Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ **M2.B.ДВ.1.2 «МОЛЕКУЛЯРНАЯ СПЕКТРОСКОПИЯ КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ»**

Направление подготовки - 04.04.01 Химия
Направленность - неорганическая химия
Программа подготовки - академическая
Форма обучения — очная
Квалификация выпускника - магистр

Рабочая программа дисциплины «Молекулярная спектроскопия координационных соединений» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования, утвержденным приказом Минобрнауки России от 23.09.2015 № 1042 по направлению подготовки 04.04.01 — Химия

товки 04.04.01 – Химия
Программу составил
д.х.н., профессор кафедры общей, неорганической химии и информационно-
вычислительных технологий в химии Буков Н.Н.
Заведующий кафедрой
д.х.н., профессор Буков Н.Н. <u>19</u> <u>«29»</u> <u>06</u> 2017 г.
Рабочая программа обсуждена на заседании кафедры общей, неорганической
химии и информационно-вычислительных технологий в химии « $\frac{f_2}{f_2}$ » $\frac{f_2}{f_2}$ 3аведующий кафедрой д.х.н., профессор Буков Н.Н.
Утверждена на заседании учебно-методической комиссии факультета химии
и высоких технологий « <u>27</u> »
Председатель УМК факультета доцент Стороженко Т.П.
Эксперты:
Р.В. Горохов, главный специалист регионального управления по строитель-
ству объектов г. Краснодар ООО «Газпром инвест» кандидат химических наук, доцент
В.А. Исаев, профессор кафедры физики и информационных систем Кубан-
ского государственного университета, доктор физико-математических наук,

1 Цели и задачи изучения дисциплины

Преподавание курса «Молекулярная спектроскопия координационных соединений» имеет целью дать студенту понимание принципиальных основ, практических возможностей и ограничений, важнейших для химиков спектральных методов исследования координационных соединений, знакомство с их аппаратурным оснащением и условиями проведения эксперимента, умение интерпретировать и грамотно оценивать экспериментальные данные, в том числе публикуемые в научной литературе.

В курсе основное внимание уделяется классическим методам электронной и колебательной спектроскопии. ЯМР, ЭПР и масс-спектрометрия дается в рамках представления о применении совместных физических методах, позволяющих извлекать уникальную и принципиально важную информацию о строении и свойствах координационных соединений.

1.1 Цель дисциплины

Студент должен *овладеть* методологией молекулярной спектроскопии координационных соединений переходных элементов, оптимальному выбору физических методов для решения поставленных задач, знать основы теории и эксперимента основных спектральных методов исследования и делать заключения на основании анализа и сопоставления всей совокупности имеющихся спектральных данных.

1.2 Задачи дисциплины

В результате изучения данной дисциплины студенты должны 1) знать:

- классификацию и характеристику физических методов исследования;
- теоретические основы спектральных и спектроскопических методов;
- проблемы получения и регистрации спектров;
- методы определения энергетических и геометрических параметров молекул и веществ;
- методы электронной, колебательной, ЯМР и масс-спектроскопии;
- принципы работы серийных спектральных приборов;
- стратегию применения физических методов исследования при идентификации и количественном анализе химических соединений и их смесей.

2) уметь:

- выбирать оптимальные физические методы исследования конкретных химических соединений и веществ;
- интерпретировать спектральные данные электронной, колебательной, ЯМР и масс-спектроскопии;
- готовить исследуемые вещества для спектрального анализа в выбранном диапазоне электромагнитных волн;
- идентифицировать химические соединения по данным спектральных методов анализа;
- применять данные методов электронной, колебательной, ЯМР и масс-спектроскопии при исследовании химических процессов.

1.3 Место дисциплины в структуре образовательной программы

Дисциплина «Молекулярная спектроскопия координационных соединений» относится к вариативной части Блока 1 учебного плана.

Знания, приобретенные при освоении данного курса, будут использованы при решении структурных задач выпускных квалификационных работ (магистерских диссертаций) по неорганической химии.

1.4 Перечень планируемых результатов обучения по дисциплине «Молекулярная спектроскопия координационных соединений», соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций: ПК-2 и ПК-3

NC.	Ин- декс	Co. and a		изучения учебног учающиеся долж	учебной дисциплины ся должны	
№ п.п	компе петен- тен- ции	Содержание компетенции (или её части)	знать	уметь	владеть	
1	ПК-2	способностью выполнять стан- дартные опера- ции по предла- гаемым методи- кам	стратегию применения методов моле-кулярной спектроскопии при идентификации и качественном анализе координационных соединений переходных элементов	применять данные методов молекулярной спектроскопии при исследовании химических процессов координационных соединений	методологией исследования химических процессов и строения координационных соединений переходных элементов методами молекулярной спектроскопии	
2	ПК-3	владением базовыми навыками использования современной аппаратуры при проведении научных исследований	приборную ба- зу молекуляр- ной спектро- скопии	подготовить образцы координационных соединений и записать их молекулярные спектры	методологией молекулярной спектроскопии координационных соединений переходных элементов	

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 4 зач.ед. (144 часа), их распределение по видам работ представлено в таблице.

Вид учебн	юй работы	Всего	Cei	местры	
		часов	9		
Контактная работа, в то	Контактная работа, в том числе:				
Аудиторные занятия (ве	Аудиторные занятия (всего)				
Занятия лекционного тип	Занятия лекционного типа				
Лабораторные занятия		54	54		
Занятия семинарского ти	па (семинары, практиче-				
ские занятия)		-	-		
Иная контактная работ	a	0,2	0,2		
Контроль самостоятельно	ой работы (КСР)	2	2		
Промежуточная аттестац	ия (ИКР)	0,2	0,2		
Самостоятельная работ	а, в том числе:	71,8	71,8		
Проработка учебного (тес	оретического) материала	21,8	21,8		
	ьных заданий (подготовка				
сообщений, презентаций,	докладов)				
Подготовка отчетов по ла	бораторным работам и	10	10		
их защите					
Подготовка к текущему к	сонтролю	-	-		
Контроль:					
Подготовка к экзамену	-	-			
Общая трудоемкость	час	144	144		
	контактная работа	72,2	72,2		
	зач. ед	4	4		

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины.

Разделы дисциплины, изучаемые в семестре А

	т издены днеции		J			
No		Количество часов				
	Науменаранна раздалар		A	удиторн	ая	Самостоя-
раз-	Наименование разделов	Всего		работа		тельная работа
дела			Л	ПР	ЛР	_
1	Введение.	6	2	-	2	1,8
2	Электронная спектроскопия.		4	_	16	12
2	Колебательная спектроско-	4	4		16	12
3	пия.		4			
4	Радиоспектроскопия.		2	-	4	12
5	Масс-спектрометрия.		2	-	4	12
6	Совместное применение		4		12	12
	спектральных методов.		4	_	12	12
	Всего:	144	18	_	54	71,8

2.3 Содержание разделов дисциплины: «Молекулярная спектроскопия координационных соединений»

2.3.1 Занятия лекционного типа

№ раз де- ла	Наименование раздела 2 Введение. Общая теория измерений	З Физическая теория методов. Прямая и обратная задачи. Понятия корректной и некорректной постановки задач физических методов.	Форма теку- щего кон- троля 4
2	Электронная спектроскопия. Электронные состояния и электронные переходы в двухатомных и сложных молекулах. Электронные спектры поглощения молекул в видимой и ультрафиолетовой областях.	Электронные состояния молекул, определение и основные характеристики. Волновая функция, энергия, вырожденность, мультиплетность, время жизни и заселённость электронных состояний. Колебательновращательная структура электронных состояний и электронно-колебательно-вращательные переходы в молекулах. Тонкая и сверхтонкая структура электронных спектров молекул. Принцип Франка-Кондона. Классификация и номенклатура электронных состояний и переходов между ними в двухатомных, многоатомных линейных и нелинейных молекулах. Классификация по Каша и Малликену, концепция хромофорных и ауксохромных групп, переходы с переносом заряда. Критерии отнесения полос поглощения к различны электронным переходам. Влияние эффектов сопряжения, пространственных эффектов и полярности растворителя на электронные спектры поглощения молекул. Эмпирические правила Вудворда-Физера. Квантовомеханическая вероятность электронно-колебательновращательных переходов и сила осциллятора. Интенсивность полос поглощения различных электронных переходов. Правила отбора и нарушение запрета. Применение электронных спектров поглощения в качественном, количественном и структурном видах анализа. Определение молекулярных постоянных двухатомных молекул. Специфика электронных спектров поглощения различных классов химических соединений. Техника и методы абсорбционной спектроскопии в видимой и ультрафиолетовой областях.	ЛР
3	Колебательная спектроскопия.	Классическое рассмотрение колебаний простых многоатомных молекул. Квантовомеханический подход к	ЛР, К

Спектроскопия колебательных переходов в молекулах.

Применение колебательной спектроскопии в химии.

описанию колебательных спектров. Уровни энергии, их классификация. Фундаментальные, обертонные и составные частоты. Инфракрасные (ИК) спектры поглощения и спектры комбинационного рассеяния (КР). Правила отбора и интенсивность полос колебательных переходов в ИК-спектрах поглощения и в спектрах КР. Характеристичность нормальных колебаний. Концепция групповых частот и её ограничения.

Сопоставление ИК- и КР-спектров и выводы о симметрии молекул. Определение симметрии молекулы по данным ИК и КР спектров. Использование групповых частот в структурном анализе. Идентификация спектральных данных. Качественный и количественный анализ. Исследования строения молекул, динамической изомерии, равновесий и кинетики химических реакций. Методы и техника ИК- и КР-спектроскопии. Понятия о методах НПВО и МНПВО. Подготовка образцов для регистрации спектров.

4 Радиоспектро- скопия.

Ядерный магнитный резонанс (ЯМР).

Электронный парамагнитный резонанс (ЭПР).

Ядерный спиновый и магнитный моменты. Магнитно активные ядра атомов химических элементов и их изотопов. Физические основы явления ЯМР. Снятие вырождения спиновых состояний ядер в постоянном магнитном поле, эффект Зеемана. Условия возникновения ЯМР. Заселённость энергетических уровней. Насыщение, релаксационные процессы, ширина сигнала в спектроскопии ЯМР. Влияние электронного окружения на результирующее магнитное поле, константы электронного экранирования ядер. Протонный магнитный резонанс, ЯМР ¹³С и других ядер. Относительный химический сдвиг, его определение и использование в химии. Шкалы химических сдвигов. Спин-спиновое взаимодействие ядер и его природа. Энергетические состояния систем взаимодействующих спинов и мультипликативные функции для описания этих систем. Число компонент мультиплета, распределение интенсивности между сигналами спектра ЯМР и между компонентами в мультиплетом сигнале. Константы спинспинового взаимодействия, их физический смысл, классификация и информативность. Техника и методы эксперимента. Применение метода ЯМР в химии. Структурный анализ. Определение структуры молекулы по химическим сдвигам и спин-спиновым расщеплениям в спектрах ЯМР.

Т

		Структура спектров ЭПР; изучение кинетики и механизмов реакций методом ЭПР. Определение термодинамических характеристик веществ и реакций.	
5	Масс- спектрометрия. Применение масс- спектрометрии в химии.	Методы ионизации молекул. Электронный удар, фото- ионизация, химическая ионизация, комбинированные методы. Ионный ток и потенциал появления ионов. Принцип Франка-Кондона. Диссоциативная ионизация. Типы ионов в масс-спектрометрии. Принципы устрой- ства масс-спектрометров. Идентификация веществ. Таблицы массовых чисел. Соотношение изотопов. Корреляция между молекуляр- ной структурой и масс-спектрами. Измерение потен- циалов появления ионов и определение потенциалов ионизации и энергии разрыва связей. Термодинамиче- ские исследования. Определение парциальных давле- ний компонентов газовой смеси. Определение теплоты сублимации, теплоты реакции и констант равновесия.	ЛР, К
6	Совместное применение спектральных методов. Другие физические методы исследования.	Чувствительность, разрешающая способность и характеристическое время различных спектральных методов. Возможности, области применения и интеграция физических методов исследования. Понятие о спектрах флуоресценции и фосфоресценции. Методы рентгеноэлектронной, фотоэлектронной и ожеспектроскопии. Методы изучения поляризуемости молекул: дисперсия оптического вращения и оптический круговой дихроизм. Электронный парамагнитный резонанс (ЭПР). Методы определения электрических дипольных моментов молекул. Методы определения геометрии молекул. Ядерный квадрупольный и гаммарезонансы.	ЛР

2.3.2 Занятия семинарского типа Занятия семинарского типа - не предусмотрены

2.3.3 Лабораторные занятия

№	Наименование раздела	Наименование лабораторных работ	Форма текущего контроля
1.		Техника безопасности при работе в химической лаборатории. Работа с электроизмерительными и оптическими приборами.	УО

2.	Электронная спек-	Измерение электронных спектров координацион-	ЛР
	троскопия.	ных соединений	
3.	Колебательная спек-	Измерение колебательных спектров координаци-	ЛР
	троскопия.	онных соединений	
4.	Радиоспектроскопия.	Интерпретация спектров ЭПР и ЯМР (1 H) и (13 C)	ЛР
		координационных соединений	
5.	Macc-	Интерпретация масс-спектров координационных	ЛР
	спектрометрия.	соединений	
6.	Совместное приме-	Работа с Базами данных по молекулярным спек-	ЛР
	нение спектральных	трам.	
	методов.		

2.3.4 Примерная тематика курсовых работ Проведение курсовых работ по дисциплине – не предусмотрено

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

No	Наименование раздела	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
	Введение	Буков Н.Н., Кузнецова С.Л., Костырина Т.В. Физические методы исследования. Молекулярная спектроскопия. Уч. пособие, КубГУ, http://www.kubsu.ru/sites/default/files/department/MOLEKULYRNAYSPEKTROSKOPIY_6.pdf
8.	Электронная спектроскопия.	Буков Н.Н., Павлов П.А., Фурсина А.Б. Физические методы исследования. Часть 1. Электронные спектры. Уч. пособие, КубГУ. http://www.kubsu.ru/sites/default/files/department/ELEKTRONNIESPEKTRI_1CHAST1.pdf Буков Н.Н., Кузнецова С.Л., Костырина Т.В. Физические методы исследования: Электронная спектроскопия. — Краснодар: КубГУ, 2006. http://www.kubsu.ru/sites/default/files/department/ELEKTRONNAYSPEKTRI_2.pdf
9.	Колебательная спектроскопия.	Буков Н.Н., Колоколов Ф.А., Костырина Т.В., Кузнецова С.Л. Физические методы исследования: Колебательная спектроскопия. Уч. пособие, КубГУ, http://www.kubsu.ru/sites/default/files/department/KOLEBATELNAYSPEKTROSKOPIY_4.pdf Буков Н.Н., Костырина Т.В., Абрамов Д.Е., Фурсина А.Б. Физические методы исследования. Часть 2. Колебательная спектроскопия. Уч. пособие, КубГУ, http://www.kubsu.ru/sites/default/files/department/KOLEBATELNIESPEKTRI_3.pdf
	Радиоспектро- скопия.	Буков Н.Н., Кузнецова С.Л., Костырина Т.В., Буиклиский В.Д. Физические методы исследования. Часть 3: Спектроскопия ЯМР (H¹). – Краснодар: КубГУ, 2006. http://www.kubsu.ru/sites/default/files/department/SPEKTROSKOPIYYMR.5.pdf
11	Macc-	Сильверстейн Р., Вебстер Ф., Кимл Д. Спектрометрическая идентифи-

		кация органических соединений: учебное пособие М.: БИНОМ. Лаборатория знаний, 2012. 548 с.
12	Совместное	Буков Н.Н., Буиклиский В.Д., Панюшкин В.Т. Физические методы ис-
	применение	следования координационных соединений редкоземельных элементов.
	спектральных	Краснодар, КубГУ «Книга», 2001
	методов.	

3. Образовательные технологии

Семестр	Вид занятия (Л, ПР, ЛР)	Используемые интерактивные образовательные технологии	Количество часов
4	Л	электронные презентации	16
	ПР	-	
	ЛР	решение проблемных ситуаций в со-	16
		ставе малых групп.	
Итого:			32

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Текущий контроль осуществляется в устной и электронной форме в процессе выполнения лабораторных работ. Промежуточный контроль проводится в виде тестов и опроса. Итоговый контроль осуществляется приемом зачета и экзамена в семестре А.

Студенты, успешно решившие все задачи самостоятельных заданий методичек №№ 2, 4, 5, и успешно выполнившие лабораторный практикум, аттестуются досрочно.

4.1 Фонд оценочных средств для проведения текущей аттестации

ЗАДАЧИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ № 1

по курсу «Молекулярная спектроскопия координационных соединений» по теме «Электронная спектроскопия»

см. Методические указания №2 - Буков Н.Н., Кузнецова С.Л., Костырина Т.В. Физические методы исследования: Электронная спектроскопия. – Краснодар: КубГУ, 2006. стр. 32-36

ЗАДАЧИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ № 2

по курсу «Молекулярная спектроскопия координационных соединений» по теме «Колебательная спектроскопия»

см. Методические указания №4 - Буков Н.Н., Колоколов Ф.А., Костырина Т.В., Кузнецова С.Л. Физические методы исследования: Колебательная спектроскопия. Уч. пособие, КубГУ, Краснодар, 2010. стр. 40-45

ЗАДАЧИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ № 3

по курсу «Молекулярная спектроскопия координационных соединений»

см. Методические указания №5 - Буков Н.Н., Костырина Т.В., Кузнецова С.Л., Буиклиский В.Д. Физические методы исследования. Часть 3. Спектроскопия ЯМР (¹H). Краснодар, ООО «Просвещение-Юг», 2000. стр. 40-45

ЗАДАЧИ ИТОГОВОЙ САМОСТОЯТЕЛЬНОЙ РАБОТЫ № 4

по курсу «Молекулярная спектроскопия координационных соединений» по теме «Спектроскопия ЯМР 1 Н»

см. Миронов В.А., Янковский С.А. Спектроскопия в органической химии. М.: Химия. 1985. стр. 127-226

4.2 Фонд оценочных средств для проведения промежуточной аттестации

Вопросы к экзамену

- 1. Общая характеристика методов молекулярной спектроскопии.
- 2. Классификация спектральных методов исследования.
- 3. Взаимодействие электромагнитного излучения с веществом.
- 4. Основные применения спектральных методов.
- 5. Теория кристаллического поля и теория поля лигандов в спектроскопии.
- 6. Правила отбора спектральных полос поглощения.
- 7. Переходы в атомах и молекулах. Правила отбора.
- 8. Энергетические состояния атомов и молекул. Термы.
- 9. Полуэмпирические методы в спектроскопии.
- 10.Основные спектральные методы расчета констант реакций.
- 11. Прямая и обратная спектральная задача.
- 12.Основные характеристики уровней энергии.
- 13. Законы светопоглощения.
- 14. Вероятности переходов и правила отбора.
- 15.Симметрия атомных систем и их уровней энергии.
- 16.Виды спектральных измерений по условиям, определяющим точность результата.
- 17. Интенсивности в спектрах.
- 18. Химические процессы, влияющие на ширину спектральной линии.
- 19. Обработка результатов спектральных измерений.
- 20. Энергетические уровни двухатомной молекулы.
- 21. Виды спектроскопии по свойствам излучения.
- 22. Естественные пределы спектральных измерений.
- 23. Электронная абсорбционная спектроскопия.
- 24.Интерпретация электронных спектров.
- 25.Отнесение электронных переходов.
- 26.Интенсивность электронных переходов.
- 27.Влияние полярности растворителя на спектры

- 28.Спектральные особенности ионов переходных металлов.
- 29. Критерии, помогающие отнесению полос в электронной спектроскопии.
- 30. Техника эксперимента в электронной спектроскопии.
- 31. Колебательная (ИК-, КР-) спектроскопия.
- 32. Концепция групповых частот в колебательной спектроскопии
- 33. Корреляция силовых постоянных связей.
- 34. Правила отбора в колебательной спектроскопии
- 35.Симметрия молекулярных колебаний
- 36. Методика эксперимента в колебательной спектроскопии.
- 37. Различия в ИК- и КР-спектроскопии.
- 38. Нормальные колебания многоатомных молекул.
- 39. Анализ нормальных колебаний молекулы HCN.
- 40.ЯМР-спектроскопия.
- 41.Спин-спиновые взаимодействия в ЯМР-спектроскопии.
- 42. Магнитные свойства ядер. Переходы в ЯМР.
- 43. Моделирование спектров ЯМР ¹Н по уравнениям Шулери
- 44.ЭПР-спектроскопия.
- **45.**g-фактор.
- 46. Техника эксперимента в радиоспектроскопии.
- 47. Масс-спектроскопия.
- 48. Процессы фрагментации в масс-спектроскопии.
- 49. Интерпретация масс-спектров.
- 50. Хромато-масс-спектрометрия.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

5.1 Основная литература:

- 1. Физические методы исследования в химии: Учебник для студентов вузов, обуч. по спец. 011000 "Химия" и направлению подготовки 510500 "Химия" / Пентин, Юрий Андреевич, Вилков, Лев Васильевич. М.: Издво "МИР" Изд-во "АСТ", 2003. 683 с.
- 2. Пентин Ю.А., Курамшина Г.М. Основы молекулярной спектроскопии: учебное пособие для вузов. М.: Мир, 208. 656 с.

5.2 Дополнительная литература:

- 1. Буков Н.Н., Буиклиский В.Д., Панюшкин В.Т. Физические методы исследования координационных соединений редкоземельных элементов. Краснодар, КубГУ «Книга», 2001
- 2. Ельяшевич М.А. Атомная и молекулярная спектроскопия. Книги 1-3. М.: URSS. 2001-2006
- 3. Драго Р. Физические методы в химии, 1, 2 тт. М.: Мир, 1981

- 4. Купцов, Альберт Харисович. Фурье-КР и Фурье-ИК спектры полимеров: [справочник] / Купцов, Альберт Харисович, Г. Н. Жижин; А. Х. Купцов, Г. Н. Жижин. М.: ФИЗМАТЛИТ, 2001. 582 с.
- 5. Игнатьев, Борис Владимирович. Колебательная спектроскопия: учебно-методическое пособие / Игнатьев, Борис Владимирович; [сост. Б. В. Игнатьев; М-во образования и науки Рос. Федерации, Кубанский гос. ун-т, Каф. экспериментальной физики]. Краснодар: [КубГУ], 2009. 35 с.
- 6. В.И. Васильева, О.Ф. Стоянова, И.В. Шкутина и др. Спектральные методы анализа: практическое руководство: учебное пособие для студентов вузов. Санкт-Петербург. Лань. 2014. 356 с.
- 7. Физические методы исследования неорганических веществ: учебное пособие для студентов / под ред. А.Б. Никольского. М.: Академия. 2006. 436 с.
- 8. Сильверстейн Р., Вебстер Ф., Кимл Д. Спектрометрическая идентификация органических соединений: учебное пособие М.: БИНОМ. Лаборатория знаний, 2012. 548 с.

5.3. Периодические издания:

Периодические журналы: «Химия и жизнь»,

«Журнал Общей химии»,

«Журнал Прикладной спектроскопии»,

«Координационная химия»,

«Журнал Структурной химии»,

«Российский химический журнал» и др.

6. Перечень ресурсов информационно-телекоммуникационной сети

«Интернет», необходимых для освоения дисциплины

http://chemistry.ru/

http://www.himhelp.ru/

http://www.nglib.ru.

http://www.xumuk.ru/

http://webbook.nist.gov/chemistry/

http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_frame_disp.cgi?sdbsno=19659

http://www.biblioclub.ru/

http://kubsu.ru/University/departments/CHEM/inorg/index.php и др.

Интернет сайты ведущих государственных ВУЗов и научных организаций РФ: МГУ, СПбГУ, РХТУ, НГУ, КубГУ, РАН РФ и др.

Зарубежные ведущие научные и учебные цетры: NBS USA, MTI UK, ChLab Japan, NSRDS и др.

Интерактивная база данных книг и журналов SpringerLink.

Химический редактор ChemSktch:http://www.acdlabs.com

7. Методические указания для обучающихся по освоению дисциплины

№	Наименование	Формы самостоятельной работы	Формы
	раздела		отчетности
1	Введение	Актуализация содержания тем	УО
		изучаемой дисциплины	
2	Электронная	Самостоятельное изучение разделов.	УО, ЛР
	спектроскопия.	Подготовка к лабораторным занятиям.	
	_	Работа с учебной литературой, базами	
		данных в сети Internet.	
3	Колебательная	Самостоятельное изучение разделов.	УО, ЛР
	спектроскопия.	Подготовка к лабораторным занятиям.	
	_	Работа с учебной литературой, базами	
		данных в сети Internet.	
4	Радиоспектро-	Самостоятельное изучение разделов.	УО, ЛР
	скопия.	Подготовка к лабораторным занятиям.	
		Работа с учебной литературой, базами	
		данных в сети Internet.	
5	Macc-	Самостоятельное изучение разделов.	УО, ЛР
	спектрометрия.	Подготовка к лабораторным занятиям.	
		Работа с учебной литературой, базами	
		данных в сети Internet.	
6	Совместное	Самостоятельное изучение разделов.	УО
	применение	Работа с учебной литературой, базами	
	спектральных	данных в сети Internet.	
	методов.		

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю) (при необходимости)

8.1 Перечень необходимого программного обеспечения

В курсе лабораторных работ используется следующее программное обеспечение: Microsoft Office (Word, Excel), ACD Labs Chemsketch, Компьютерная программа Hyper Chemistry .

8.2 Перечень необходимых информационных справочных систем

- 1. КонсультантПлюс//www.consultant.ru
- 2. Федеральный центр информационно-образовательных ресурсов. URL: http://fcior.edu.ru/.
 - 3. Российский образовательный портал. URL: http://www.school.edu.ru/

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Для материально-технического обеспечения дисциплины «Молекулярная спектроскопия координационных соединений» используется лабораторное оборудование и учебно-научная аппаратура (интерактивная доска, демонстрационные модели).

При выполнении лабораторных работ для реализации методик используются: спектрофотометры, инвентарь изготовления паст и таблеток исследуемых соединений, весы аналитические. При проведении лабораторных работ используются химические реактивы и посуда.

ПЭВМ уровня не ниже Pentium IV с операционной системой Windows XP / Windows 7, Компьютерная программа Hyper Chemistry.

РЕЦЕНЗИЯ

на рабочую программу по дисциплине «Молекулярная спектроскопия координационных соединений» направления подготовки 04.04.01 Химия, разработанную профессором кафедры ОНХиИВТвХ факультета химии и высоких технологий Федерального государственного бюджетного образовательного учреждения высшего образования «Кубанский государственный университет» Буковым Н.Н.

Рабочая программа разработана Федеральным B соответствии государственным образовательным стандартом высшего образования направлению подготовки 04.04.01 Химия (квалификация утверждённому Министерством образования и науки РФ 23.09.2015, приказ № 1042.

Структура рабочей программы соответствует требованиям Стандарта к структуре, условиям реализации и требованиям к результатам освоения основных образовательных программ.

Структура рабочей программы отражает цели и задачи дисциплины, содержит подробный тематический план с указанием отдельных тем лекционных и лабораторных занятий. В программу включён обширный список рекомендованной литературы, перечень используемых современных образовательных технологий, а также материально-техническая база, необходимая для полноценного преподавания и усвоения предмета. В программе сформулированы конечные результаты обучения в органичной увязке с осваиваемыми знаниями, умениями, приобретаемыми компетенциями в целом по ООП.

Структура программы и её содержание позволяют составить объективное мнение о тех знаниях, умениях и компетенциях, которые получат студенты, освоившие дисциплину «Молекулярная спектроскопия координационных соединений».

Распределение учебных часов соответствует учебному плану по направлению подготовки 04.04.01 Химия.

Содержание рабочей программы полностью отвечает современному уровню развития науки, техники и производства. В Программе отражены основные и практические возможности методов исследования неорганических и композитных материалов, с их аппаратурным оснащением и условиями проведения эксперимента Последовательность изложения учебного материала увязана с программами других дисциплин и требованиями Стандарта к минимуму содержания и уровню подготовки магистров. Тематика и количество лекционных и лабораторных занятий полностью соответствуют требованиям Используемые в ходе освоения дисциплины образовательные технологии практические позволяют сформировать знания И навыки дисциплин профессиональной деятельности обучающихся по направлению подготовки 04.04.01 Химия, программы подготовки - Неорганическая химия.

Рецензент: главный специалист регионального кана управления по строительству объектов г краснодар ООО «Газпром инвест» кандидат химинеских наук, доцент

Горохов Р.В.

РЕЦЕНЗИЯ

на РПД «Молекулярная спектроскопия координационных соединений» направления подготовки 04.04.01 Химия, направленность — неорганическая химия, профессора кафедры ОНХиИВТвХ, факультета ХиВТ, ФГБОУ ВО «КубГУ» Букова Н.Н.

Рабочая программа дисциплины «Молекулярная спектроскопия координационных соединений» разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 04.04.01 Химия, утверждённому Министерством образования и науки РФ 23.09.2015, приказ № 1042.

Структура рабочей программы соответствует требованиям Стандарта к структуре, условиям реализации и требованиям к результатам освоения основных образовательных программ.

Содержание РПД отражает цели и задачи дисциплины «Молекулярная спектроскопия координационных соединений», содержит подробный тематический план с указанием отдельных тем лекционных и лабораторных занятий. В программу включён список рекомендованной литературы, перечень используемых современных образовательных технологий, а также материально-техническая база, необходимая для полноценного преподавания и усвоения предмета. В программе сформулированы конечные результаты обучения в органичной увязке с осваиваемыми знаниями, умениями, приобретаемыми компетенциями в целом по ООП.

Структура РПД и её содержание позволяют составить объективное мнение о тех знаниях, умениях и компетенциях, которые получат студенты, освоившие дисциплину «Молекулярная спектроскопия координационных соединений».

Распределение учебных часов соответствует учебному плану по направлению подготовки 04.04.01 Химия.

Содержание рабочей программы отвечает современному уровню развития науки, техники и производства. В Программе отражены основные и практические возможности методов исследования неорганических и композитных материалов, с их аппаратурным оснащением и условиями проведения эксперимента Последовательность изложения учебного материала увязана с программами других дисциплин и требованиями Стандарта к минимуму содержания и уровню подготовки магистров. Тематика и количество лекционных и лабораторных занятий полностью соответствуют требованиям Стандарта. Используемые в ходе освоения дисциплины образовательные технологии позволяют сформировать практические знания и навыки дисциплин профессиональной деятельности обучающихся по направлению подготовки 04.04.01 Химия, программы подготовки - Неорганическая химия.

Рецензент:

Д-р физ.-мат. наук, профессор КубГУ

В.А. Исаев