Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» Факультет химии и высоких технологий

УТВЕРЖДАЮ:
Проректор по учебной работе, качеству образования — первый проректор по учебной работе.

Иванов А.Г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.В.ДВ.04.01 «Супрамолекулярная химия»

Направление подготовки 04.03.01 Химия

Направленность (профиль) Физическая химия

Программа подготовки академическая

Форма обучения очная

Квалификация выпускника бакалавр

Рабочая программа дисциплины «Супрамолекулярная химия» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 04.03.01 Химия.

Программу составил: д.х.н., заведующий кафедрой органической химии и технологий Доценко В. В.

de

Рабочая программа утверждена на заседании кафедры органической химии и технологий протокол № 17 «07» июня 2017 г.

Заведующий кафедрой (разработчика) Доценко В.В.

de

Утверждена на заседании учебно-методической комиссии факультета химии и высоких технологий протокол № $5 \ll 27$ » июня 2017 г.

Председатель УМК факультета

Стороженко Т.П.

Рецензенты:

Дядюченко Л.В., к.х.н., Ведущий научный сотрудник лаборатории регуляторов роста растений ФБГНУ ВНИИБЗР

Буков Н.Н., д-р хим. наук, зав. каф. общей, неорганической химии и информационно-вычислительных технологий в химии КубГУ

1 Цели и задачи изучения дисциплины

1.1 Цель дисциплины

Курс «Супрамолекулярная химия» знакомит с основами супрамолекулярной химии, способами связывания молекул и ионов в супрамолекулярные ансамбли, самособирающимся и самоорганизующимися химическими системами. Значительное внимание уделяется таким важным областям, как супрамолекулярная биохимия и супрамолекулярный синтез. Программа предполагает самостоятельное изучение отдельных тем, анализ научной литературы. Выполнение лабораторного практикума обеспечивает лучшее усвоение и закрепление изучаемого материала.

1.2 Задачи дисциплины

Задачи дисциплины «Супрамолекулярная химия» состоят в освоении профессиональных знаний и получении профессиональных умений и навыков в области химии супрамолекулярных и самоорганизующихся систем.

1.3 Место дисциплины (модуля) в структуре образовательной программы Курс «Супрамолекулярная химия» входит в базовую часть вариативного блока дисциплин

курс «Супрамолекулярная химия» входит в оазовую часть вариативного олока дисциплин по выбору. В качестве содержательно-методической основы для курса «Супрамолекулярная химия» служит дисциплина общепрофессионального цикла «Органическая химия». В соответствии с учебным планом, занятия проводятся на четвертом году обучения.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

№	Индекс компете	Содержание компетенции (или её	В результате изуче	ения учебной дисциплин должны	ны обучающиеся
П.П.	нции	части)	знать	уметь	владеть
1.	ПК2	владение базовыми	современную	планировать и	традиционными
		навыками использования	теорию строения	осуществлять	и современными
		современной аппаратуры	супрамол.	синтезы супрамол.	методами
		при проведении научных	соединений;	соединений;	органического
		исследований	механизмы	использовать	синтеза;
		способность использовать	органических	современные	базовыми
2.	ОПК1	полученные знания	реакций;	методы	навыками
		теоретических основ	классификацию и	исследования	использования
		фундаментальных	номенклатуру	строения	современной
		разделов химии при	супрамол.		аппаратуры при
		решении	соединений;		проведении
		профессиональных задач	знать физико-		научных
3.	ОПК3	способность	химические		исследований;
		использовать основные	основы		навыками
		законы	современных		безопасности
		естественнонаучных	спектрометрическ		при работе с
		дисциплин в	их методов		химическими
		профессиональной	исследования.		реактивами;
		деятельности			методами
					планирования
					синтеза
					органических, в
					том числе
					супрамолекуляр
					ных систем

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 4 зач. ед. (144 часа), их распределение по видам работ представлено в таблице.

Вид учебной работы		Всего	Семестры
	-	часов	8
Контактная работа, в	том числе:		
Аудиторные занятия (всего):	76,5	76,5
Занятия лекционного типа		36	36
Занятия семинарского т	ипа (семинары,		
практические занятия, г	ірактикумы, лабораторные	36	36
работы, коллоквиумы и	иные аналогичные	30	30
занятия)			
Иная контактная рабо	ота:		
Контроль самостоятель:	ной работы (КСР)	4	4
Промежуточная аттеста	ция (ИКР)	0,5	0,5
Самостоятельная рабо	ота (всего), в том числе:	40,8	40,8
Оформление лаборатор:	ных работ	12	12
Изучение теоретическог	го материала	8	8
Решение задач		8	8
Подготовка к текущему	контролю	12,8	12,8
Контроль:			
Подготовка к экзамену		26,7	26,7
Вид промежуточной аттестации (зачет, экзамен)			экзамен
Общая трудоемкость	час.	144	144
	в том числе контактная работа	76,5	76,5
	зач. ед.	4	4

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 7 семестре.

	т азделы дисциплины, изучаемые в 7 семестре.					
No		Количество часов				
	Have cover average and waren		A	удиторн	ая	Внеаудиторная
разд	Наименование разделов	Всего	работа			работа
ела			Л	ПЗ	ЛР	CPC
1	2	3	4	5	6	7
1.	Введение		2		_	1
2.	Связывание катионов		12		20	13,8
3.	Связывание анионов		4		_	7
4.	Связывание нейтральных молекул		6		8	7
5.	Самосборка		4		8	7
6.	Супрамолекулярная биохимия и супрамолекулярные полимеры		8		_	7
	Итого по дисциплине:		36		36	40,8

2.3 Содержание разделов дисциплины: 2.3.1 Занятия лекционного типа

№	Наименование раздела	Содержание раздела	Форма текущего контроля
1	<u>раздела</u> 2	3	4
1	Введение	История развития и предмет исследования супрамолекулярной химии. Классификация супрамолекулярных соединений. Природа супрамолекулярных взаимодействий.	Устный опрос
2	Связывание катионов	Общие закономерности катионного комплексообразования. Селективность.	Устный опрос, решение задач
3	Связывание катионов	Краун-эфиры, лариат-эфиры, поданды. Алкалиды, электриды.	Устный опрос, решение задач, контрольная работа
4	Связывание катионов	Гетерокраун-эфиры, методы получения, свойства.	Устный опрос, решение задач
5	Связывание катионов	Гетерокраун-эфиры, методы получения, свойства.	Устный опрос, решение задач
6	Связывание катионов	Криптанды, сферанды. Каликсарены.	Устный опрос, решение задач
7	Связывание катионов	Кукурбитурилы, сепулькраты, саркофагины.	Устный опрос, решение задач
8	Связывание анионов	Общие закономерности анионного комплексообразования. Биологические рецепторы анионов.	Устный опрос, решение задач
9	Связывание анионов	Протонные хелатирующие реагенты. Антикрауны.	Устный опрос, решение задач, контрольная работа
10	Связывание нейтральных молекул	Органические и неорганические клатратные соединения. Цеолиты. Внутриполостные комплексы нейтральных молекул.	Устный опрос, решение задач
11	Связывание нейтральных молекул	Катенаны, ротаксаны, циклофаны	Устный опрос, решение задач
12	Связывание нейтральных молекул	Супрамолекулярная химия фуллеренов. Синтез, свойства, эндоэдральные фуллерены.	Устный опрос, решение задач
13	Самосборка	Запрограммированные системы. супрамолекулярные системы. Кинетический и термодинамический аспекты самосборки.	Устный опрос, решение задач
14	Самосборка	Самосборка неорганических и органических структур.	Устный опрос, решение задач
15	Супрамолекулярная биохимия и супрамоле- кулярные полимеры	Супрамолекулярная химия полимеров. Дендримеры.	Устный опрос, решение задач
16	Супрамолекулярная биохимия и супрамоле-кулярные полимеры	Порфириновые и тетрапиррольные макроциклы. Биохимическая самосборка.	Устный опрос, решение задач

17	Супрамолекулярная	Супрамолекулярные ос	собенности	Устный опрос,
	биохимия и супрамоле-	фотосинтеза. Химия	ДНК.	решение задач
	кулярные полимеры	Ферментативные процессы	I.	
18	Супрамолекулярная	Валиномицин,	родопсин.	Устный опрос,
		Валиномицин, Молекулярные устройства	1	Устный опрос, решение задач

2.3.2 Занятия семинарского типа Семинары не предусмотрены учебным планом

2.3.3 Лабораторные занятия

№	Наименование раздела	Наименование лабораторных работ	Форма текущего контроля
1	<u>раздела</u> 2	3	4
1.	Связывание	Реакции окисления с использованием 18-	Решение задач, ЛР1
	катионов	дибензокраун-6	
2.	Связывание	Реакции окисления с использованием 18-	Решение задач, ЛР1
	катионов	дибензокраун-6	
3.	Связывание	Синтез О,О-ди(2-нитрофенокси)-	Решение задач, ЛР2
	катионов	этиленгликоля	
4.	Связывание	Синтез О,О-ди(2-нитрофенокси)-	Решение задач, ЛР2
	катионов	этиленгликоля	
5.	Связывание	Темплатный синтез	Решение задач, ЛР3
	катионов	бис(ацетилацетоната) никеля	
6.	Связывание		Решение задач, ЛР3
	катионов	бис(ацетилацетоната) никеля	
7.	Связывание	Решение задач. Контрольная работа по	
	катионов	теме «Связывание катионов»	контрольная работа
8.	Связывание	N,N'-Бис(Салицилиден)Орто-	решение задач, ЛР4
	катионов	Фенилендиамин (SalophH2)	
9.	Связывание	N,N'-Бис(Салицилиден)Орто-	решение задач, ЛР4
	катионов	Фенилендиамин (SalophH2)	
10.	Связывание	Решение задач. Контрольная работа по	*
	катионов	теме «Связывание катионов»	контрольная работа
11.	Связывание	Реакции образования комплексов «гость-	Решение задач, ЛР5
	нейтральных	хозяин» с участием крахмала и	
	молекул	циклодекстрина	
12.	Связывание	Реакции образования комплексов «гость-	Решение задач, ЛР5
	нейтральных	хозяин» с участием крахмала и	
1.0	молекул	циклодекстрина	777
13.	Связывание	Реакции образования комплексов «гость-	Решение задач, ЛР5
	нейтральных	хозяин» с участием крахмала и	
	молекул	циклодекстрина	
14.	Связывание	Реакции образования комплексов «гость-	·
	нейтральных	хозяин» с участием крахмала и	
1.7	молекул	циклодекстрина	D HD :
15.	Самосборка	Синтез фталоцианинов	Решение задач, ЛР6
16.	Самосборка	Синтез фталоцианинов	Решение задач, ЛР6
17.	Самосборка	Синтез фталоцианинов	Решение задач, ЛР6
18.	Самосборка	Синтез фталоцианинов	Решение задач, ЛР6

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовая работа не предусмотрена учебным планом

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1.	Изучение теоретического материала	Стид, Джонатан В. Супрамолекулярная химия: в 2 т. / Дж. В. Стид, Дж. Л. Этвуд; пер. с англ. И. Г. Варшавской, Б. И. Харисова, О. В. Белуженко, И. С. Васильченко, Ю. А. Алексеева; под ред. А. Ю. Цивадзе, В. В. Арсланова, А. Д. Гарновского М.: Академкнига, 2007 895 с.:
2.	Оформление лабораторных работ	Стид, Джонатан В. Супрамолекулярная химия: в 2 т. / Дж. В. Стид, Дж. Л. Этвуд; пер. с англ. И. Г. Варшавской, Б. И. Харисова, О. В. Белуженко, И. С. Васильченко, Ю. А. Алексеева; под ред. А. Ю. Цивадзе, В. В. Арсланова, А. Д. Гарновского М.: Академкнига, 2007 895 с.:
3.	Решение задач	1 Стид, Джонатан В. Супрамолекулярная химия: в 2 т. / Дж. В. Стид, Дж. Л. Этвуд; пер. с англ. И. Г. Варшавской, Б. И. Харисова, О. В. Белуженко, И. С. Васильченко, Ю. А. Алексеева; под ред. А. Ю. Цивадзе, В. В. Арсланова, А. Д. Гарновского М.: Академкнига, 2007 895 с.: 2 Зайцев, Сергей Юрьевич. Молекулярные комплексы и реакции ряда мономеров в супрамолекулярных системах / С. Ю. Зайцев, В. В. Зайцева; Федеральное гос. бюджетное образоват. учреждение высшего проф. образования "Моск. гос. акад. ветеринарной медицины и биотехнологии им. К. И. Скрябина" Москва: [ФГБОУ ВПО МГАВМиБ], 2014 456 с.
4.	Подготовка к текущему контролю	1 Стид, Джонатан В. Супрамолекулярная химия: в 2 т. / Дж. В. Стид, Дж. Л. Этвуд; пер. с англ. И. Г. Варшавской, Б. И. Харисова, О. В. Белуженко, И. С. Васильченко, Ю. А. Алексеева; под ред. А. Ю. Цивадзе, В. В. Арсланова, А. Д. Гарновского М.: Академкнига, 2007 895 с.: 2 Зайцев, Сергей Юрьевич. Молекулярные комплексы и реакции ряда мономеров в супрамолекулярных системах / С. Ю. Зайцев, В. В. Зайцева; Федеральное гос. бюджетное образоват. учреждение высшего проф. образования "Моск. гос. акад. ветеринарной медицины и биотехнологии им. К. И. Скрябина" Москва: [ФГБОУ ВПО МГАВМиБ], 2014 456 с.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,

– в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

3. Образовательные технологии

Преподавание дисциплины «Супрамолекулярная химия» предполагает следующие формы занятий в рамках традиционных образовательных технологий:

- 1. Информационная лекция.
- 2. Лабораторная работа.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

4.1 Фонд оценочных средств для проведения текущей аттестации

1 Примеры задач для самостоятельного решения

1. Немецкие химики А. Лютрингхауз и Г. Шилл получили соединение G необычной структуры по следующей схеме:

- 1) Приведите структурные формулы А—G.
- 2) В чем заключается необычность структуры G?
- 3) Какие еще виды химических соединений с аналогичным типом связей Вам известны? Приведите примеры и, если знаете, их названия.
- 2) Предложите метод получения хирального макроцикла 4 по реакции Уги, исходя из следующих реагентов. Напишите механизм реакции.

2 Примеры задач для коллективного решения в аудитории

1) Предложите метод получения хирального макроцикла 5, исходя из следующих реагентов 6-8:

HO COOEt OH PhCH₂Dr PhCH₂Dr OCH₂Ph
$$\frac{1}{6}$$
 PhCH₂D O OCH₂Ph $\frac{1}{6}$ OCH₂Ph $\frac{1}{6}$ OCH₂Ph $\frac{1}{6}$ OCH₂Ph $\frac{1}{6}$ OCH₂Ph

2) Предложите схему (включая механизм) получения макроцикла из предложенных исходных реагентов:

3) Предложите схему (включая механизм) получения макроцикла из предложенных исходных реагентов:

3 Примеры задач для контрольных работ

1. Предложите схему (включая механизм) получения следующего макроцикла (по реакции Уги, включая стадию восстановления):

2. Предложите схему (включая механизм) получения макроцикла из предложенных исходных реагентов:

3. Предложите схему (включая механизм) получения следующего макроцикла (исходя из предложенных исходных реагентов, и других необходимых- на Ваше усмотрение):

4. Предложите схему (включая механизм) получения следующего макроцикла (исходя из предложенных исходных реагентов, и других необходимых – на Ваше усмотрение):

$$H_3C$$
 O_2N
 CH_3
 CH_3
 CH_3

4. Примеры контрольных вопросов к лабораторным работам

- 1) Объясните роль краун-эфира в описываемых процессах. Почему константа образования комплекса намного больше единицы, хотя длины связей О....К+ в аква-комплексах и в данном случае сопоставимы.
- 2) При нагревании $SalophH_2$ в метаноле при 50 °C с ацетатом никеля в молярном соотношении 1 : 1 образуется красно-коричневый осадок состава $C_{20}H_{14}N_2O_2Ni$. Предложите структуру данного продукта.
- 3) Предположите, с помощью каких дальнейших превращений $SalophH_2$ можно превратить в циклический супрамолекулярный лиганд?
- 4) Нарисуйте структурную формулу дигидрата бис(2,4-пентадионато)никеля.

5) При дегидратации ацетилацетоната никеля (кипячение с толуолом, насадка Дина-Старка) образуется безводный ацетилацетонат никеля, который существует в форме тримера Ni₃(acac)₆ (acac = ацетилацетон). нарисуйте возможную структурную формулу этого супрамолекулярного ассоциата, если известно, что тример НЕ имеет циклического строения.

4.2 Фонд оценочных средств для проведения промежуточной аттестации

1 Список вопросов для подготовки к экзамену по курсу «Супрамолекулярная Химия»

- 1. Супрамолекулярная химия. Определение, объект исследований. Основные понятия супрамолекулярной химии. История, сфера применения супрамолекулярных систем.
- 2. Основные классы супрамолекулярных соединений. Приведите примеры.
- 3. Краун-эфиры. Строение, номенклатура, синтез, свойства, применение. Аза-краунэфиры (торанды).
- 4. Принцип самосборки. Самоорганизация. Предорганизация, комплементарность. Приведите примеры.
- 5. Темплатный синтез. Хелатный и макроциклический эффект.
- 6. Фотоуправляемые/фотопереключаемые молекулярные устройства
- 7. Поданды, триподы, лариат-эфиры. Теория жесткой концевой группы.
- 8. Анти-краун-эфиры. Синтез и свойства.
- 9. Криптанды. Строение, номенклатура, свойства, синтез. Гетерокриптанды.
- 10. Сепулькраты и саркофагины. Карцеранды.
- 11. Сферанды/каликсарены.
- 12. Хиральные краун-эфиры, гетерокраун-эфиры. Синтез, свойства.
- 13. Циклофаны. Номенклатура, строение, свойства. Синтез, применение.
- 14. Клатраты. Классификация, история. Примеры клатратов. клатраты в природе.
- 15. Интеркаляты. Строение, свойства, получение.
- 16. Катенаны. Строение, свойства, получение.
- 17. Ротаксаны. Строение, свойства, получение.
- 18. Фуллерены. Строение, получение, свойства, применение.
- 19. Эндоэдральные фуллерены.
- 20. Ионофоры. Валиномицин. Калий-натриевый насос.
- 21. Родопсин. Принцип работы родопсина как фотонного супрамолекулярного устройства.
- 22. Тетрапиррольные макроциклы. Порфирин, хлорофилл, цианокобаламин. Строение, свойства.
- 23. Гемоглобин как супрамолекулярный ансамбль. Функции гемоглобина.

- 24. Нуклеиновые кислоты. ДНК, РНК. Строение, самосборка. 20 кодируемых аминокислот.
- 25. Супрамолекулярные полимеры
- 26. Дендримеры.
- 27. Геликаты.
- 28. Цеолиты. Строение и применение.
- 29. Циклодекстрины. Строение, свойства.
- 30. Супрамолекулярный катализ.

2 Примеры билетов к экзамену

ФГБОУ ВО «Кубанский государственный университет» Кафедра органической химии и технологий Направление подготовки 04.03.01 - Химия 20__-20__ уч. год Дисциплина «Супрамолекулярная Химия»

Билет №1

- 1.Супрамолекулярная химия. Определение, объект исследований. Основные понятия супрамолекулярной химии. История, сфера применения супрамолекулярных систем.
- 2. Ионофоры. Валиномицин. Калий-натриевый насос.
- 3. Предложите схему (включая механизм) получения макроцикла из предложенных исходных реагентов:

Заведующий кафедрой

ФГБОУ ВО «Кубанский государственный университет» Кафедра органической химии и технологий Направление подготовки 04.03.01 - Химия 20__-20__ уч. год Дисциплина «Супрамолекулярная Химия» Билет №2

1. Краун-эфиры. Строение, номенклатура, синтез, свойства, применение. Аза-краунэфиры (торанды).

- 2. Геликаты.
- 3. Предложите схему (включая механизм) получения макроцикла из предложенных исходных реагентов:

Заведующий кафедрой

ФГБОУ ВО «Кубанский государственный университет» Кафедра органической химии и технологий Направление подготовки 04.03.01 - Химия 20__-20__ уч. год Дисциплина «Супрамолекулярная Химия»

Билет №3 1. Клатраты. Классификация, история. Примеры клатратов. клатраты в природе.

- 2. Эндоэдральные фуллерены.
- 3. Предложите схему (включая механизм) получения следующего макроцикла (по реакции Уги, включая стадию восстановления):

Заведующий кафедрой

ФГБОУ ВО «Кубанский государственный университет»

Кафедра органической химии и технологий Направление подготовки 04.03.01 - Химия

20__-20__ уч. год

Дисциплина «Супрамолекулярная Химия» Билет №4

- 1. Основные классы супрамолекулярных соединений. Приведите примеры.
- 2. Тетрапиррольные макроциклы. Порфирин, хлорофилл, цианокобаламин. Строение, свойства.
- 3. Предложите схему (включая механизм) получения макроцикла из предложенных исходных реагентов:

$$NH_2$$
 $N_{\stackrel{+}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\circ}}}}C^-}$ $N_{\stackrel{+}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\circ}}}}C^-}$ NH_2 $N_{\stackrel{+}{\stackrel{\circ}{\stackrel{\circ}{\circ}}}C^-}$ NH_2 NH_2

Заведующий кафедрой

ФГБОУ ВО «Кубанский государственный университет» Кафедра органической химии и технологий Направление подготовки 04.03.01 - Химия

20__-20__ уч. год

Дисциплина «Супрамолекулярная Химия» Билет №5

- 1. Анти-краун-эфиры. Синтез и свойства.
- 2. Катенаны. Строение, свойства, получение.

3. Предложите схему (включая механизм) получения макроцикла из предложенных исходных реагентов:

Критерии оценивания

Критерии экзаменационной оценки	Оценка	Уровень
Студент свободно владеет теоретическим	«отлично»	повышенный
материалом (знает как основные, так и		(продвинутый)
специфические методы получения		уровень
супрамолекулярных систем, а также		
свойства и характеристики основных		
классов) и способен самостоятельно		
решить экзаменационную задачу.		
Студент хорошо владеет теоретическим	«хорошо»	базовый уровень
материалом, знает базовые методы и имеет		
представление о механизмах основных		
реакций, способен справиться с		
экзаменационной задачей при		
незначительной помощи со стороны		
преподавателя.		
Студент знает базовые синтетические	«удовлетворительно»	пороговый
методы, однако плохо разбирается в		уровень
специфических методах и свойствах		
представителей основных классов		
супрамолекулярных систем, с трудом		
справляется с экзаменационной задачей		
при существенной помощи со стороны		
преподавателя.		
Студент не способен решить	«неудовлетворительно»	менее 50%,
экзаменационную задачу даже с помощью		уровень не
преподавателя, и плохо владеет		сформирован
теоретическим материалом (наблюдаются		
существенные ошибки при обсуждении		
базовых свойств и подходов).		

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Основная литература:

Стид, Джонатан В. Супрамолекулярная химия: в 2 т. / Дж. В. Стид, Дж. Л. Этвуд; пер. с англ. И. Г. Варшавской, Б. И. Харисова, О. В. Белуженко, И. С. Васильченко, Ю. А. Алексеева; под ред. А. Ю. Цивадзе, В. В. Арсланова, А. Д. Гарновского. - М.: Академкнига, 2007. - 895 с.

5.2 Дополнительная литература:

Зайцев, Сергей Юрьевич. Молекулярные комплексы и реакции ряда мономеров в супрамолекулярных системах / С. Ю. Зайцев, В. В. Зайцева; Федеральное гос. бюджетное образоват. учреждение высшего проф. образования "Моск. гос. акад. ветеринарной медицины и биотехнологии им. К. И. Скрябина". - Москва: [ФГБОУ ВПО МГАВМиБ], 2014. - 456 с.

- 1 <u>Успехи химии</u> российский научный журнал, публикующий обзорные статьи по актуальным проблемам химии и смежных наук.
- 2 <u>Журнал органической химии</u> российский научный журнал, публикующий статьи по теоретическим проблемам органической химии, механизмам реакций органических соединений, соотношениям между физическими свойствами, реакционной способностью и строением, по новым реакциям и методам получения органических соединений, по основным проблемам развития важнейших направлений органического синтеза.
- 6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)
- 1. Информационный сайт о химии, содержащий базу знаний, справочники и химические онлайн-сервисы (http://www.xumuk.ru).
- 2. Сайт, содержащий статьи соросовского образовательного журнала (http://www.pereplet.ru/cgi/soros/readdb.cgi).
 - 3. курс «Супрамолекулярная химия» для студентов 4 курса химического отделения ФЕН НГУ http://www.nsu.ru/xmlui/handle/nsu/619

7. Методические указания для обучающихся по освоению дисциплины

Успешное изучение дисциплины «Супрамолекулярная химия» требует от студентов регулярного посещения лекций, а также активной работы на практических занятиях, выполнения тестовых проверочных работ, выполнения и защиты лабораторных работ, ознакомления с основной и дополнительной рекомендуемой литературой.

При подготовке к лекционному занятию студентам рекомендуется:

- 1) просмотреть записи предыдущей лекции и восстановить в памяти ранее изученный материал;
- 2) бегло просмотреть материал предстоящей лекции, с целью лучшего усвоения нового материала;
- 3) самостоятельно проработать отдельные фрагменты темы прошлой лекции, если это необходимо.

При конспектировании лекционного материала студентам нужно стремиться кратко, схематично, последовательно и логично фиксировать основные положения, выводы, обобщения и формулировки, не пытаясь записать весь преподаваемый материал слово в слово.

При подготовке к лабораторному занятию рекомендуется:

- 1) внимательно изучить материал предстоящей работы и составить план ее выполнения;
- 2) уделить повышенное внимание экспериментальным особенностям предстоящей работы (используемым реактивам и оборудованию, а также технике работы с ними);

Выполнять лабораторную работу необходимо аккуратно и последовательно, отражая все ее основные этапы в лабораторном журнале. Для успешной защиты лабораторной работы необходимо тщательно изучить лекционный и, если это необходимо, дополнительный теоретический материал по теме работы, а также правильно заполнить лабораторный журнал, сделав все необходимые расчеты и сформулировав выводы по проделанной работе.

При выполнении работы студентам необходимо отмечать те вопросы и разделы, которые вызывают у них затруднения. с целью последующей консультации у преподавателя. Каждый студент должен стремиться активно работать на практических занятиях и успешно выполнять тестовые проверочные работы.

Самостоятельная работа наряду с аудиторной представляет одну из важнейших форм учебного процесса. Самостоятельная работа - это планируемая работа студентов, выполняемая по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа предназначена не только для овладения представленной дисциплиной, но и для формирования навыков работы вообще, в учебной, научной, профессиональной деятельности, способности принимать на себя ответственность, самостоятельно решать возникающие проблемы, находить правильные решения и т.д.

Самостоятельная работа студентов

№	Вид СРС	Организация деятельности студента Форма контроля
1	2	3
1.		Проведение необходимых расчетов, аккуратное оформление
		хода и результатов выполненной работы в лабораторном
		журнале. Форма контроля – защита лабораторных работ.
2.	Изучение	Работа с конспектом лекций, а также с рекомендуемой
	теоретического	основной и дополнительной литературой по заданной теме,
	материала	ознакомление с периодическими изданиями и ресурсами сети

		Интернет. Форма контроля – выполнение тестовых работ.
3.	Решение задач	Изучение материала, необходимого для успешного решения
		задач, а также непосредственное их выполнение.
		Форма контроля – выполнение тестовых работ.
4.	Подготовка к текущему	Изучение теоретического материала, необходимого для
	контролю	успешной защиты лабораторных работ, выполнения тестовых
		работ и других видов текущего контроля.
		Форма контроля – все виды текущего контроля.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

8.1 Перечень информационных технологий

- 1. Использование электронных презентаций при проведении лекционных занятий.
- 2. Проверка самостоятельно решенных задач и консультирование посредством электронной почты.

8.2 Перечень необходимого программного обеспечения

- 1. Программа для демонстрации и создания презентаций (Microsoft Power Point).
- 2. Программа для рисования химических формул и молекулярных моделей (ACD ChemSketch Free Version).

8.3 Перечень информационных справочных систем:

- 1. Научная электронная библиотека (http://www.elibrary.ru).
- 2. Электронная библиотечная система издательства «Лань» (http://e.lanbook.com).
- 3. Электронная библиотечная система «Юрайт» (http://www.biblio-online.ru).
- 4. Научная электронная библиотека «КиберЛенинка» (http://cyberleninka.ru).
- 5. Электронная библиотечная система «Университетская библиотека ONLINE» (www.biblioclub.ru).

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Для проведения занятий по дисциплине «Супрамолекулярная химия», предусмотренной учебным планом подготовки бакалавров, имеется необходимая материально-техническая база, соответствующая действующим санитарным и противопожарным правилам и нормам:

No	Вид работ	Материально-техническое обеспечение дисциплины (модуля) и оснащенность
1.	Лекционные занятия	Лекционная аудитория на 25 мест, оснащенная меловой

Т	
	доской и презентационной техникой (проектор, экран,
!	ноутбук) с соответствующим программным
	обеспечением (ПО) для показа презентаций в
	электронном виде - Microsoft Power Point.
Семинарские занятия	Семинары не предусмотрены учебным планом.
Лабораторные	Учебная лаборатория на 16 мест, укомплектованная
занятия	лабораторной мебелью, специализированным
!	оборудованием (рефрактометр, сушильный шкаф,
1	роторный испаритель, весы электронные лабораторные,
	магнитные мешалки с подогревом, механические
1	мешалки, нагревательные плитки), а также химической
	посудой и необходимыми реактивами.
Курсовое	Курсовая работа не предусмотрена учебным планом.
проектирование	
Групповые	Учебная аудитория на 25 мест, оснащенная меловой
(индивидуальные)	доской.
консультации	
Текущий контроль,	Учебная аудитория на 25 мест, оснащенная меловой
промежуточная	доской.
аттестация	
Самостоятельная	Кабинет для самостоятельной работы, оснащенный
работа	компьютерной техникой с возможностью подключения к
	сети «Интернет», программой экранного увеличения и
	обеспеченный доступом в электронную информационно-
	образовательную среду университета.
	Лабораторные занятия Курсовое проектирование Групповые (индивидуальные) консультации Текущий контроль, промежуточная аттестация Самостоятельная