АННОТАЦИЯ

дисциплины Б1.Б.05.05 «Атомная физика»

Направление подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи» Направленность (профиль) подготовки

«Оптические системы и сети связи»

Уровень – бакалавриат Курс 2 Семестр 4

Объем трудоемкости: 5 зачетных единицы (180 часов, из них - 84,5 часов аудиторной нагрузки: лекционных 32 часа, лабораторных занятий 32 часа; практических занятий 16 часов, кср 4 часа, самостоятельной работы 59,8 часов, контроль 35,7 часов).

Цель дисциплины:

Дисциплина «Атомная физика» входит в блок естественно-научных дисциплин, предназначенных для формирования у учащихся естественно-научного мировозрения и твердых знаний о процессах и явлениях, связанных с физическими свойствами микромира и квантовыми явлениями на атомно-молекулярном уровне, необходимых для понимания и использования в инженерно-технических разработках. Актуальность дисциплины «Атомная физика» обусловлена применением знаний, умений и навыков, полученных в процессе ее изучения, для изучения дисциплин из других блоков и успешного освоения специальности в целом.

Учебная дисциплина «Атомная физика» ставит своей целью изучение физических свойств микромира и квантовых явлений на атомно-молекулярном уровне.

Задачи дисциплины:

Основные задачи освоения дисциплины:

- изучить экспериментальные методы исследования внутреннего строения атомов;
- рассмотреть физические эффекты и явления, обусловленные, в основном, электронными оболочками атомов и молекул;
- усвоить основные понятия волновой механики и особенности подхода к изучению и описанию атомных явлений.

Воспитательная задача заключается в формировании у студентов профессионального отношения к проведению научно-исследовательских и прикладных работ, в развитии творческой инициативы и самостоятельности мышления.

В расширенный список общих задач дисциплины входят следующие задачи:

- обобщить и систематизировать знания по:
 - современным представлениям об атомно-молекулярном строении вещества, экспериментальным и теоретическим методам исследования внутреннего строения атомов и молекул;
 - основным законам, идеям и принципам атомной физики; физическим эффектам и явлениям, обусловленным, в основном, электронными оболочками атомов и молекул;
- научить:
 - с научной точки зрения осмысливать и интерпретировать основные положения атомных и молекулярных явлений;
 - применять полученные знания для правильной интерпретации основных явлений атомной физики;
 - надлежащим образом оценивать порядки физических величин;
 - использовать полученные знания в различных областях физической науки и техники;
 - настраивать и эксплуатировать экспериментальные приборы для исследования внутреннего строения атомов;

- применять имеющиеся теоретические знания для проведения и истолкования экспериментов;
- сформировать:
 - навыки применения основных методов физико-математического анализа для решения конкретных задач физики атомов и молекул;
 - навыки физико-математического моделирования;
 - умение с помощью адекватных методов оценивать точность и погрешность теоретических расчетов и экспериментальных измерений;
 - навыки правильной эксплуатации основных приборов и оборудования современной физической лаборатории;
 - навыки обработки и интерпретирования результатов эксперимента;
 - умение анализировать физический смысл полученных результатов.

Место дисциплины в структуре ООП ВО

Дисциплина Б1.Б.05.05 «Атомная физика» входит в модуль Физика Б1.Б.05 базовой части Б1.Б блока 1. Дисциплины (модули) Б1 учебного плана.

Дисциплина логически и содержательно-методически связана с дисциплинами модулей «Математика», «Общая физика», «Общий физический практикум». Для освоения данной дисциплины необходимо владеть методами математического анализа, аналитической геометрии, линейной алгебры, решением алгебраических, дифференциальных и интегральных уравнений; теории функций комплексного переменного, теории вероятностей и математической статистики; знать основные физические законы; уметь применять математические методы и физические законы для решения практических задач.

В результате изучения настоящей дисциплины студенты должны получить знания, имеющие не только самостоятельное значение, но и обеспечивающие базовую подготовку для усвоения дисциплин базовой и вариативной частей блока 1 «Дисциплины (модули)» учебного плана.

Требования к уровню освоения дисциплины

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций: ОПК-6, ПК-13.

No	Индекс	Содержание	В результате изучения учебной дисциплины				
п/п	компе-	компетенции	обучающиеся должны				
11/11	тенции	(или её части)	знать	уметь	владеть		
1	ОПК-3	способность владеть	– современные	– с научной точ-	– методами		
		основными метода-	представления	ки зрения	проведения		
		ми, способами и	об атомном	осмысливать и	физических		
		средствами получе-	строении веще-	интерпретиро-	исследований		
		ния, хранения, пере-	ства, основные	вать основные	и измерений;		
		работки информации	законы, идеи и	положения	– навыками		
			принципы	атомных явле-	применения		
			атомной физи-	ний, оценивать	основных ме-		
			ки, их станов-	порядки физиче-	тодов физи-		
			ление и разви-	ских величин,	ко-		
			тие в историче-	использовать	математиче-		
			ской последо-	полученные зна-	ского анализа		
			вательности, их	ния в различных	для решения		
			математиче-	областях физи-	естественно-		
			ское описание,	ческой науки и	научных за-		
			теоретическое	техники;	дач;		

исследование и практическое использование; - современные методы физикоматематического моделирования и теоретического исслелования явлений физики атома, методы наблюдения атомных явлений, их экспериментальное исследование и практическое использование; принципы устройства функционирования экспериментальных приборов ДЛЯ исследования внутреннего строения ато-MOB.

- в практической деятельности применять знания о физических свойствах объектов и явлений для создания гипотез и теоретических моделей, проводить анализ границ их применимости; - применять соответствующие методы провефизичедения ских исследований и измерений; – применять основные методы физикоматематического анализа для решения естественнонаучных задач и физического моделирования в производственной практике; применять имеющиеся теоретические знания для проведения и истолкования экспериментов; – настраивать и эксплуатировать экспериментальные приборы для исследования внутреннего строения атомов; применять имеющиеся тео-

ретические знания для проведения и истол-

экспе-

кования

навыками обработки и интерпретирования peзультатов физикоматематического моделирования, теоретического расчета экспериментального исследования; навыками правильной эксплуатации основных приборов оборудования современной физической лаборатории; навыками обработки интерпретирования peзультатов эксперимента: навыками применения полученных теоретических знаний для решения прикладных задач.

	1	T	T	Г	
				риментов;	
				– с помощью	
				адекватных ме-	
				тодов оценивать	
				точность и по-	
				грешность тео-	
				ретических рас-	
				четов и измере-	
				ний, анализиро-	
				вать физический	
				смысл получен-	
				ных результатов.	
2	ОПК-6	способность прово-	– современные	с научной точ-	– методами
	OTHE O	дить инструменталь-	представления	ки зрения	проведения
		ные измерения, ис-	об атомном	осмысливать и	физических
		пользуемые в обла-			исследований
		сти инфокоммуни-	строении веще-	интерпретиро- вать основные	и измерений;
		*	ства, основные		-
		кационных техноло-гий и систем связи	законы, идеи и	положения атомных явле-	– навыками
		тии и систем связи	принципы		применения
			атомной физи-	ний, оценивать	основных ме-
			ки, их станов-	порядки физиче-	тодов физи-
			ление и разви-	ских величин,	ко-
			тие в историче-	использовать	математиче-
			ской последо-	полученные зна-	ского анализа
			вательности, их	ния в различных	для решения
			математиче-	областях физи-	естественно-
			ское описание,	ческой науки и	научных за-
			теоретическое	техники;	дач;
			исследование и	 в практической 	– навыками
			практическое	деятельности	обработки и
			использование;	применять зна-	интерпрети-
			± .	ния о физиче-	1
			методы физи-	ских свойствах	зультатов фи-
			ко-	объектов и явле-	зико-
			математиче-	ний для созда-	математиче-
			ского модели-	ния гипотез и	ского моде-
			рования и тео-	теоретических	лирования,
			ретического	моделей, прово-	теоретиче-
			исследования	дить анализ гра-	ского расчета
			явлений физи-	ниц их приме-	и экспери-
			ки атома, мето-	нимости;	ментального
			ды наблюдения	– применять со-	исследова-
			атомных явле-	ответствующие	ния;
			ний, их экспе-	методы прове-	– навыками
			риментальное	дения физиче-	правильной
			исследование и	ских исследова-	эксплуатации
			практическое	ний и измере-	основных
			использование;	ний;	приборов и
			– принципы	– применять ос-	оборудования
			устройства и	новные методы	современной
			функциониро-	физико-	физической
			вания экспери-	математического	лаборатории;
	l	l .	Lanin Skeneph-	maremarn reckord	moopuropin,

ментальных приборов для исследования внутреннего строения атомов.	анализа для решения естественнонаучных задач и физического моделирования в производственной практике; — применять имеющиеся теоретические знания для проведения и истолкования экспериментов; — настраивать и экспериментальные приборы для исследования внутреннего строения атомов; — применять имеющиеся теоретические знания для проведения и истолкования внутреннего строения атомов; — применять имеющиеся теоретические знания для проведения и истолкования экспериментов; — с помощью адекватных методов оценивать	 навыками обработки и интерпретирования результатов эксперимента; навыками применения полученных теоретических знаний для решения прикладных задач.
	кования экспериментов; – с помощью адекватных ме-	
	гочность и по- грешность тео- ретических рас- четов и измере- ний, анализиро- вать физический смысл получен- ных результатов.	

Основные разделы дисциплины:

	Наименование разделов (тем)	Количество часов						
№ π/π		Всего	Аудиторная работа			КСР	Внеауди- торная работа	
			Л	ПЗ	ЛР		CPC	
1	Введение в атомную физику	11,8	2		4		5,8	
2	Планетарная модель атома	9	2	2			5	
3	Боровская модель атома водорода	22	4	2	8	2	6	
4	Корпускулярно-волновой дуализм	8	2	2			4	

5	Основы квантовой теории	8	2	2			4
6	Уравнения Шредингера	9	2	2			5
7	Квантовая теория атома водорода	24	4	2	10	2	6
8	Квантование атомов	18	4	2	6		6
9	Магнитные свойства атомов	12	4	2			6
10	Рентгеновское излучение	8	2				6
11	Оптические квантовые генераторы	14	4		4		6
	Итого по дисциплине:	143,8	32	16	32	4	59,8

Курсовые работы: не предусмотрены

Форма проведения аттестации по дисциплине: зачет, экзамен

Основная литература:

- 1. Барков А.П., Дорош В.С., Лысенко В.Е., Никитин В.А., Прохоров В.П., Хотнянская Е.Б. Атомная физика: учебно-методическое пособие.— Краснодар: Кубанский гос. ун-т, 2016.
- 2. Электронный курс «Физика атома» (включает в себя: 1) электронный курс лекций; 2) контрольные вопросы по разделам учебного курса; 3) практические задания по разделам учебного курса; 4) тесты по разделам учебного курса); режим доступа:

http://moodle.kubsu.ru/

3. Иродов И.Е. Квантовая физика. Основные законы: учебное пособие [Электронный ресурс]: учеб. пособие — Электрон. дан. — Москва: Издательство «Лаборатория знаний», 2017. — 261 с. — Режим доступа:

https://e.lanbook.com/book/94103

4. Иродов И.Е. Задачи по общей физике [Электронный ресурс]: учеб. пособие — Электрон. дан. — Москва: Издательство "Лаборатория знаний", 2014. — 431 с. — Режим доступа: https://e.lanbook.com/book/66335

Автор РПД: ____Яковенко Н.А., доктор технических наук, профессор____