соответствии с ФГОС ВО бакалавриата по направлению 05.03.01 «Геология»:

Профессиональные:

ПК-1 – способностью использовать знания в области геологии, геофизики, геохимии, гидрогеологии и инженерной геологии, геологии и геохимии горючих ископаемых, экологической геологии для решения научно-исследовательских задач;

Общепрофессиональные:

- *ОПК-3* способность к разработке математических, информационных и имитационных моделей;
- ОПК-4 способностью решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности.

В результате освоения дисциплины обучающийся должен:

Знать: Основные определения, правила и методы математической статистики. Знать основные научные положения, концепции и применяемые методы исследования в смежных областях.

Уметь: самостоятельно применять статистические методы анализа данных для решения типовых профессиональных задач; пользоваться таблицами и справочниками.

Владеть: владеть методами математической статистики при решении производственных задач.

В таблице 1 представлены структура компетенций и основные признаки сформированности компетенций.

№ п.п.	Индекс компете	Содержание компетенции (или её	В результате изучения учебной дисциплины обучающиеся должны					
11.11.	нции части)		знать	уметь	владеть			
1.	ПК-1	Способность использовать знания в области геологии, геофизики, геохимии, гидрогеологии и инженерной геологии, геологии и геохимии горючих ископаемых, экологической геологии для решения научноисследовательских задач;	Основные определения, правила и методы статистического анализа данных и математическог о моделирования. Знать основные научные положения, концепции и применяемые методы исследования в смежных областях	Самостоятельно приобретать и использовать в практической деятельности новые знания и умения, стремится к саморазвитию	Владеть методами математическо го моделирования в смежных областях естествознания			
2	ОПК-3	Способность к разработке математических, информационных и имитационных моделей, созданию информационных ресурсов, прикладных баз данных, текстов и средств тестирования систем и средств на соответствие стандартам и исходным требованиям	Знать основные методы математическог о моделирования и статистического анализа данных для задач естествознания.	Уметь строить и исследовать структуры данных математических моделей геологии	Владеть методами математическо го анализа и статистики при математическо м моделировани и.			
3	ОПК-4	Способность решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применение информационно-коммуникационных технологий	Знать стандартные математические модели природных процессов и методы их анализа.	Решать стандартные задачи профессионально й деятельности на основе информационной и библиографическо й культуры	основные методы математическо го моделирования и анализа данных для задач естествознания .			

Соответствие компетенций, формируемых при изучении дисциплины

Перечень		Виды занятий				Формы контроля		
компетенций	Л.	Лаб.	Пр.	KP	CPC			
ПК-1	+		+	+	+	Проверка		
11K-1						индивидуальных		
						заданий, домашних		
						работ.		
ОПК – 3	+		+	+	+	Проверка		
						индивидуальных		
						заданий, домашних		
						работ.		
ОПК – 4	+		+	+	+	Проверка		
						индивидуальных		
						заданий, домашних		
						работ.		

Основные разделы дисциплины

Общая трудоемкость дисциплины составляет 2 зачетные единицы, 72 часа. Их распределение по видам работ представлено в таблице 2 (для студентов $O\Phi O$).

Таблица 2

Вид работы	Общая трудоемкость 4 семестр (Всего)			
Общая трудоемкость (часы/зач.ед.)	72/2			
Аудиторная работа, в	44,2			
том числе в интерактивной форме:				
Лекции (Л), в том числе в интерактивной форме:	14			
Практические занятия				
(ПЗ), в том числе в интерактивной форме:	-			
Лабораторные работы (ЛР)	28			
КСР	2			
ИКР	0,2			
Самостоятельная работа:	27,8			
Курсовой проект (КП),	_			

курсовая работа (КР)	
Расчетно-графическое задание (РГЗ)	-
Реферат (Р)	_
Самостоятельное	8
изучение разделов	
Самоподготовка	19,8
(проработка и повторение	
лекционного материала	
учебников и учебных	
пособий, подготовка к	
практическим занятиям,	
коллоквиумам и т.д.)	
Контроль	-
Вид итогового контроля	Зачет

Примечание: Л - лекции, ПЗ - практические занятия / семинары, ЛР - лабораторные занятия, СРС - самостоятельная работа студента

Структура дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины «Математическая статистика в геологии» приведено в таблице 3.

Таблица 3

	Наименование раздела, темы	Аудиторные занятия						
n/n		Всего	Лекции	Лабора- торные	КСР	ИКР	CP	Итого
	Семестр 4							
1.	Случайные события	6	2	4	_	_	3	9
2.	Случайные величины	6	2	4	_	_	3	9
3.	Статистические оценки параметров распределения	6	2	4	_	_	4	10
4.	Элементы теории корреляции	6	2	4	_	_	4	10
5.	Статистическая проверка статистических гипотез	6	2	4	_	_	4	10
6.	Многомерный классификационный анализ	7	2	4	1	_	5	12
7.	Нейронные сети	7,2	2	4	1	0,2	4,8	12
	Итого за 1 семестр	44,2	14	28	2	0,2	27,8	72
	Итого по курсу	44,2	14	28	2	0,2	27,8	72

Форма проведения аттестации по дисциплине: зачет в 4 семестре

Основная литература

- 1. Гмурман В.Е. Теория вероятностей и математическая статистика. 12-е изд. Москва : Юрайт, 2016. 479 с. (Профессиональное образование). ISBN 978-5-9916-4997-1 (20 экз.).
- 2. Туганбаев, А.А. Теория вероятностей и математическая статистика. [Электронный ресурс] : учеб. пособие / А.А. Туганбаев, В.Г. Крупин. Электрон. дан. СПб. : Лань, 2011. 320 с. Режим доступа: http://e.lanbook.com/book/652
- 3. Лебедев, К. А. Теория вероятностей и математическая статистика: [(элементарное введение)]: учебное пособие для студентов и школьников. Ч. 1 / Лебедев, Константин Андреевич; К. А. Лебедев; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т. Краснодар: [Кубанский государственный университет], 2012. 104 с.: ил. Библиогр.: с. 103. ISBN 9785358048843. (40 экз.)
- 4. Халафян А.А. Теория вероятностей и математическая статистика. Тексты лекций. Краснодар: КУБГУ, 2008.
- 5. Халафян А.А. Statistica 6.0. Статистический анализ данных. 2-е изд., переработ. и дополн. Учебник М.: ООО «Бином-Пресс», 2010 г. 528 с.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

Дополнительная литература

- 1. Володин Б., Ганин М. и др. Сборник задач по теории вероятностей, математической статистике и теории случайных функций. СПб.: Лань, 2008.
 - 2. Гнеденко Б.В. Курс теории вероятностей. М.: МГУ, 2007
- 3. Письменный Д. Конспект лекций по теории вероятностей, математической статистике и случайным процессам. М: Айрис-пресс. 2008.-288c

Автор аннотации, к.т.н., преподаватель КПМ

урее Е.Ю. Пелипенко