АННОТАЦИЯ дисциплины «Б1.Б.17 Методы математической физики»

Объем трудоемкости: 5 зачетных единиц (180 часов, из них – 86,3 часа аудиторной нагрузки: лекционных 32 ч., практических 48 ч., 66,7 часа самостоятельной работы)

Цель дисциплины

Учебная дисциплина «Методы математической физики » ставит своей целью изучение математических моделей различных физических явлений. Значительная часть математических моделей, изучаемых в традиционном (классическом) математической физики, сводится к краевым задачам для линейных дифференциальных уравнений в частных производных второго порядка, среди которых особо важны три: уравнение теплопроводности волновое уравнение, И уравнение Первостепенная роль этих (и некоторых других) уравнений, сформулированных еще в XIX веке, объясняется их исключительной универсальностью - трудно найти раздел точного естествознания (теория колебаний, гидродинамика, теория упругости, электродинамика, физические акустика и оптика и др.), в котором бы они не применялись. Поэтому краевые задачи для этих уравнений относят к базовым задачам математической физики.

Сложные физические процессы описываются математическими моделями, являющимися, как правило, объединением нескольких базовых задач. Уравнения гиперболического, параболического и эллиптического типов, составляющие основу данного курса "Методов математической физики" являются как раз примерами базовых задач.

Задачи дисциплины – изучение (математическая постановка задачи, проблема существования и единственности решения, типичные аналитические методы исследования, отыскание общих и частных решений задач) и практическое освоение методов решения базовых задач математической физики на примере уравнений гиперболического, параболического и эллиптического типов.

Место дисциплины в структуре ООП ВО

Учебная дисциплина «**Методы математической физики** » входит в базовую часть цикла общепрофессиональных дисциплин базового учебного плана по направлению подготовки бакалавриата 03.03.03 Радиофизика.

Для успешного изучения дисциплины необходимо знание основ линейной алгебры, математического анализа, векторного и тензорного анализа, теории обыкновенных дифференциальных уравнений и теории функций комплексной переменной в объеме курсов университета.

Требования к уровню освоения дисциплины

Процесс изучения дисциплины направлен на формирование элементов следующей компетенций в соответствии с ФГОС ВПО и ООП по данному направлению подготовки (специальности):

- способность использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей (ОПК-1)

No	Индекс	Содержание	В результате изучения учебной дисциплины обучающиеся должны					
п п	компет енции	компетенции (или её части)	знать	уметь	владеть			
1.	ОПК-1	способностью к овладению базовыми знаниями в области математики и естественных наук, их использованию в профессиональ ной деятельности	классификацию уравнений в частных производных второго порядка, вид базовых уравнений всех типов и их аналитических решений, а так же физическую интерпретацию этих решений, физические законы, на которых базируется вывод конкретных уравнений;	правильно поставить краевую задачу для уравнения данного типа и владеть основными методами решения уравнений в частных производных;	навыками исследования математическ их моделей физических являющихся краевыми задачами для линейных дифференциа льных уравнений в частных производных второго порядка.			

Основные разделы дисциплины Разделы дисциплины, изучаемые в 6 семестре

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы (темы) дисциплины, изучаемые в 6 семестре (очная форма)

No॒		Количество часов					
раз- дела	Наименование разделов	Всего	Аудиторная работа			Самостоятель- ная работа (всего)	
			Л	ПЗ	КРС		
1	2	3	4	5	6	7	
1	Предмет и задачи математической физики	25	4	6	1	14	
2	Уравнения гиперболического типа	36	8	12	1	15	
3	Уравнения параболического типа	33	8	10	1	14	

26		Количество часов					
№ раз- дела	Наименование разделов	Всего	Аудиторная работа			Самостоятель- ная работа (всего)	
			Л	ПЗ	КРС		
4	Уравнения эллиптического типа	37	8	12	2	15	
5	Нелинейные уравнения математической физики	21,7	4	8	1	8,7	
	Всего:		32	48	6	66,7	

Курсовые работы: не предусмотрены

Форма проведения аттестации по дисциплине: экзамен

Основная литература:

1. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Изд -во МГУ,

2004. - 798 c.

- 2. Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по математической физике. М.: Физматлит, 2004. 688 с.
- 3. Мартинсон Л.К, Малов Ю.И. Дифференциальные уравнения математической физики. М.: Изд-во МГТУ имени Н.Э. Баумана, 2006. 368 с.