Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет»

Факультет химии и высоких технологий

Кафедра общей, неорганической химии и информационно-вычислительных технологий в химии

ТВЕРЖДАЮ
Проректор по научной работе
и иннованиям проф.
М.Г. Барышев
2017 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.ОД.2 СОВРЕМЕННЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

Направление подготовки:	04.06.01 Химические науки	
Направленность (профиль)	02.00.01 Неорганическая химия	
Форма обучения	очная/заочная	

Рабочая программа дисциплины Б1.В.ОД.2 «Современные методы исследования неорганических веществ» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования, утвержденным приказом Минобрнауки России от 30.07.2014 №869 по направлению подготовки: 04.06.01 Химические науки (уровень подготовки кадров высшей квалификации) и учебного плана основной образовательной программы.

Рабочую программу составил: д.х.н., проф. Буков Н.Н.
Ответственный за направление подготовки 04.06.01 Химические науки профиль 02.00.01 Неорганическая химия, д.х.н., профессор Буков Н.Н
Рабочая программа обсуждена на заседании кафедры общей, неорганической химии и ИВТ в химии «№ 2017 г., протокол № 6
Заведующий кафедрой общей, неорганической химии и ИВТ в химии да.х.н., профессор Буков Н.Н.
Утверждена на заседании учебно-методической комиссии факультета « <u>15</u> » 2017 г., протокол №
Председатель УМК факультета к.х.н., доцент, Стороженко Т. П.
Зав. Отделом аспирантуры к.фм.н., доцент Строганова Е.В.

1 Цели и задачи изучения дисциплины «Современные методы исследования неорганических веществ».

1.1 Цель освоения дисциплины.

Углубленное изучение аспирантами современных физических методов исследования структуры и свойств неорганических веществ

1.2 Задачи дисциплины.

- углубить теоретические знания о современных физических методах исследования структуры и свойств неорганических веществ;
- познакомить аспирантов с современными экспериментальными методами и приборами, используемыми в современной неорганической химии
- сформировать умение выбирать и использовать на практике методы исследования неорганических веществ.

1.3 Место дисциплины «Современные методы исследования неорганических веществ». в структуре образовательной программы.

Дисциплина «Современные методы исследования неорганических веществ» относится к вариативной части Блока 1 «Дисциплины (модули)» учебного плана.

1.4 Перечень планируемых результатов обучения по дисциплине «Современные методы исследования неорганических веществ», соотнесенных с планируемыми результатами освоения образовательной программы.

Процесс изучения дисциплины направлен на формирование компетенций ОПК-1, ОПК-2, ПК-2.

№	Индекс	Содержание	В результате изу	чения учебной дисципл	ины обучающиеся
	компете	компетенции (или её		должны	
П.П.	нции	части)	знать	уметь	владеть
1.	ОПК-1	Способность	теоретические	самостоятельно	навыками
		самостоятельно	основы	выбирать, осваивать	планирования,
		осуществлять научно-	современных	и применять	постановки и
		исследовательскую	методов	современные	выполнения
		деятельность в	исследования в	методы	экспериментов для
		соответствующей	неорганической	исследования	синтеза и изучения
		профессиональной	И	сообразно	неорганических
		области с	координационно	поставленной задачи	веществ
		использованием	й химии	с учетом их	
		современных методов		точности,	
		исследования и		чувствительности,	
		информационно-		стоимости и	
		коммуникационных		доступности	
		технологий			
2.	ОПК-2	Готовность	основные	подбирать	навыками
		организовать работу	требования к	оборудование,	планирования и
		исследовательского	измерительному	необходимое для	обеспечения
		коллектива в области	оборудованию,	выполнения научно-	коллектива
		химии и смежных наук	используемому	исследовательских	необходимыми
			в ходе	задач из	материально-
			выполнения	имеющегося на	техническими
			исследовательск	рынке и составлять	ресурсами
			их работ в	техническое задание	(измерительным
			выбранной	для его	оборудованием,
			области	приобретения	реактивами,
				согласно	оргтехникой и т.д.)
				действующего	для выполнения

№ Индекс Содержание В результате изучения учебной дисциплины обуча					ины обучающиеся
	компете	компетенции (или её		должны	
П.П.	нции	части)	знать	уметь	владеть
				законодательства	запланированных работ
3.	ПК-1	Готовность использовать на практике основные принципы, теории и концепции современной неорганической химии	принципы физических методов исследования для изучения структуры и свойств неорганических соединений	пользоваться учебной, научной, научно-популярной литературой, сетью Интернет для профессиональной деятельности; проводить статистическую обработку экспериментальных данных; выявлять причинно-следственные связи «структурасвойства» для неорганических веществ	основными понятиями и терминологией в области неорганических материалов; методиками измерения физико-химических характеристик неорганических материалов

2. Структура и содержание дисциплины «Современные методы исследования неорганических веществ»..

2.1 Распределение трудоёмкости дисциплины по видам работ.

Общая трудоёмкость дисциплины составляет 5 зач.ед. (180 часов), их распределение по видам работ представлено в таблице

Очная форма обучения

Вид учебной работы Всего		Семе	естры
	часов	2	3
Аудиторные занятия (всего)	66	36	30
В том числе:			
Занятия лекционного типа	16	8	8
Занятия семинарского типа (семинары,	20	10	10
практические занятия)		10	10
Лабораторные занятия	30	18	12
Самостоятельная работа (всего)	114	36	78
В том числе:			
Проработка учебного (теоретического) материала	87	36	51
Подготовка к текущему контролю	27		27
Вид промежуточной аттестации (зачет, экзамен)	зачет,	ромож	OMOON OT
	экзамен	зачет	экзамен
Общая трудоемкость час	180	72	108
зач. ед.	5	2	3

Заочная форма обучения

Вид учебной работы	Всего	Семе	естры
	часов	6	7
Аудиторные занятия (всего)	34	22	12
В том числе:			
Занятия лекционного типа	8	4	4
Занятия семинарского типа (семинары,	6	6	
практические занятия)		U	
Лабораторные занятия	20	12	8
Самостоятельная работа (всего)	146	68	78
В том числе:			
Проработка учебного (теоретического) материала	119	68	51
Подготовка к текущему контролю	27		27
Вид промежуточной аттестации (зачет, экзамен)	зачет,	201107	OMOON COM
	экзамен	зачет	экзамен
Общая трудоемкость час	180	90	90
зач. ед.	5	2,5	2,5

2.2 Структура дисциплины «Современные методы исследования неорганических веществ».:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 2 семестре (очная форма)

Количество часов Внеаудит Аудиторная No Наименование разделов орная работа Всего работа Л ЛР CPC ПЗ 1 3 4 5 6 7 1. 10 2 2 6 Основные понятия общей теории измерений 2 2 Физические основы молекулярной спектроскопии 14 4 6 2. 16 4 8 Симметрия молекул и основы теории групп Квантово-механические модели молекул 14 2 4 8 4. Вычислительные методы молекулярной 5. 18 2 2 8 6 спектроскопии 72 Итого по дисциплине: 10 18 36

Разделы дисциплины, изучаемые в 3 семестре (очная форма)

	1		Количество часов				
№	Наименование разделов		Аудито рабо			Внеаудит орная работа	
			Л	П3	ЛР	CPC	
1	2	3	4	5	6	7	
6.	Колебательная спектроскопия	18	2	2	4	10	
7.	Электронная спектроскопия	18	2	2 2 4		10	
8.	Радиоспектроскопия	14	2	2	10		
9.	Масс-спектрометрия	14	2	2	10		
10.	Совместное использование спектральных методов исследования	17	-	- 2 4		11	
	Контроль					27	
	Итого по дисциплине:	108	8	10	12	78	

Разделы дисциплины, изучаемые в 6 семестре (заочная форма)

	Наименование разделов		Количество часов				
№			Аудиторная работа			Внеаудит орная работа	
			Л	П3	ЛР	CPC	
1	2	3	4	5	6	7	
11	Основные понятия общей теории измерений и физические основы молекулярной спектроскопии	42	2	2	4	34	
2.	Вычислительные методы молекулярной спектроскопии	48	2	4	8	34	
	Итого по дисциплине:	90	4	6	12	68	

Разделы дисциплины, изучаемые в 7 семестре (заочная форма)

			Количество часов				
№	Наименование разделов		Аудиторная		Внеаудит орная работа		
			Л	П3	ЛР	CPC	
1	2	3	4	4 5 6		7	
3.	Оптические методы молекулярной спектроскопии	23	2	-	4	17	
4.	Методы радиоспектроскопии. 19 2				-	17	
5.	Совместное использование спектральных методов исследования Контроль		-	-	4	17	
·				-		27	
·	Итого по дисциплине:	90	4	_	8	78	

2.3 Содержание разделов дисциплины «Современные методы исследования неорганических веществ».:

2.3.1 Занятия лекционного типа.

Очная форма

№	Наименование раздела	Содержание раздела	Форма текущего контроля*
1	2	2 3	
1.	Основные понятия общей теории измерений	Формально-логические основания измерения как процесса познания. Понятия, связанные с физическими величинами. Измерение как процесс познания. Термины и определения для физических величин. Основное уравнение измерения. Группы физических величин. Разновидности и характеристики измерений. Методы измерений. Виды измерений по условиям, определяющим точность результата. Абсолютные и относительные измерения. Инструментальные и органолептические измерения. Понятие о средствах измерений. Характеристики измерений.	К
2.		Излучение и происхождение спектров. Виды	К, ЛР
	молекулярной	излучения и его характеристики. Классический и	
	спектроскопии	квантовомеханический подходы к объяснению	

		спектров. Принципы классической теории	
		испускания, поглощения и рассеяния излучения.	
		Квантовомеханические основы происхождения	
		спектров. Принципиальная схема спектрального	
		прибора. Техника эксперимента. Фурье-	
		спектроскопия. Вынужденное излучение. Лазеры.	
3.		Элементы и операции симметрии. Точечные группы	К, ЛР
	Симметрия молекул	симметрии. Определение группы. Представления	
	1	групп и характеры представлений. Прямое	
	и основы теории	произведение представлений. Электрические	
	групп	дипольные моменты, поляризуемость и симметрия	
		молекул.	
4.	Квантово-	Операторы, свойства операторов. Волновая функция.	К, ЛР
• •	механические	Операторы квантовой механики молекул. Уравнение	11, 011
	модели молекул	Шрёдингера. Приближение Борна—Оппенгеймера.	
	(самостоятельно)	Симметрия гамильтониана.	
_	(самостоятсльно)		ту пр
5.	Вычислительные	Неэмпирические методы: Метод Хартри — Фока,	К, ЛР
	методы	Базисные наборы функций, . Учет электронной	
	молекулярной	корреляции, Практические квантовомеханические	
	спектроскопии	расчеты. Полуэмпирические методы. Эмпирические	
	опоктроскоппп	методы.	
6.		ИК-Спектры поглощения двухатомных молекул.	К, ЛР
		Правила отбора. Колебательно-вращательный ИК-	
		спектр двухатомной молекулы. Колебания	
		многоатомных молекул. Правила отбора.	
		Вращательная структура ИК-спектров многоатомных	
		молекул. Применения ИК-спектроскопии.	
	Колебательная	Модель КР. Колебательные спектры КР, правила	
	спектроскопия	отбора. Поляризация в спектрах КР. Резонансные	
	спектроскоппи	спектры КР. Применения метода КР. Определение	
		структуры молекулы.	
		Использование колебательного спектра для решения	
		структурных задач. Использование фундаментальных	
		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		частот для расчета термодинамических функций	
_		вещества.	YC
7.		Электронные состояния молекул. Электронные	К, ЛР
		переходы. Вероятность и правила отбора переходов.	
		Возбужденные состояния и спектры люминесценции.	
		Применение методов электронной спектроскопии.	
	Эпактронная	Техника УФ-спектроскопии.	
	Электронная	Электронная структура и спектры ионов переходных	
	спектроскопия	металлов. Электронные состояния свободных ионов.	
		Кристаллические поля. Эффект Яна-Теллера.	
		Параметры химического связывания, получаемые из	
		спектров. Модель углового перекрывания. Полосы	
		переноса заряда. Фотохимические реакции.	
8.		Методы радиоспектроскопии магнитного резонанса.	К
٥.		Представление о магнитном резонансе.	10
	Рапиоспантроскоти		
		Спектроскопия ЯМР. Принципы и условия ЯМР.	
	R	Реализация условий ЯМР. Химический сдвиг	
		сигналов ЯМР. Спин-спиновое взаимодействие и	
		мультиплетность. Спектры ЯМР парамагнитных	

		комплексов ионов переходных металлов. Применение	
		спектроскопии ЯМР. Техника и методики	
		спектроскопии ЯМР.	
		Спектроскопия ЭПР. Теоретические основы и условия	
		ЭПР. Параметры и структура спектров ЭПР. Спектры	
		ЭПР комплексов ионов переходных металлов.	
		Применение спектроскопии ЭПР. Техника и методики	
		спектроскопии ЭПР.	
		Множественный магнитный резонанс и поляризация	
		спинов. Двойной ЯМР (ИНДОР). Другие методы	
		физической поляризации ядерных и электронных	
		спинов (ЭНДОР и ЭЛДОР). Химическая поляризация	
		ядер и электронов.	
9.		Физические основы процесса масс-	К
		спектрометрического распада. Электронный удар или	
		электронная ионизация. Метастабильные ионы.	
		Теория масс-спектроскопического распада.	
) / (Основные правила и подходы к интерпретации масс-	
	Macc-	спектров. Стабильность ионов и нейтральных частиц.	
	спектрометрия	Правило степеней свободы. Прочность химических	
		связей. Структурные и стереохимические факторы.	
		Молекулярный ион. Определение молекулярных масс;	
		метод ионизации полем. Расчет теплот сублимации.	
		Потенциалы возникновения и потенциалы ионизации.	
10.		Преимущества и недостатки отдельных видов	К, ЛР
	Canada	спектрального анализа. Стратегия совместного	
	Совместное	применения различных видов спектроскопии при	
	использование	идентификации неизвестного соединения.	
	спектральных	Предварительные исследования. Определение	
	методов	молекулярной массы и брутто-формулы.	
	исследования	Представление результатов исследования	
	(самостоятельно)	неизвестного вещества по формам отчета №№ 1-3.	
		Формулировка выводов.	

Заочная форма

№	Наименование раздела	Форма текущего	
1	2	3	контроля*
1.	Основные понятия	Формально-логические основания измерения как процесса познания. Понятия, связанные с физическими величинами. Измерение как процесс познания. Термины и определения для физических величин. Основное уравнение измерения. Группы физических величин. Разновидности и характеристики измерений. Методы измерений. Прямые, косвенные, совокупные и совместные измерения. Статические и динамические измерения. Виды измерений по условиям, определяющим точность результата. Абсолютные и относительные измерения. Инструментальные и органолептические измерения. Понятие о средствах	К, ЛР
		измерений. Характеристики измерений. Методы	

	ı	1	
2.	Вычислительные методы молекулярной спектроскопии	измерений. Излучение и происхождение спектров. Виды излучения и его характеристики. Принципы классической теории испускания, поглощения и рассеяния излучения. Квантовомеханические основы происхождения спектров. Принципиальная схема спектрального прибора. Техника эксперимента. Фурьеспектроскопия. Неэмпирические методы: Метод Хартри —Фока, Базисные наборы функций, . Учет электронной корреляции, Практические квантовомеханические расчеты. Полуэмпирические методы. Эмпирические	К, ЛР
3.	Оптические методы молекулярной спектроскопии	Колебания многоатомных молекул. Правила отбора. Вращательная структура ИК-спектров многоатомных молекул. Применения ИК-спектроскопии. Колебательные спектры КР, правила отбора. Применения метода КР. Использование колебательного спектра для решения структурных задач. Использование фундаментальных частот для расчета термодинамических функций вещества. Электронные переходы. Вероятность и правила отбора переходов. Возбужденные состояния и спектры люминесценции. Применение методов электронной спектроскопии. Электронная структура и спектры ионов переходных металлов. Электронные состояния свободных ионов. Кристаллические поля. Эффект Яна-Теллера. Параметры химического связывания, получаемые из спектров. Модель углового перекрывания. Полосы переноса заряда.	ЛР
4.	Методы радиоспектроскоп ии.	Методы радиоспектроскопии магнитного резонанса. Спектроскопия ЯМР. Принципы и условия ЯМР. Реализация условий ЯМР. Химический сдвиг сигналов ЯМР. Спин-спиновое взаимодействие и мультиплетность. Применение спектроскопии ЯМР. Спектроскопия ЭПР. Теоретические основы и условия ЭПР. Параметры и структура спектров ЭПР. Применение спектроскопии ЭПР. Множественный магнитный резонанс и поляризация спинов. Двойной ЯМР (ИНДОР). Другие методы физической поляризации ядерных и электронных спинов (ЭНДОР и ЭЛДОР). Химическая поляризация ядер и электронов.	УО
5.	Совместное использование спектральных методов исследования (самостоятельно)	Преимущества и недостатки отдельных видов спектрального анализа. Стратегия совместного применения различных видов спектроскопии при идентификации неизвестного соединения. Предварительные исследования. Определение молекулярной массы и брутто-формулы. Представление результатов исследования неизвестного вещества. Формулировка выводов.	ЛР

2.3.2 Занятия семинарского типа.

Очная форма

	Наименование Тематика практических занятий		Форма
$N_{\overline{0}}$	раздела	(семинаров)	текущего
1	2	` ' '	контроля*
1.	_	Waynyahana nawana Varayan rayya ya ya garayan	<u>4</u> К
1.	Основные	Идентификация веществ. Установление химического	K
	понятия общей	строения. Определение термодинамических	
2.	теории измерении	характеристик веществ и реакций. Излучение и происхождение спектров. Виды	К
2.	Физические основы молекулярной спектроскопии	излучение и происхождение спектров. Виды излучения и его характеристики. Принципы классической теории испускания, поглощения и рассеяния излучения. Квантовомеханические основы происхождения спектров. Принципиальная схема спектрального прибора. Техника эксперимента. Фурьеспектроскопия.	K
3.	Симметрия молекул и основы теории групп	Элементы и операции симметрии. Точечные группы симметрии. Определение группы. Представления групп и характеры представлений. Прямое произведение представлений. Электрические дипольные моменты, поляризуемость и симметрия молекул.	К
4.	Квантово- механические модели молекул	Операторы, свойства операторов. Волновая функция. Операторы квантовой механики молекул. Уравнение Шрёдингера. Приближение Борна—Оппенгеймера. Симметрия гамильтониана.	К
5.	Вычислительные методы молекулярной спектроскопии	Неэмпирические методы: Метод Хартри — Фока, Базисные наборы функций. Учет электронной корреляции, Практические квантовомеханические расчеты. Полуэмпирические методы. Эмпирические методы.	К
6.	Колебательная спектроскопия	Классическое рассмотрение колебаний простых многоатомных молекул. Введение естественных координат. Учет симметрии. Определение частот колебаний (решение уравнений первого и второго порядков для трехатомных молекул). Определение симметрии молекулы по данным ИК и КР спектров. Использование групповых частот в структурном анализе.	К
7.	Электронная спектроскопия	Классификация и отнесение электронных переходов и соответствующих полос в УФ и видимых спектрах. Применение электронных спектров. Применение методов абсорбционной ИК и УФ спектроскопии в количественном анализе, исследовании равновесий и кинетики реакций.	К
8.	Радиоспектроског ия	Определение структуры молекулы по химическим сдвигам и спин-спиновым расщеплениям в спектрах ЯМР. Динамический ЯМР, изучение обменных и других быстро протекающих процессов. Структура спектров ЭПР; изучение кинетики и механизмов реакций методом ЭПР.	К

9.	Масс- спектрометрия	Физические основы процесса масс- спектрометрического распада. Электронный удар или электронная ионизация. Метастабильные ионы. Теория масс-спектроскопического распада. Основные правила и подходы к интерпретации масс- спектров. Стабильность ионов и нейтральных частиц. Молекулярный ион. Определение молекулярных масс; метод ионизации полем. Расчет теплот сублимации.	К
10.	Совместное использование спектральных методов исследования	Преимущества и недостатки отдельных видов спектрального анализа. Стратегия совместного применения различных видов спектроскопии при идентификации неизвестного соединения. Представление результатов исследования неизвестного вещества. Формулировка выводов.	К

Заочная форма

№	Наименование раздела	Тематика практических занятий (семинаров)	Форма текущего контроля*
1	2	3	4
1.	понятия оощеи теории измерений и физические основы молекулярной спектроскопии	Идентификация веществ. Установление химического строения. Определение термодинамических характеристик веществ и реакций. Излучение и происхождение спектров. Виды излучения и его характеристики. Принципы классической теории испускания, поглощения и рассеяния излучения. Квантовомеханические основы происхождения спектров.	К
2.	методы молекулярной	Неэмпирические методы: Метод Хартри — Фока, Базисные наборы функций. Учет электронной корреляции, Практические квантовомеханические расчеты. Полуэмпирические методы. Эмпирические методы.	К

2.3.3 Лабораторные занятия. *Очная форма*

		Форма
$N_{\underline{0}}$	Наименование лабораторных работ	текущего
		контроля*
1	3	4
1.	Физические основы молекулярной спектроскопии	ЛР
2.	Симметрия молекул и основы теории групп	ЛР
3.	Квантово-механические модели молекул	ЛР
4.	Вычислительные методы молекулярной спектроскопии	ЛР
5.	Колебательная спектроскопия	ЛР
6.	Электронная спектроскопия	ЛР
7.	Совместное использование спектральных методов исследования	ЛР

Заочная форма

		Форма
$N_{\underline{0}}$	Наименование лабораторных работ	текущего
		контроля*
1	3	4
1.	Основные понятия общей теории измерений и физические основы	ЛР
	молекулярной спектроскопии	
2.	Вычислительные методы молекулярной спектроскопии	ЛР
3.	Оптические методы молекулярной спектроскопии	ЛР
4.	Совместное использование спектральных методов исследования	ЛР

^{*-} Формы текущего контроля: защита лабораторной работы (ЛР), коллоквиум (К), устный опрос (УО).

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине «Современные методы исследования неорганических вешеств».

веш	веществ».				
№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по			
	Вид ст с	выполнению самостоятельной работы			
1	2	3			
1.	Основные понятия	Пентин Ю.А., Вилков Л.В. Физические методы исследования в			
	общей теории	химии. М: Мир, 2009.			
	измерений	Драго Р. Физические методы в химии. Т.1, т. 2. – М.: Мир, 1981			
2.	Физические основы	Буков Н.Н., Кузнецова С.Л., Костырина Т.В. Физические методы			
	молекулярной	исследования. Молекулярная спектроскопия. Уч. пособие,			
	спектроскопии	ΚубΓУ,			
	-	http://www.kubsu.ru/sites/default/files/department/MOLEKULYRNA			
		YSPEKTROSKOPIY_6.pdf			
3.	C	Драго Р. Физические методы в химии. Т.1, т. 2. – М.: Мир, 1981			
	Симметрия молекул и	Харгиттаи И., Харгиттаи М. Симметрия глазами химика. М.:			
	основы теории групп	Мир. 1989. 486 с.			
4.	Квантово-	Драго Р. Физические методы в химии. Т.1, т. 2. – М.: Мир, 1981			
	механические модели				
	молекул				
5.	Вычислительные	Драго Р. Физические методы в химии. Т.1, т. 2. – М.: Мир, 1981			
	методы молекулярної	Харгиттаи И., Харгиттаи М. Симметрия глазами химика. М.:			
	спектроскопии	Мир. 1989. 486 с.			
6.	Колебательная	Буков Н.Н., Колоколов Ф.А., Костырина Т.В., Кузнецова С.Л.			
	спектроскопия.	Физические методы исследования: Колебательная			
		спектроскопия. Уч. пособие, КубГУ,			
		http://www.kubsu.ru/sites/default/files/department/KOLEBATELNA			
		YSPEKTROSKOPIY_4.pdf			
		Буков Н.Н., Костырина Т.В., Абрамов Д.Е., Фурсина А.Б.			
		Физические методы исследования. Часть 2. Колебательная			
		спектроскопия. Уч. пособие, КубГУ,			
		http://www.kubsu.ru/sites/default/files/department/KOLEBATELNIE			
		SPEKTRI_3.pdf			
7.	Электронная	Буков Н.Н., Павлов П.А., Фурсина А.Б. Физические методы			
	спектроскопия.	исследования. Часть 1. Электронные спектры. Уч. пособие,			
		КубГУ.			

	1	
		http://www.kubsu.ru/sites/default/files/department/ELEKTRONNIES
		PEKTRI_1CHAST1.pdf
		Буков Н.Н., Кузнецова С.Л., Костырина Т.В. Физические методы
		исследования: Электронная спектроскопия. – Краснодар: КубГУ,
		2006.
		http://www.kubsu.ru/sites/default/files/department/ELEKTRONNAY
		SPEKTRI_2.pdf
8.	Радиоспектроскопия.	Буков Н.Н., Кузнецова С.Л., Костырина Т.В., Буиклиский В.Д.
		Физические методы исследования. Часть 3: Спектроскопия ЯМР
		(H^1) . – Краснодар: КубГУ, 2006.
		http://www.kubsu.ru/sites/default/files/department/SPEKTROSKOPI
		YYMR_5.pdf
9.	Macc-	Сильверстейн Р., Вебстер Ф., Кимл Д. Спектрометрическая
	спектрометрия.	идентификация органических соединений: учебное пособие М.:
		БИНОМ. Лаборатория знаний, 2012. 548 с.
10.	Совместное	Буков Н.Н., Буиклиский В.Д., Панюшкин В.Т. Физические
	применение	методы исследования координационных соединений
	спектральных	редкоземельных элементов. Краснодар, КубГУ «Книга», 2001
	методов.	Харгиттаи И., Харгиттаи М. Симметрия глазами химика. М.:
		Мир. 1989. 486 с.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

– в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

Образовательные технологии, используемые при реализации различных видов учебной работы: активные и интерактивные формы проведения занятий - деловые и ролевые игры, разбор практических задач и кейсов, компьютерные симуляции, психологические и иные тренинги проводятся индивидуально с каждым обучаемым в рамках темы выполняемого диссертационного исследования.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

- 4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.
 - 4.1 Фонд оценочных средств для проведения текущего контроля прилагается.
 - 4.2 Фонд оценочных средств для проведения промежуточной аттестации.

Вопросы к зачету

- 1. Общая характеристика методов молекулярной спектроскопии.
- 2. Классификация спектральных методов исследования.
- 3. Взаимодействие электромагнитного излучения с веществом.
- 4. Основные применения спектральных методов.
- 5. Теория кристаллического поля и теория поля лигандов в спектроскопии.
- 6. Правила отбора спектральных полос поглощения.
- 7. Энергетические состояния атомов и молекул. Термы.
- 8. Полуэмпирические методы в спектроскопии.
- 9. Основные спектральные методы расчета констант реакций.
- 10. Прямая и обратная спектральная задача.
- 11. Виды спектральных измерений по условиям, определяющим точность результата.
- 12. Химические процессы, влияющие на ширину спектральной линии.
- 13. Энергетические уровни двухатомной молекулы.
- 14. Виды спектроскопии по свойствам излучения.
- 15. Естественные пределы спектральных измерений.
- 16. Спектральные особенности ионов переходных металлов.
- 17. Техника эксперимента в электронной спектроскопии.
- 18. Колебательная (ИК-, КР-) спектроскопия.
- 19. Концепция групповых частот в колебательной спектроскопии
- 20. Симметрия молекулярных колебаний
- 21. Методика эксперимента в колебательной спектроскопии.
- 22. Различия в ИК- и КР-спектроскопии.
- 23. Нормальные колебания многоатомных молекул.
- 24. Магнитные свойства ядер. Переходы в ЯМР.
- 25. Моделирование спектров ЯМР ¹Н по уравнениям Шулери
- 26. ЭПР-спектроскопия. g-фактор.
- 27. Техника эксперимента в радиоспектроскопии.
- 28. Масс-спектроскопия.
- 29. Процессы фрагментации в масс-спектроскопии.
- 30. Интерпретация масс-спектров.
- 31. Хромато-масс-спектрометрия.

Вопросы экзамена охватывают все темы выше отмеченных разделов и в качестве примера приводится типовой пример билета:

Федеральное государственное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Кафедра общей, неорганической химии и ИВТ в химии

Экзаменационный Билет №

дисциплина «Современные методы исследования неорганических веществ» по специальности 02.00.01 — Неорганическая химия

- 1. Принципы классической теории испускания, поглощения и рассеяния излучения.
- 2. Электронная структура и спектры ионов переходных металлов.
- 3. Стратегия совместного применения различных видов спектроскопии при идентификации неизвестного соединения.

4.3. Критерии оценки сформированных компетенций определяются уровнем усвоения изучаемого материала:

- обучаемый имеет определенное представление о внешних свойствах и признаках изучаемых предметов и явлений, но не проявляет их должной осмысленности и не справляется с выполнением соответствующих письменных и экспериментальных работ (неудовл., незачтено);
- обучаемый имеет четкие представления об изучаемых предметах и явлениях, понимает их сущность, однако обнаруживает затруднение в их воспроизведении и применении на практике, что приводит к необходимости уточняющих и дополнительных вопросов в процессе проверки (удовл);
- обучаемый достаточно полно осмыслил материал, с пониманием формулирует соответствующие понятия (теоретические положения), хотя при их обосновании и воспроизведении нуждается в некоторых уточнениях, обнаруживает умение применять усвоенные знания на практике, допуская мелкие, несущественные недочеты в письменных работах (хор);
- высший уровень владения материалом состоит в его глубоком осмыслении на понятийном уровне, в умении свободно и логично воспроизводить и обосновывать содержащиеся в нем положения примерами и фактами, а также не допускать ошибок при выполнении письменных и практических работ, проявлять самостоятельность и элементы творчества (отл).

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины «Современные методы исследования неорганических веществ».

5.1 Основная литература:

- 1. Пентин Ю.А., Вилков Л.В. Физические методы исследования в химии. М: Мир, 2009.
- 2. Пентин Ю.А., Курамшина Г.М. Основы молекулярной спектроскопии. М: Мир, 2008
- 3. Пентин Ю.А., Вилков Л.В. Физические методы исследования в химии. М.: Мир, 2006.
- 4. Физические методы исследования неорганических веществ. Под ред. Никольского А.Б. – М.: Академия, 2006.
- 5. Беккер. Ю. Спектроскопия. М.: Техносфера, 2009. 527 с.

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

5.2 Дополнительная литература:

- 1. Тюлин В.И. Колебательные и вращательные спектры многоатомных молекул. М.: Изд-во Моск. ун-та, 1987.
- 2. Драго Р. Физические методы в химии. Т.1, т. 2. M.: Mup, 1981.
- 3. Бенуэл К. основы молекулярной спектроскопии. М.:, 1985.

- 4. **Ельяшевич, Михаил Александрович.** Атомная и молекулярная спектроскопия / Ельяшевич, Михаил Александрович; Гл. ред. Е.Кудряшова. 2-е изд. М.: Эдиториал УРСС, 2001. 894с.
- 5. **Купцов, Альберт Харисович.** Фурье-КР и Фурье-ИК спектры полимеров: [справочник] / Купцов, Альберт Харисович, Г. Н. Жижин; А. Х. Купцов, Г. Н. Жижин. М.: ФИЗМАТЛИТ, 2001. 582 с.
- 6. **Векшин, Н. Л.** Флуоресцентная спектроскопия биополимеров: [краткий учебный курс] / Н. Л. Векшин; Н. Л. Векшин. Пущино: [Фотон-век], 2008. 168 с.
- 7. **Беккер, Юрген.** Спектроскопия / Беккер, Юрген; Ю. Беккер; пер. с нем. Л. Н. Казанцевой под ред. А. А. Пупышева, М. В. Поляковой. М.: Техносфера, 2009. 527 с.
- 8. **Шмидт, Вернер.** Оптическая спектроскопия для химиков и биологов / Шмидт, Вернер; В. Шмидт; пер. с англ. Н. П. Ивановской; под ред. С. В. Савилова. М.: Техносфера, 2007. 367 с.
- 9. **Соболев, Валентин Викторович.** Оптические свойства и электронная структура неметаллов. Т. 1: Введение в теорию / Соболев, Валентин Викторович; В. В. Соболев. Москва; Ижевск: Институт компьютерных исследований, 2012. 583 с.
- 10. Демтредер, Вольфганг. Современная лазерная спектроскопия: [учебное пособие] / Демтредер, Вольфганг; В. Демтредер; пер. с англ. М. В. Рябининой, Л. А. Мельникова, В. Л. Дербова; под ред. Л. А. Мельникова. Долгопрудный: Интеллект, 2014. 1071 с.
- 11. Спектроскопия ядерного магнитного резонанса для химиков: [учебник для химических специальностей вузов] / Ю. М. Воловенко, В. Г. Карцев, И. В. Комаров и др. [Москва]: [Международный благотворительный фонд "Научное Партнерство"]: ICSPF Press, 2011. 694 с.

5.3. Периодические издания:

Периодические издания: журналы – «Пластические массы», «Полимерные материалы», «Российский химический журнал», «Химическая промышленность», «Успехи химии», «Композитный мир», материалы международной конференции («Композит-2001, 2007, 2010») и многие другие.

- 6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины «Современные методы исследования неорганических веществ»..
 - 1. http://www.scirus.com/
 - 2. http://www.ihtik.lib.ru/
 - 3. http://www.y10k.ru/books/
 - 4. http://www.iupac.org/
 - 5. http://www.anchem.ru/literature/
 - 6. http://www.sciencedirect.com
 - 7. http://chemteg.ru/lib/book
 - 8. http://www.chem.msu.su/rus
 - 9. http://djvu-inf.narod.ru/nclib.htm
 - 10. http://www.elsevier.com/
 - 11. http://www.uspkhim.ru/
 - 12. http://www.strf.ru/database.aspx

а также, интернет сайты ведущих государственных ВУЗов и научных организаций РФ: МГУ, СПбГУ, РХТУ, НГУ, КубГУ, РАН РФ и др.

Зарубежные ведущие научные и учебные цетры: NBS USA, MTI UK, ChLab Japan, NSRDS и др.

Интерактивная база данных книг и журналов SpringerLink.

7. Методические указания для обучающихся по освоению дисциплины «Современные методы исследования неорганических веществ».

No	Наименование раздела	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
	Введение	Буков Н.Н., Кузнецова С.Л., Костырина Т.В. Физические методы исследования. Молекулярная спектроскопия. Уч. пособие, КубГУ, http://www.kubsu.ru/sites/default/files/department/MOLEKULYRNAYSPEKTROSKOPIY_6.pdf
12	Электронная спектроскопия.	Буков Н.Н., Павлов П.А., Фурсина А.Б. Физические методы исследования. Часть 1. Электронные спектры. Уч. пособие, КубГУ. http://www.kubsu.ru/sites/default/files/department/ELEKTRONNIESPEKT RI_1CHAST1.pdf Буков Н.Н., Кузнецова С.Л., Костырина Т.В. Физические методы исследования: Электронная спектроскопия. – Краснодар: КубГУ, 2006. http://www.kubsu.ru/sites/default/files/department/ELEKTRONNAYSPEK TRI_2.pdf
13	Колебательная	Буков Н.Н., Колоколов Ф.А., Костырина Т.В., Кузнецова С.Л.
	спектроскопия.	Физические методы исследования: Колебательная спектроскопия. Уч. пособие, КубГУ, http://www.kubsu.ru/sites/default/files/department/KOLEBATELNAYSPE KTROSKOPIY_4.pdf http://www.kubsu.ru/sites/default/files/department/KOLEBATELNIESPEKTRI_3.pdf
14	Радиоспектроск опия.	Буков Н.Н., Кузнецова С.Л., Костырина Т.В., Буиклиский В.Д. Физические методы исследования. Часть 3: Спектроскопия ЯМР (H ¹). – Краснодар: КубГУ, 2006. http://www.kubsu.ru/sites/default/files/department/SPEKTROSKOPIYYM R_5.pdf
15	Масс- спектрометрия.	Сильверстейн Р., Вебстер Ф., Кимл Д. Спектрометрическая идентификация органических соединений: учебное пособие М.: БИНОМ. Лаборатория знаний, 2012. 548 с.
16	применение	Буков Н.Н., Буиклиский В.Д., Панюшкин В.Т. Физические методы исследования координационных соединений редкоземельных элементов. Краснодар, КубГУ «Книга», 2001

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине «Современные методы исследования неорганических веществ».

Информационные технологии - не предусмотрены

8.2 Перечень необходимого программного обеспечения.

- Программы, демонстрации видео материалов (проигрыватель «Windows Media Player»).
 - Программы для демонстрации и создания презентаций («Microsoft Power Point»).

8.3 Перечень информационных справочных систем:

- 1. Справочно-правовая система «Консультант Плюс» (http://www.consultant.ru)
- 2. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru)/

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

N_0N_0	Перечень	No	Перечень лабораторного	Перечень и
0 1.20 1.2	лабораторий	аудито	оборудования *	результаты
	·iwoopwropiiii	рии	осорудовины	научно-
		Piiii		исследовательски
				х разработок,
				осуществляемых
				на базе
				лаборатории *
1.	Лаборатория	134 C	ИК-Фурье спектрометр VERTEX-	Подготовка и
1.	спектроскопии	1310	70, спектрофотометр UV-VIS	проведение
	координационн		НІТАСНІ U-3900, КР-спектрометр	курсовых,
	ых соединений		SPEX RAMALOG,	выпускных
	эт сосдинении		длинноволновый ИК-фурье	бакалаврских,
			спектрометр ЛАФС-1000,	магистерских и
			компьютеры, анализатор жидкости	аспирантских
			Флюорат панорама -02.	работ, научно-
2.	Лаборатория	136 C	установка для осаждения тонких	исследовательски
	синтеза		пленок ССR Copra Cube ISSA,	х работ
	координационн		сушильный шкаф СШУ, дозаторы	бакалавров,
	ых соединений		автоматические, плитка	магистров и
	, ,		электрическая, мешалка	аспирантов по
			магнитная, весы аналитические	химии
			Shinko HTR-220CE.	координационны
				х соединений
3.	Лаборатория	136	ЭПР-спектрометр, ИК-	Проведение
	физических		спектрометр IR-70, плитки	исследований
	методов		электрические, компьютеры,	координационны
	исследования		мешалка магнитная, весы	х и композитных
			аналитические ВЛР-200.	материалов
4.	Лаборатория	422 C	программатор импульсного тока	Подготовка и
	электрохимиче		ВК1760А, вакуумный сушильный	проведение
	ского синтеза		шкаф шсв-65/3.5.	курсовых,
				выпускных

5.	Лаборатория неорганическог о синтеза Лаборатория	424 C 426 C	весы аналитические Adventurer Ohaus, мешалка магнитная с подогревом ММ-5, плитки электрические, холодильник Candy.	бакалаврских, магистерских и аспирантских работ, научно- исследовательски х работ бакалавров,
	химии координационн ых соединений		рН метр-иономер «Мультитест 111-1», станция рабочая, потенциостат IPC FRA, мешалка магнитная Leki MS1.	магистров и аспирантов по химии координационны
	Лаборатория бионеорганиче ской химии	428 C	рабочая станция, источник тока CT-562-M, спектрофотометр Leki SS 2110 UV, мешалка магнитная, дозатор капельный.	х соединений
	Лаборатория защитных покрытий	443 C	Прибор для определения прочности плёнок, «Константа У-1А», рабочая станция, сушильный шкаф ШС-80-01 СПУ, муфельный шкаф SNOL, весы технохимические Асот JW1, адгезиметр Posi-test AT-A, алмазный станок для резки высокопрочных композитных материалов.	Подготовка и проведение курсовых, выпускных бакалаврских, магистерских и аспирантских работ, научно-исследовательски х работ
	Лаборатория химической технологии и материаловеде ния	435 C	Спектрофотометр Leki SS 2107, Весы электронные Leki В 5002, рН метр, «Эксперт-001-1», мешалка магнитная с подогревом ПЭ- 6110, муфельная печь LOTP, встряхиватель IKA C-MAG HS7, твердомер ТК-2М, центрифуга лабораторная ЦЕН-16, микроскоп металлографический Альтами.	бакалавров, магистров и аспирантов по химии координационны х соединений и композитных материалов
	Лаборатория композитных материалов	433 C	Абразиметр Taber Abraser, мешалка с подогревом, плитки электрические, весы аналитические ВЛР-200, мешалка магнитная, термостат водяной проточный.	

Также в КубГУ функционируют УНПК «Аналит» и Центр коллективного пользования «Диагностика структуры и свойств наноматериалов», в которых имеется уникальное высокотехнологичное современное оборудование, позволяющее выполнять научно-исследовательскую работу на высоком уровне: сканирующий электронный микроскоп с энергодисперсионной приставкой JSM 7500F, атомно-силовой сканирующий микроскоп JSPM 5400, ЭПР спектрометр JEOL FA-300, ЯМР спектрометр JNM ECA-400.