МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Экономический факультет

УТВЕРЖДАЮ:

Проректор по учебной работе, качеству образования дервый

проректор

ТА. Хатуров

«26» мая 202

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.О.09 Системы компьютерной математики

(код и наименование дисциплины в соответствии с учебным планом)

Направление подготовки: 27.03.03 Системный анализ и управление

(код и наименование направления подготовки/специальности)

Направленность (профиль):

Интеллектуальная бизнес-аналитика и управление экономическими процессами

(наименование направленности (профиля) / специализации)

Форма обучения:

очная

(очная, очно-заочная, заочная)

Квалификация: бакалавр

Рабочая программа дисциплины <u>Системы компьютерной математики</u> составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 27.03.03 Системный анализ и управление

Программу составил(и): Г.В. Калайдина, доцент, к. ф.-м. н.

Рабочая программа дисциплины <u>Системы компьютерной математики</u> утверждена на заседании кафедры анализа данных и искусственного интеллекта протокол № 8 «18» мая 2023г.

Заведующий кафедрой Коваленко А.В.

Утверждена на заседании учебно-методической комиссии факультета компьютерных технологий и прикладной математики протокол № 5 «19» мая 2023 г.

Председатель УМК факультета Коваленко А.В.

Рецензенты:

В.Н. Дейнега, доктор экон. наук, генеральный директор ООО Аудиторская компания «Кубаньфинэксперт»

А.В. Павлова доктор физ.-мат. наук, профессор, профессор кафедры математического моделирования ФГБОУ ВО «КубГУ»

1 Цели и задачи изучения дисциплины (модуля)

1.1 Цель освоения дисциплины

Целю дисциплины является сформировать у студентов навыки работы в пакетах символьной математики.

1.2 Задачи дисциплины

Задачи дисциплины:

- проанализировать возможности различных пакетов символьной математики;
- дать навыки использования символьной математики для различных разделов классической математики;
- представить возможности взаимодействия систем компьютерной математики с инфраструктурными информационными технологиями (графические и издательские системы);
- развитие навыков использования систем компьютерной математики в административно-управленческой и офисной деятельности.

1.3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Системы компьютерной математики» относится к обязательной части Блока 1 "Дисциплины (модули)" учебного плана.

Дисциплина «Системы компьютерной математики» относится к обязательной части Блока 1 "Дисциплины (модули)" учебного плана.

Входными знаниями для освоения данной дисциплины являются знания, умения и опыт, накопленный студентами в процессе изучения дисциплин «Дискретная математика и математическая логика», «Линейная алгебра и аналитическая геометрия».

Знания, полученных в ходе изучения дисциплины «Системы компьютерной математики» используются в ходе изучения курсов «Теория и технология пронраммирования», «Статистика», «Моделирование процессов и систем».

В соответствии с рабочим учебным планом дисциплина изучается на 1 курсе по очной форме обучения. Вид промежуточной аттестации: зэкзамен.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих компетенций:

Код и наименование индикатора* достижения компетенции	Результаты обучения по дисциплине		
ОПК-6 Способен разрабатывать методы моделирования, анализа и технологии синтеза процессо систем, а также алгоритмы и программы, основанные на этих методах, пригодные для практи			
ского применения в области техники и технол	погии		
ИОПК-6.3. Использует системы компьютерной	ИОПК-6.3. 3.1 Знает формальные математические поста-		
математики для практического применения в	новки задач техники и технологий.		
области техники и технологии	ИОПК-6.3 У.1 Умеет пользоваться модулями символь-		
	ной математики в математических пакетах.		
	ИОПК-6.3 В.1 Владеет навыками выполнения формаль-		
	ных операций в средах символьной математики.		
ОПК-7 Способен применять математические, системно-аналитические, вычислительные методы и программные средства для решения прикладных задач в области создания систем анализа и авто-			

ОПК-7 Спосооен применять математические, системно-аналитические, вычислительные методы и программные средства для решения прикладных задач в области создания систем анализа и автоматического управления и их компонентов

Код и наименование индикатора* достижения компетенции	Результаты обучения по дисциплине
ИОПК-7.5. Использует системы компьютерной математики при решении инженерно-технических и технико-экономических задач	ИОПК-7.5 3.1 Знает математическую формализацию инженерно-технических и технико-экономических задач.
	ИОПК-7.5 У.1 Умеет реализовывать графическое представление результатов решения прикладных задач в области создания систем анализа и автоматического управления и их компонентов. ИОПК-7.5 В.1 Владеет навыками работы в средах символьной математики при решении задач профессиональной деятельности

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 3 зачетных единиц (108 часов), их распределение по видам работ представлено в таблице

Виды	работ	Всего	Форма обучения
		часов	очная
			3 семестр (часы)
Контактная работ	а, в том числе:	58,3	58,3
Аудиторные заняти	ия (всего):	52	52
занятия лекционного	о типа	18	18
лабораторные занят	RИ	34	34
практические заняти	RI	-	-
семинарские заняти:	Я	-	-
Иная контактная р	абота:	6,3	6,3
Контроль самостоят (КСР)	ельной работы	6	6
Промежуточная атто	естация (ИКР)	0,3	0,3
Самостоятельная р	работа, в том	50	50
Расчётно-графическ (подготовка)	ая работа (РГР)	24	24
Самостоятельное изучение разделов, самоподготовка (проработка и повторение лекционного материала и материала учебников и учебных пособий, подготовка к лабораторным и практическим занятиям, коллоквиумам и т.д.)		26	26
Контроль:		-	
Подготовка к экзамену		35,7-	35,7
Общая трудоем-	час.	144	144
кость	в том числе кон- тактная работа	58,3	58,3
	зач. ед	4	4

2.2 Содержание дисциплины

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 3 семестре (2 курс) (**очная** форма обуче-

ния)

пил)						
			Количество часов			
№	Наименование разделов (тем)	Всего	Аудиторная работа		Внеауди- торная работа	
			Л ПЗ		ЛР	CPC
1.	Введение в дисциплину. обзор современных систем компьютерной математики	4	2			2
2.	Графический интерфейс пользователя пакета Maple. Элементарная математика. Математический анализ и линейная алгебра в Maple		2		4	6
3.	Графические возможности Maple.	12	2		4	6
4.	Программирование в Maple. Отладка программ. Маплеты. Создание графических оболочек	12	2		4	6
5.	Рабочая среда MatLab. Работа с массивами. М-файлы. Задачи линейной алгебры и анализа	12	2		4	6
6.	Высокоуровневая графика. Редактирование графиков	12	2		4	6
7.	Решение задач теории дифференциальных уравнений. Программирование в MatLab.	12	2		4	6
8.	Отладка программ. Работа в среде Guide. Создание приложений	12	2		4	6
9.	Технологии подготовки документов. Пакет LATEX	14	2		6	6
	ИТОГО по разделам дисциплины	102	18	-	34	50
	Контроль самостоятельной работы (КСР)	6				
	Промежуточная аттестация (ИКР)	0,3				
	Контроль	35,7				
	Общая трудоемкость по дисциплине	144				
L	онция трудоемкость по днециплине	177				

Примечание: Л — лекции, ПЗ — практические занятия / семинары, ЛР — лабораторные занятия, СРС — самостоятельная работа студента

2.3 Содержание разделов (тем) дисциплины

2.3.1 Занятия лекционного типа

No	Наименование раздела	Содержание раздела (темы)	Форма текущего
	(темы)		контроля
1.	Введение в дисци-	в дисци- Введение в систему символьной математики – Maple. Мат-	
		ричная лаборатория MATLAB. Основные системы компь-	
	ных систем компьютер-	ютерной алгебры. Mathematica, Derive, Maple V, MathCAD,	
	ной математики	Matlab.	
2.	Синтаксис языка Ма-	Синтаксис языка Maple V Release 4. Символы и перемен-	Проверка выпол-
	ple V Release 4. Эле-	ные. Константы и внутренние функции. Типы данных: це-	нения лаборатор-
	ментарная математика.	лые числа, дробные числа, числа с плавающей точкой,	ных работ. Док-
	Математический анализ	строковые типы, булевы выражения, последовательности,	лад-презентация
	и линейная алгебра в	множества, списки, массивы, таблицы. Вычисление преде-	
	Maple		
3.		Устройства вывода. Графика 2D: задание областей, стили,	Проверка выпол-
		параметры, параметрическая графика, построение графи-	нения лаборатор-
	Графические возмож-	ков в различных системах координат, анимация 2D графи-	ных работ. Кон-
	ности Maple.	ков, совмещение графиков. Графика 3D: описание функций	трольные во-
		для построения, параметрическое построение, цвет поверх-	просы.
		ности, системы координат, параметры функции plot3d.	-

	1		,
4.		Программирование в Maple. Отладка программ. Маплеты.	
	Программирование в	Создание графических оболочек	нения лаборатор-
	Программирование в Maple. Отладка про-		ных работ. Кон-
	грамм. Маплеты. Со-		трольные во-
	здание графических		просы. Опрос по
	оболочек		результатам инди-
	ооолочек		видуального зада-
			ния.
5.	D-6 M-4I-1	Основные сведения о матричной лаборатории	Проверка выпол-
	Рабочая среда MatLab. Работа с массивами. М-	MATLAB. Основные объекты MATLAB.	нения лаборатор-
		Пользовательский интерфейс MATLAB. Задание матрицы	ных работ. Кон-
	файлы. Задачи линей-	и вектора. Матричные и векторные вычисления. Решение	трольные во-
	ной алгебры и анализа	систем линейных уравнений в матричной форме	просы.
6.		Основы графической визуализации вычислений. Графики	Проверка выпол-
	Высокоуровневая гра-	дискретных отсчетов функции. Создание массивов данных	
	фика. Редактирование	для трехмерной графики. Построение графиков поверхно-	ных работ. Кон-
	графиков	стей.	трольные во-
			просы.
7.	D	Решение систем обыкновенных дифференциальных урав-	Проверка выпол-
	Решение задач теории	нений. Операторы и функции. Массивы. Массивы струк-	
	дифференциальных	тур. Массивы ячеек.	ных работ. Кон-
	уравнений. Программи-		трольные во-
	рование в MatLab.		просы.
8.		Обработка данных. Основы программирования. Пакеты	Проверка выпол-
		расширения MATLAB. GUI интерфейс	нения лаборатор-
	D		ных работ. Кон-
	Отладка программ. Ра-		трольные во-
	бота в среде Guide. Co-		просы. Опрос по
	здание приложений		результатам инди-
			видуального зада-
			ния.
9.		Общие положения. Основная концепция. Верстка. Досто-	Проверка выпол-
		инства и недостатки LATEX. Исходный файл. Команды	
	T	LATEX. Документ. Стиль документа. Стиль страницы.	ных работ. Кон-
	Технологии подготовки		трольные во-
	документов. Пакет		просы. Опрос по
	LATEX		результатам инди-
			видуального зада-
			ния.

2.3.2 Занятия семинарского типа (лабораторные работы)

№	Наименование раздела (темы)	Тематика занятий/работ	Форма текущего контроля
1.	Введение в дисци- плину. обзор современ- ных систем компьютер- ной математики	Введение в систему символьной математики – Maple. Матричная лаборатория MATLAB. Основные системы компьютерной алгебры. Mathematica, Derive, Maple V, MathCAD, Matlab.	ЛР
	Графический интерфейс пользователя пакета Марle. Элементарная математика. Математический анализ и линейная алгебра в Марle	Синтаксис языка Maple V Release 4. Символы и переменные. Константы и внутренние функции. Типы данных: целые числа, дробные числа, числа с плавающей точкой, строковые типы, булевы выражения, последовательности, множества, списки, массивы, таблицы. Вычисление пределов. Дифференцирование. Суммирование. Произведения.	ЛР
3.	Графические возможности Maple. Решение систем дифференциальных уравнений в Maple	Устройства вывода. Графика 2D: задание областей, стили, параметры, параметрическая графика, построение графиков в различных системах координат, анимация 2D графиков, совмещение графиков. Графика 3D: описание функций для построения, параметрическое построение, цвет поверхности, системы координат, параметры функции plot3d.	ЛР

	Программирование в Марle. Отладка программ. Маплеты. Создание графических оболочек	Программирование в Maple. Отладка программ. Маплеты. Создание графических оболочек	ЛР, РГЗ
5.	Рабочая среда MatLab. Работа с массивами. Мфайлы. Задачи линейной алгебры и анализа	Основные сведения о матричной лаборатории МАТLAB. Основные объекты МАТLAB. Пользовательский интерфейс МАТLAB. Задание матрицы и вектора. Матричные и векторные вычисления. Решение систем линейных уравнений в матричной форме	ЛР
6.	Высокоуровневая графика. Редактирование графиков	Основы графической визуализации вычислений. Графики дискретных отсчетов функции. Создание массивов данных для трехмерной графики. Построение графиков поверхностей.	ЛР
7.	Решение задач теории дифференциальных уравнений. Программирование в MatLab.	Решение систем обыкновенных дифференциальных уравнений. Операторы и функции. Массивы. Массивы структур. Массивы ячеек.	ЛР, РГЗ
8.	Отладка программ. Ра- бота в среде Guide. Со- здание приложений	Обработка данных. Основы программирования. Пакеты расширения MATLAB. GUI интерфейс	ЛР, РГЗ
9.	Технологии подготовки документов. Пакет LATEX	Общие положения. Основная концепция. Верстка. Досто- инства и недостатки LATEX. Исходный файл. Команды LATEX. Документ. Стиль документа. Стиль страницы.	ЛР, РГЗ

Защита лабораторной работы (ЛР), выполнение курсового проекта (КП), курсовой работы (КР), расчетно-графического задания (РГЗ), написание реферата (Р), эссе (Э), коллоквиум (К), тестирование (Т) и т.д.

2.3.3 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	Занятия лекционного и семинарского типа	Методические указания для подготовки к занятиям лекционного и семинарского типа. Утверждены на заседании Совета факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ». Протокол № 2 от 22 мая 2020 года.
2	Подготовка эссе, рефератов, курсовых работ.	Методические указания для подготовки эссе, рефератов, курсовых работ. Утверждены на заседании Совета факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ». Протокол № 2 от 22 мая 2020 года.
3	Выполнение самостоятельной работы обучающихся	Методические указания по выполнению самостоятельной работы обучающихся. Утверждены на заседании Совета факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ». Протокол № 2 от 22 мая 2020 года.
4	Выполнение расчетно-графических заданий	Методические указания по выполнению расчетно-графических заданий. Утверждены на заседании Совета факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ». Протокол № 1 от 22 мая 2020 года.
5	Выполнение лабораторных работ	Методические указания по выполнению лабораторных работ. Утверждены на заседании Совета факультета компьютерных технологий и прикладной математики ФГБОУ ВО «КубГУ». Протокол № 1 от 22 мая 2020 года.

10	Интерактивные методы	Методические указания по интерактивным методам обучения. Утвер-
	обучения	ждены на заседании Совета факультета компьютерных технологий и при-
		кладной математики ФГБОУ ВО «КубГУ». Протокол № 1 от 22 мая 2020
		года.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,
- в форме аудиофайла,
- в печатной форме на языке Брайля.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,
- в форме аудиофайла.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии, применяемые при освоении дисциплины (модуля)

В соответствии с требованиями $\Phi \Gamma O C$ программа дисциплины предусматривает использование в учебном процессе следующих образовательные технологий: чтение лекций с использованием мультимедийных технологий; метод малых групп, разбор практических задач и кейсов.

При обучении используются следующие образовательные технологии:

- Технология коммуникативного обучения направлена на формирование коммуникативной компетентности студентов, которая является базовой, необходимой для адаптации к современным условиям межкультурной коммуникации.
- Технология разноуровневого (дифференцированного) обучения предполагает осуществление познавательной деятельности студентов с учётом их индивидуальных способностей, возможностей и интересов, поощряя их реализовывать свой творческий потенциал. Создание и использование диагностических тестов является неотъемлемой частью данной технологии.
- Технология модульного обучения предусматривает деление содержания дисциплины на достаточно автономные разделы (модули), интегрированные в общий курс.
- Технология индивидуализации обучения помогает реализовывать личностно-ориентированный подход, учитывая индивидуальные особенности и потребности учащихся.
- Проектная технология ориентирована на моделирование социального взаимодействия учащихся с целью решения задачи, которая определяется в рамках профессиональной подготовки, выделяя ту или иную предметную область.
- Технология обучения в сотрудничестве реализует идею взаимного обучения, осуществляя как индивидуальную, так и коллективную ответственность за решение учебных задач.

- Игровая технология позволяет развивать навыки рассмотрения ряда возможных способов решения проблем, активизируя мышление студентов и раскрывая личностный потенциал каждого учащегося.
- Технология развития критического мышления способствует формированию разносторонней личности, способной критически относиться к информации, умению отбирать информацию для решения поставленной задачи.

Комплексное использование в учебном процессе всех вышеназванных технологий стимулируют личностную, интеллектуальную активность, развивают познавательные процессы, способствуют формированию компетенций, которыми должен обладать будущий специалист.

Основные виды интерактивных образовательных технологий включают в себя:

- работа в малых группах (команде) совместная деятельность студентов в группе под руководством лидера, направленная на решение общей задачи путём творческого сложения результатов индивидуальной работы членов команды с делением полномочий и ответственности;
- проектная технология индивидуальная или коллективная деятельность по отбору, распределению и систематизации материала по определенной теме, в результате которой составляется проект;
- анализ конкретных ситуаций анализ реальных проблемных ситуаций, имевших место в соответствующей области профессиональной деятельности, и поиск вариантов лучших решений;
- развитие критического мышления образовательная деятельность, направленная на развитие у студентов разумного, рефлексивного мышления, способного выдвинуть новые идеи и увидеть новые возможности.

Подход разбора конкретных задач и ситуаций широко используется как преподавателем, так и студентами во время лекций, лабораторных занятий и анализа результатов самостоятельной работы. Это обусловлено тем, что при исследовании и решении каждой конкретной задачи имеется, как правило, несколько методов, а это требует разбора и оценки целой совокупности конкретных ситуаций.

Адаптивные образовательные технологии, применяемые при изучении дисциплины – для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Системы компьютерной математики».

Оценочные средства включает контрольные материалы для проведения **текущего контроля** в форме эссе, доклада-презентации по проблемным вопросам, разноуровневых заданий лабораторных работ, контрольных вопросов и **промежуточной аттестации** в форме вопросов и индивидуальных заданий к зачету.

Структура оценочных средств для текущей и промежуточной аттестации

№	Код и наименование ин-	Denver many a ferrance	Наименование оценочного средства	
П/П	дикатора	Результаты обучения	Текущий контроль	Промежуточная
11/11	(в соответствии с п. 1.4)	(в соответствии с п. 1.4)	текущии контроль	аттестация
	ИОПК-6.3. Использует	ИОПК-6.3. 3.1 Знает фор-	Лабораторная работа	Вопросы на зачет
1	системы компьютерной	мальные математические	№ 1-10	1-23
1	математики для практи-	постановки задач тех-		Индивидуальное за-
	ческого применения в	ники и технологий.		дание № 1-4

	области техники и тех- нологии			
2		ИОПК-6.3 У.1 Умеет пользоваться модулями символьной математики в математических пакетах.	Вопросы для устного опроса №1-30 Лабораторная работа №1-10	Вопрос на зачет 5-35 Индивидуальное задание № 2
3		ИОПК-6.3 В.1 Владеет навыками выполнения формальных операций в средах символьной математики.	Вопросы для устного опроса №1-30 Лабораторная работа №1-10	Вопрос на зачет 1-56 Индивидуальное за- дание №4
4	ИОПК-7.5. Использует системы компьютерной математики при решении инженерно-технических и технико-экономических задач	ИОПК-7.5 3.1 Знает математическую формализацию инженерно-технических и технико-экономических задач.	Вопросы для устного опроса №1-30 Лабораторная работа №1-10	Вопрос на зачет 12- 58 Индивидуальное за- дание № 3
5		ИОПК-7.5 У.1 Умеет реализовывать графическое представление результатов решения прикладных задач в области создания систем анализа и автоматического управления и их компонентов.	Вопросы для устного опроса №20-58 Лабораторная работа №1-10	Вопросы на зачет Индивидуальное за- дание №2, 4

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы Перечень вопросов для устного опроса

- 1. Компьютерные системы математической обработки информации в современном мире.
- 2. Использование математических пакетов.
- 3. Символьное дифференцирование в Maple.
- 4. Символьное интегрирование в Maple.
- 5. Построение графиков функции в Maple.
- 6. Построение поверхностей в Maple.
- 7. Построение поверхностей в Maple.
- 8. Создание и операции с матрицами в Maple.
- 9. Решение систем линейных уравнений в Maple.
- 10. Решение нелинейных уравнений в Марle.
- 11. Решение дифференциальных уравнений и их систем в Maple.
- 12. Задачи оптимизации в Maple.
- 13. Решение дифференциальных уравнений с частными производными в Maple.
- 14. Решение геометрических задач в Maple.
- 15. Основные сведения о матричной лаборатории MATLAB
- 16. Действительные и комплексные числа системы MATLAB.
- 17. Константы и системные переменные.
- 18. Текстовые комментарии. Переменные и присваивание им значений.
- 19. Операторы и функции системы МАТLAB.
- 20. Сообщения об ошибках и исправление ошибок.
- 21. Форматы чисел. Формирование векторов и матриц. Операции с рабочей областью

- 22. и текстом сессии. Дефрагментация рабочей области. Сохранение рабочей области сессии.
- 23. Ведение дневника. Загрузка рабочей области сессии.
- 24. Общая характеристика пользовательского интерфейса. Операции с буфером обмена
- 25. Понятие о файлах-сценариях и файлах-функциях. Интерфейс графических окон.
- 26. Основы графической визуализации вычислений системы MATLAB
- 27. Построение графиков 2D.
- 28. Построение графиков 3D.
- 29. Основные средства анимации системы MATLAB.
- 30. Объекты дескрипторной графики.
- 31. Галерея трехмерной графики
- 32. Операторы и функции системы МАТLAB
- 33. Функции времени и даты системы MATLAB.
- 34. Специальные математические функции.
- 35. Операции с векторами и матрицами
- 36. Вычисление нормы и чисел обусловленности матрицы. Определитель и ранг матрицы.
- 37. Обращение матриц функции inv, pinv.
- 38. Вычисление собственных значений и сингулярных чисел разреженных матриц.
- 39. Многомерные массивы.
- 40. Массивы структур.
- 41. Массивы ячеек.
- 42. Элементарные средства решения СЛУ.
- 43. Основные средства программирования системы MATLAB.
- 44. Основные типы данных системы MATLAB.
- 45. Виды программирования системы MATLAB.
- 46. М-файлы сценариев и функций системы MATLAB.
- 47. Структура и свойства файлов сценариев системы MATLAB.
- 48. Статус переменных в функциях.
- 49. Структура М-файла-функции системы MATLAB. Статус переменных и команда global.
- 50. Функции с переменным числом аргументов. Функции подсчета числа аргументов. Переменные varargin и varargout.
- 51. Основы системы ТЕХ.
- 52. Структура документа в системе LATEX.
- 53. Форматирование текста в системе LATEX.
- 54. Использование сред в системе LATEX.
- 55. 20. Набор математических формул в системе LATEX.
- 56. Математические среды в системе LATEX.
- 57. Использование иллюстраций в системе LATEX.
- 58. Построение презентаций средствами пакета Beamer в системе LATEX.

Типовые задания

Задание 1

1. Разложить число на простые множите	ли:
---------------------------------------	-----

- 1.1. *6*; 1.2. *16*; 1.3. *26*; 1.4. *38*;
- 2. Найти наибольший общий делитель двух чисел:

- 2.1. 64, 16; 2.2. 24, 40; 2.3. 27, 48; 2.4. 39, 52;
- 3. Вычислить выражение, представив результат в виде числа с плавающей точкой:

$$3.1. \sqrt[6]{64} + \sqrt[4]{16} + 3!$$

3.3.
$$\sqrt[14]{16384} + \sqrt[15]{32768} + 3!$$

3.2.
$$\sqrt[7]{128} + \sqrt[3]{8} + 3!$$

$$3.4. \sqrt[16]{65536} + \sqrt[17]{131072} + 3!$$

Задание 2

1. Решить уравнение и проверить правильность полученных решений:

1.1.
$$x^2 = (x^2 - 2)^2$$

1.3.
$$(x^2 - 5x + 7)^2 - (x - 2)(x - 3) = 0$$

1.2.
$$[lg(x-3)]^2 = 1$$

1.4.
$$(x-2)(x+1)(x+4)(x+7) = 19$$

2. Решить систему уравнений:

2.1.
$$\begin{cases} x + 2y + 3z = 8 \\ 3x + y + z = 6 \\ 2x + y + 2z = 6 \end{cases}$$

2.3.
$$\begin{cases} x^2 + y^2 + 10x - 10y = 2xy - 21\\ x + y = 5 \end{cases}$$

2.2.
$$\begin{cases} 2x + y + z = 7 \\ x + 2y + z = 8 \\ x + y + 2z = 9 \end{cases}$$

2.4.
$$\begin{cases} x^2 - 5xy + 6y^2 = 0\\ x^2 + y^2 = 10 \end{cases}$$

3. Решить неравенство:

3.1.
$$x^2(x+2)(x-1)^3(x^2+1) > 0$$

3.3.
$$\frac{4-\sqrt{x+1}}{1-\sqrt{x+3}} \le 3$$

3.2.
$$\frac{x^2(x-1)^3(x+2)}{x-3} < 0$$

3.4.
$$|x^2 - 1| - 2x < 0$$

Задание 3

1. Найти производную:

1.1.
$$\arcsin(x)$$
; $x^2 \cdot e^x$;

1.3.
$$th(x)$$
; $tg^{6}(x)$;

1.2.
$$arccos(x)$$
; $x^3 \cdot arctg(x)$;

1.4.
$$cth(x)$$
; $cos^2(x)$;

2. Найти интеграл:

2.1.
$$\int \frac{dx}{\sin^2 x}$$
, $\int_0^1 \frac{dx}{1+x+x^3}$,

2.3.
$$\int \frac{\sin x \, dx}{1 + \sin x}$$
, $\int_{0}^{\pi/2} \cos^2 x \, dx$,

2.2.
$$\int \frac{x \, dx}{\sin^2 x}$$
, $\int_0^1 \frac{dx}{1 - x + x^3}$,

2.4.
$$\int \frac{\sin x \, dx}{1 - \sin x}$$
, $\int_{0}^{\pi/2} \sin^2 mx \, dx$ при $m = 1, 2, ...$,

3. Найти следующие пределы:

3.1.
$$\lim_{x \to 4} \frac{5x+2}{2x+3}$$
, $\lim_{x \to 2} \frac{x^2 - 6x + 8}{x^2 - 8x + 12}$;

3.2.
$$\lim_{x\to\infty} \frac{3x+5}{2x+7}$$
, $\lim_{x\to 0} \frac{\sqrt{1+x+x^2}-\sqrt{1-x+x^3}}{x^2-x}$;

3.3.
$$\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 3x}$$
, $\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 9}$;

Задание 4

1. Решить уравнения:

1.1.
$$x(y^2 - 4) + y \frac{dy}{dx} = 0$$
;

1.3.
$$\frac{dy}{dx} + \frac{xy}{1 - x^2} = \arcsin(x) + x$$
;

1.2.
$$(1+x^2)\frac{dy}{dx} + y = arctg(x)$$
;

1.4.
$$\frac{dy}{dx} - \frac{2xy}{1+x^2} = 4\frac{\sqrt{y}}{\sqrt{1+x^2}} arctg(x);$$

2. Построить графики указанных ниже функций в декартовой и полярной системах координат, сделать надпись заголовка рисунка (надпись должна быть выполнена в две строки) и подписать оси графика (для декартовой системы координат):

2.1.
$$x^2 + \sin(x^2)$$
, $x = -4...4$;

2.3.
$$\frac{-|x|}{\exp(\cos(-120x))}$$
, $x = -\pi...\pi$;

2.2.
$$\frac{\cos(130x)}{3x}$$
, $x = -15...15$;

2.4.
$$3\sin(3x)$$
, $x = -1...10$;

3. Построить в полярной системе координат график параметрически заданной функции:

3.1. 1,
$$t$$
, $t = 0...2\pi$;

3.3.
$$t$$
, $\frac{\cos(100t^{-3})}{3}t^2$, $t = 0...2.2$;

3.2.
$$t$$
, $\sin(2t)$, $t = -99...99$;

3.4.
$$t$$
, $1 - \frac{\sin(10t^{-3})}{3}t^2 + \frac{\cos(100t^{-3})}{3}t^2$, $t = -1...1$.

Задание 5

Даны x = 1,5; y = 2; z = 3. Вычислить a, b из таблицы для варианта, указанного преподавателем. Включить в отчет полученные результаты.

Номер варианта	а	b
1	2	3
1	$a = \frac{z + y/(x^2 + 4)}{e^{-x-2}/(x^2 + 4)}$	$b = \frac{x}{y} (\arctan z + 1/6)$
2	$a = \frac{3.5 + e^{y-1}}{1 + x^2 y - \operatorname{tg} z }$	$b = \frac{(y-x)^2}{2} + \frac{ y-x ^3}{3}$
3	$a = \frac{\sqrt{ x-1 } - \sqrt[3]{ z }}{1 + \frac{x^2}{2,5} + \frac{y^2}{4}}$	$b = \frac{1 + \cos(y - 2)}{\frac{x^2}{2} + \sin^2 z}$

Задание 6

В пакете Matlab составить программу, содержащею операторы ветвления и цикла на основании задания из таблицы. Провести отладку программы.

		•	
Номер варианта	Входной массив	Формируемый массив	Задача
1	2	3	4
1	$A_{4\times4}$	$B_{4 \times 4},$ где $b_{ij} = \begin{cases} a_{ij}, \text{если } i < j \\ a_{ji}^2, \text{иначе} \end{cases}$ $i = 14, j = 14$	Сформировать массив A1 из минимальных элементов строк матрицы A и массив B1 из минимальных элементов строк матрицы B. Среди элементов A1 и B1 найти максимальный
2	A_5	B_5 , где $b_i = \sin(i^2)$ $i = 15$	Сформировать массив С – сумму элементов массивов А и В. Найти максимальные значения массивов А, В и С
3	$A_{4\times4}$	$B_{4\times4}$, где $b_{ij} = \sin(i) \cdot \sin(j)$ $i = 14, j = 14$	Определить минимальные элементы в матрицах A и B (MA и MB). Вычислить C = A*B*MA*MB

Расчетно-графические расчеты (типовые задания)

Типовой расчет №1

- 1. Создайте последовательность S1, состоящую из трех элементов, каждый из которых определяется как x^i , где i меняется от 2 до 3.
 - 2. Создайте список S2, содержащий элементы x, y, z.
- 3. Выполните подстановку x=2y, y=3z, z=4x в список S2: а) последовательно, в) одновременно.
- 4. Выполните подстановку $x^3 = Cos(y)$ в последовательность S1, Определите новую последовательность, заменив в первом члене полученной последовательности функцию cos на tg(x).

- 5. Создайте вектор V1, элементами которого являются члены списка S2; создайте вектор V2, элементами которого являются элементы списка S2, возведенные в степень 1/3.
- 6. Подключите пакет *linalg*. Вычислите скалярное произведение векторов V1 и V2 (*dotprod*). Определите длину вектора V1 (*norm*). Нормируйте вектор V1 (*normalize*). Проверьте, что длина вектора V1 равна единице.
- 7. Подключите пакет *LinearAlgebra*. Определите матрицу M1 размерности 3 x 3, вводя ее элементы построчно: 1^{as} строка (2,4,8), 2^{as} строка (1,11,-5), 3^{bs} строка (-4,5,7). Создайте матрицу M2, присвоив те же значения элементам матрицы, но по столбцам. Вычислите скалярное произведение матриц M1 и M2.
- 8. a) Вычислите для матрицы M1 определитель, ранг, собственные значения и собственные векторы.
- б) Составьте для матрицы М1 характеристическую матрицу, вычислите ее определитель, в полученном уравнении определите неизвестные и сравните полученный результат с собственными значениями, полученными в п.а).
- 9. Подключите пакет *student*. Вычислите, используя его функции, площадь фигуры заключенной между кривыми $(x^2/3)$ 2 и ln(x) (для x>0). (intercept, Doubleint, value). Сравните полученный результат со стандартным повторным интегралом.
- 10. Определите функцию F(x), вычисляющую числовое значение неопределенного интеграла от функции $\sin(x)$, используя:
- а) функциональный оператор,
- б) функцию unapplay.

Вычислите значение F в точках x = Pi/2; и x = Pi/4;

11. Создайте функцию g(x), равную x^2 , если $x^2>4$, и равную $-2*x^2$, если $x^2<4$, используя функцию piecewise (см. справку Maple).

Постройте график функции, используя контекстно-зависимое меню. (Быстрое построение графиков)

Типовой расчет №2

Провести расчеты в пакете Matlab

	Вариант №1		Вариант №2	
1	Найти значение матричного многочлена $f(A)$	1	Найти значение матричного многочлена $f(A)$	
	$f(x) = -x^3 + 3x^2 + x - 2, \ A = \begin{pmatrix} 2 & -1 \\ -3 & 0 \end{pmatrix}$		$f(x) = x^3 + 3x^2 + 2x - 1, A = \begin{pmatrix} 0 & 3 \\ -1 & -2 \end{pmatrix}$	
2	Решить уравнение	2	Решить уравнение	
	$\begin{vmatrix} 3-x & x+2 \\ x+1 & x-1 \end{vmatrix} = 6.$		$\begin{vmatrix} 6 & 3 & x-1 \\ 2x & 1 & 0 \\ 4 & x+2 & 2 \end{vmatrix} = 0.$	
3	Найти произведения матриц $A \cdot A^T$ и $A^T \cdot A$	3	Проверить, коммутируют ли матрицы А и В	
	$\begin{pmatrix} 1 & -2 & 0 \\ 3 & 5 & -7 \\ -4 & 1 & 2 \end{pmatrix}$		$A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}, B = \begin{pmatrix} -5 & 3 \\ 2 & -1 \end{pmatrix}$	
4	Вычислить интеграл (ответ изобразить в виде: за-	4	Вычислить интеграл (ответ изобразить в виде:	
	данный пример=число)		заданный пример=число)	

	$\int_{e+1}^{e^2+1} \frac{1+\ln(x-1)}{x-1} dx.$		$\int_{0}^{1} \frac{4 \arctan x - x}{1 + x^2} dx.$
5	Найти частные производные $\partial z/\partial x$ и $\partial z/\partial y$ $z=\ln tg\left(\frac{x}{y}\right)$	5	Найти производные первую и вторую $y = \ln\left(x + \sqrt{1 + x^2}\right) - \sqrt{1 + x^2} \ \text{arctg } x.$
6	Вычислить пределы функций. $\lim_{x \to 0} \frac{1 - \cos 2x}{\cos 7x - \cos 3x}.$	6	Вычислить пределы функций. $\lim_{x \to 0} \frac{1 - \sqrt{3x + 1}}{\cos[\pi(x + 1)/2]}.$
7	Построить графики функций и найти площадь на отрезке $y = 1 + \sqrt[3]{2(x-1)^2(x-7)}, [-1, 5].$ $y = 3\ln\frac{x}{x-3} - 1.$	7	Построить графики функций и найти площадь на отрезке $y = \frac{10x}{1+x^2}, [0, 3]. y = \frac{e^{2-x}}{2-x}.$

Зачетно-экзаменационные материалы для промежуточной аттестации (экзамен/зачет)

- 1. Компьютерные системы математической обработки информации в современном мире.
- 2. Использование математических пакетов.
- 3. Символьное дифференцирование в Maple.
- 4. Символьное интегрирование в Maple.
- 5. Построение графиков функции в Maple.
- 6. Построение поверхностей в Maple.
- 7. Построение поверхностей в Maple.
- 8. Создание и операции с матрицами в Maple.
- 9. Решение систем линейных уравнений в Maple.
- 10. Решение нелинейных уравнений в Maple.
- 11. Решение дифференциальных уравнений и их систем в Maple.
- 12. Задачи оптимизации в Maple.
- 13. Решение дифференциальных уравнений с частными производными в Maple.
- 14. Решение геометрических задач в Марle.
- 15. Основные сведения о матричной лаборатории MATLAB
- 16. Действительные и комплексные числа системы MATLAB.
- 17. Константы и системные переменные.
- 18. Текстовые комментарии. Переменные и присваивание им значений.
- 19. Операторы и функции системы МАТLAB.
- 20. Сообщения об ошибках и исправление ошибок.
- 21. Форматы чисел. Формирование векторов и матриц. Операции с рабочей областью
- 22. и текстом сессии. Дефрагментация рабочей области. Сохранение рабочей области сессии.
- 23. Ведение дневника. Загрузка рабочей области сессии.
- 24. Общая характеристика пользовательского интерфейса. Операции с буфером обмена
- 25. Понятие о файлах-сценариях и файлах-функциях. Интерфейс графических окон.
- 26. Основы графической визуализации вычислений системы MATLAB
- 27. Построение графиков 2D.

- 28. Построение графиков 3D.
- 29. Основные средства анимации системы МАТLAB.
- 30. Объекты дескрипторной графики.
- 31. Галерея трехмерной графики
- 32. Операторы и функции системы MATLAB
- 33. Функции времени и даты системы MATLAB.
- 34. Специальные математические функции.
- 35. Операции с векторами и матрицами
- 36. Вычисление нормы и чисел обусловленности матрицы. Определитель и ранг матрицы.
- 37. Обращение матриц функции inv, pinv.
- 38. Вычисление собственных значений и сингулярных чисел разреженных матриц.
- 39. Многомерные массивы.
- 40. Массивы структур.
- 41. Массивы ячеек.
- 42. Элементарные средства решения СЛУ.
- 43. Основные средства программирования системы MATLAB.
- 44. Основные типы данных системы МАТLAB.
- 45. Виды программирования системы MATLAB.
- 46. М-файлы сценариев и функций системы MATLAB.
- 47. Структура и свойства файлов сценариев системы MATLAB.
- 48. Статус переменных в функциях.
- 49. Структура М-файла-функции системы MATLAB. Статус переменных и команда global.
- 50. Функции с переменным числом аргументов. Функции подсчета числа аргументов. Переменные varargin и varargout.
- 51. Основы системы ТЕХ.
- 52. Структура документа в системе LATEX.
- 53. Форматирование текста в системе LATEX.
- 54. Использование сред в системе LATEX.
- 55. 20. Набор математических формул в системе LATEX.
- 56. Математические среды в системе LATEX.
- 57. Использование иллюстраций в системе LATEX.
- 58. Построение презентаций средствами пакета Веатег в системе LATEX.

Критерии оценивания результатов обучения

Критерии оценивания по зачету:

«Зачет» ставится, если студент строит свой ответ в соответствии с планом. В ответе представлены различные подходы к проблеме. Устанавливает содержательные межпредметные связи. Развернуто аргументирует выдвигаемые положения, приводит убедительные примеры, обнаруживает последовательность анализа. Выводы правильны. Речь грамотна, используется профессиональная лексика. Демонстрирует знание специальной литературы в рамках учебного методического комплекса и дополнительных источников информации.

«Незачет» ставится, если ответ недостаточно логически выстроен, план ответа соблюдается непоследовательно. Студент обнаруживает слабость в развернутом раскрытии

профессиональных понятий. Выдвигаемые положения декларируются, но недостаточно аргументируются. Ответ носит преимущественно теоретический характер, примеры отсутствуют.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень учебной литературы, информационных ресурсов и технологий

5.1. Учебная литература

- 1. Тропин, М. П. Основы математической обработки информации: учебное пособие для вузов / М. П. Тропин. Москва: Издательство Юрайт, 2022. 185 с. (Высшее образование). ISBN 978-5-534-14978-4. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/496844 (дата обращения: 05.07.2022).
- 2. Красавин, А. В. Компьютерный практикум в среде matlab : учебное пособие для вузов / А. В. Красавин, Я. В. Жумагулов. 2-е изд. Москва : Издательство Юрайт, 2022. 277 с. (Высшее образование). ISBN 978-5-534-08509-9. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/494519 (дата обращения: 05.07.2022).
- 3. Сизиков, В. С. Обратные прикладные задачи и MatLab : учебное пособие / В. С. Сизиков. Санкт-Петербург : Лань, 2021. 256 с. ISBN 978-5-8114-1238-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/167903 (дата обращения: 05.07.2022).
- 4. Волков, В. Ю. Адаптивные и инвариантные алгоритмы обнаружения объектов на изображениях и их моделирование в Matlab : учебное пособие / В. Ю. Волков. 2-е изд., доп. Санкт-Петербург : Лань, 2022. 192 с. ISBN 978-5-8114-1656-1. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/212222 (дата обращения: 05.07.2022).

- 5. Гаврилов, М. В. Информатика и информационные технологии : учебник для вузов / М. В. Гаврилов, В. А. Климов. 4-е изд., перераб. и доп. Москва : Издательство Юрайт, 2022. 383 с. (Высшее образование). ISBN 978-5-534-00814-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/488708 (дата обращения: 05.07.2022).
- 6. Далингер, В. А. Информатика и математика. Решение уравнений и оптимизация в mathcad и **maple**: учебник и практикум для прикладного бакалавриата / В. А. Далингер, С. Д. Симонженков. 2-е изд., испр. и доп. М.: Юрайт, 2018. 161 с. https://biblio-online.ru/book/373E27B2-F2B8-4BC9-9D66-EFFA2353B4D1.

5.2. Периодическая литература

- 1. Базы данных компании «Ист Вью» http://dlib.eastview.com
- 2. Электронная библиотека GREBENNIKON.RU https://grebennikon.ru/

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» http://www.biblioclub.ru/
- 3. 3FC «BOOK.ru» https://www.book.ru
- 4. 3EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных

- 1. Scopus http://www.scopus.com/
- 2. ScienceDirect https://www.sciencedirect.com/
- 3. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 4. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 5. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 6. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
- 7. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
- 8. База данных CSD Кембриджского центра кристаллографических данных (CCDC) https://www.ccdc.cam.ac.uk/structures/
- 9. Springer Journals: https://link.springer.com/
- 10. Springer Journals Archive: https://link.springer.com/
- 11. Nature Journals: https://www.nature.com/
- 12. Springer Nature Protocols and Methods:

https://experiments.springernature.com/sources/springer-protocols

- 13. Springer Materials: http://materials.springer.com/
- 14. Nano Database: https://nano.nature.com/
- 15. Springer eBooks (i.e. 2020 eBook collections): https://link.springer.com/
- 16. "Лекториум ТВ" http://www.lektorium.tv/
- 17. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы

Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа

1. КиберЛенинка http://cyberleninka.ru/;

- 2. Американская патентная база данных http://www.uspto.gov/patft/
- 3. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
- 4. Федеральный портал "Российское образование" http://www.edu.ru/;
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 6. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/.
- 7. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
- 8. Справочно-информационный портал "Русский язык" http://gramota.ru/;
- 9. Служба тематических толковых словарей http://www.glossary.ru/;
- 10. Словари и энциклопедии http://dic.academic.ru/;
- 11. Образовательный портал "Учеба" http://www.ucheba.com/;
- 12. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресурсы КубГУ

- 1. Электронный каталог Научной библиотеки КубГУ http://megapro.kubsu.ru/MegaPro/Web
- 2. Электронная библиотека трудов ученых КубГУ http://megapro.kubsu.ru/MegaPro/UserEntry?Action=ToDb&idb=6
- 3. Среда модульного динамического обучения http://moodle.kubsu.ru
- 4. База учебных планов, учебно-методических комплексов, публикаций и конференций http://infoneeds.kubsu.ru/
- 5. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 6. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 7. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГОДЫ" http://icdau.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Форма и способы изучения материала определяются с учетом специфики изучаемой темы. Однако во всех случаях необходимо обеспечить сочетание изучения теоретического материала, научного толкования того или иного понятия, даваемого в учебниках и лекциях, с самостоятельной работой студентов, выполнением практических заданий, подготовкой сообщений и докладов.

Лекционное занятие представляет собой систематическое, последовательное, монологическое изложение преподавателем-лектором учебного материала, как правило, теоретического характера. Такое занятие представляет собой элемент технологии представления учебного материала путем логически стройного, систематически последовательного и ясного изложения с использованием образовательных технологий.

Цель лекции — организация целенаправленной познавательной деятельности обучающихся по овладению программным материалом учебной дисциплины. Чтение курса лекций позволяет дать связанное, последовательное изложение материала в соответствии с новейшими данными науки, сообщить слушателям основное содержание предмета в целостном, систематизированном виде.

Задачи лекции заключаются в обеспечении формирования системы знаний по учебной дисциплине, в умении аргументировано излагать научный материал, в формировании профессионального кругозора и общей культуры, в отражении еще не получивших освещения в учебной литературе новых достижений науки, в оптимизации других форм организации учебного процесса.

Для подготовки к лекциям необходимо изучить основную и дополнительную литературу по заявленной теме и обратить внимание на те вопросы, которые предлагаются к рассмотрению в конце каждой темы. При изучении основной и дополнительной литературы, студент может в достаточном объеме усвоить и успешно реализовать конкретные знания, умения, навыки и компетенции при выполнении следующих условий:

- 1) систематическая работа на учебных занятиях под руководством преподавателя и самостоятельная работа по закреплению полученных знаний и навыков;
 - 2) добросовестное выполнение заданий преподавателя на практических занятиях;
- 3) выяснение и уточнение отдельных предпосылок, умозаключений и выводов, содержащихся в учебном курсе; взаимосвязей отдельных его разделов, используемых методов, характера их использования в практической деятельности менеджера;
- 4) сопоставление точек зрения различных авторов по затрагиваемым в учебном курсе проблемам; выявление неточностей и некорректного изложения материала в периодической и специальной литературе;
- 5) разработка предложений преподавателю в части доработки и совершенствования учебного курса;
- 6) подготовка научных статей для опубликования в периодической печати, выступление на научно-практических конференциях, участие в работе студенческих научных обществ, круглых столах и диспутах по антикоррупционным проблемам.

Практические занятия — являются формой учебной аудиторной работы, в рамках которой формируются, закрепляются и представляются студентами знания, умения и навыки, интегрирующие результаты освоения компетенций как в лекционном формате, так в различных формах самостоятельной работы. К каждому занятию преподавателем формулируются практические задания, требования и методические рекомендации к их выполнению, которые представляются в фонде оценочных средств учебной дисциплины.

В ходе самоподготовки к практическим занятиям студент осуществляет сбор и обработку материалов по тематике его исследования, используя при этом открытые источники информации (публикации в научных изданиях, аналитические материалы, ресурсы сети Интернет и т.п.), а также практический опыт и доступные материалы объекта исследования.

Контроль за выполнением самостоятельной работы проводится при изучении каждой темы дисциплины на практических (семинарских) занятиях.

Самостоятельная работа студентов по дисциплине «Математические методы и модели в экономике» проводится с целью закрепления и систематизации теоретических знаний, формирования практических навыков по их применению при решении задач в выбранной предметной области. Самостоятельная работа включает: изучение основной и дополнительной литературы, проработка и повторение лекционного материала, материала учебной и научной литературы, подготовку к практическим занятиям, подготовка домашних заданий, а также к контролируемой самостоятельной работе

Самостоятельная работа студентов по данному учебному курсу предполагает поэтапную подготовку по каждому разделу в рамках соответствующих заданий:

Первый этап самостоятельной работы студентов включает в себя тщательное изучение теоретического материала на основе лекционных материалов преподавателя, рекомендуемых разделов основной и дополнительной литературы, материалов периодических научных изданий, необходимых для овладения понятийно-категориальным аппаратом и формирования представлений о комплексе теоретического и аналитического инструментария, используемого в рамках данной отрасли знания.

На втором этапе на основе сформированных знаний и представлений по данному разделу студенты выполняют расчетно-графические задания, нацеленные на формирование умений и навыков в рамках заявленных компетенций. На данном этапе студенты осуществляют самостоятельный поиск эмпирических материалов в рамках конкретного задания, обобщают и анализируют собранный материал по схеме, рекомендованной преподавателем, формулируют выводы, готовят практические рекомендации, материалы для публичного их представления и обсуждения.

На сегодняшний день тестирование – один из самых действенных и популярных

способов проверить знания в изучаемой области. Тесты позволяют очень быстро проверить наличие знаний у студентов по выбранной теме. Кроме того, тесты не только проверяют знания, но и тренируют внимательность, усидчивость и умение быстро ориентироваться и соображать. При подготовке к решению тестов необходимо проработать основные категория и понятия дисциплины, обратить внимание на ключевые вопросы темы.

Под контролируемой самостоятельной работой (КСР) понимают совокупность заданий, которые студент должен выполнить, проработать, изучить по заданию под руководством и контролем преподавателя. Т.е. КСР — это такой вид деятельности, наряду с лекциями, лабораторными и практическими занятиями, в ходе которых студент, руководствуясь специальными методическими указаниями преподавателя, а также методическими указаниями по выполнению расчетно-графических заданий, приобретает и совершенствует знания, умения и навыки, накапливает практический опыт.

Текущий контроль самостоятельной работы студентов осуществляется еженедельно в соответствие с программой занятий Описание заданий для самостоятельной работы студентов и требований по их выполнению выдаются преподавателем в соответствии с разработанным фондом оценочных средств по дисциплине «Системы компьютерной математики».

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специальных по-	Оснащенность специальных по-	Перечень лицензионного про-
мещений	мещений	граммного обеспечения
Учебные аудитории для проведе-	Мебель: учебная мебель	Microsoft Windows 8, 10,
ния занятий лекционного типа	Технические средства обучения:	Microsoft Office Professional Plus
	экран, проектор, ноутбук	
Учебные аудитории для проведе-	Мебель: учебная мебель	
ния лабораторных работ	Технические средства обучения:	
	экран, проектор, компьютеры, но-	
	утбуки	
	Оборудование:	N
Лаборатория информационных и	ПК, Терминальные станции, Уси-	Microsoft Windows 8, 10,
управляющих систем 201Н	литель автономный беспроводной	Microsoft Office Professional Plus
Лаборатория экономической ин-		1C: Предприятие 8 SPSS Statistics
форматики 202Н	Типовой комплект учебного обо-	SPSS Statistics
Лаборатория управления в техни-	рудования "Теория автоматиче-	Microsoft Windows 8, 10,
ческих системах 207Н	ского управления",	Microsoft Office Professional Plus
TOOKIM OHOTOMAK 20711	Презентации и плакаты Усили-	Trice of the Tropositional Trus
	тель автономный беспроводной	
	с микрофоном	
	Панель интерактивная, Конфе-	
Лаборатория организационно-	ренц-система, Микшер-усили-	
технологического обеспечения	тель, Подавитель акустической	Microsoft Windows 8, 10,
торговой и маркетинговой дея-	обратной связи, Настенный гром-	Microsoft Office Professional Plus
тельности 201А	коговоритель, Радиосистема,	1С: Предприятие 8
	Микрофон на гибком держателе,	
	Моноблок НР, Документ-камера,	
	Беспроводная точка доступа, Си-	

Лаборатория экономики и управления 212H	стема видеоотображения, ЖК панель, Сплитер, Мультимедийная трибуна лектор, Система видеоконференцсвязи, Плакаты Презентации и плакаты, Многофункциональный профессиональный видео детектор банкнот и ценных бумаг, Счетчики банкнот, Инфракрасный детектор банкнот и ценных бумаг, Универсальный детектор банкнот и ценных бумаг,	Microsoft Windows 8, 10, Microsoft Office Professional Plus
Лаборатория безопасности жиз- недеятельности 105A	Детектор подлинности банкнот, Ящик денежный, Планшетный импринтер, Усилитель автономный беспроводной Лабораторные стенды, Типовой комплект учебного оборудования, Стенды-тренажеры, Стендпланшет, Тренажерный комплекс по применению первичных средств пожаротушения, Комплекс — тренажер по оказанию первой доврачебной помощи, Робот-тренажер, Комплект плакатов, Комплект демонстрационных пособий, Комплект аудиовизуальных пособий	Microsoft Windows 8, 10, Microsoft Office Professional Plus

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для самостоятельной работы обучаю-	Оснащенность помещений для самостоятельной работы обучаю-	Перечень лицензионного про- граммного обеспечения
щихся	щихся	
Помещение для самостоятельной	Мебель: учебная мебель	Microsoft Windows 8, 10,
работы обучающихся (читальный	Комплект специализированной	Microsoft Office Professional Plus
зал Научной библиотеки)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к инфор-	
	мационно-коммуникационной	
	сети «Интернет» и доступом в	
	электронную информационно-об-	
	разовательную среду образова-	
	тельной организации, веб-ка-	
	меры, коммуникационное обору-	
	дование, обеспечивающее доступ	
	к сети интернет (проводное со-	
	единение и беспроводное соеди-	
	нение по технологии Wi-Fi)	
Помещение для самостоятельной	Мебель: учебная мебель	Microsoft Windows 8, 10,
работы обучающихся (ауд.213 А,	Комплект специализированной	Microsoft Office Professional Plus
218 A)	мебели: компьютерные столы	

Оборудование: компьютерная	
техника с подключением к инфор-	
мационно-коммуникационной	
сети «Интернет» и доступом в	
электронную информационно-об-	
разовательную среду образова-	
тельной организации, веб-ка-	
меры, коммуникационное обору-	
дование, обеспечивающее доступ	
к сети интернет (проводное со-	
единение и беспроводное соеди-	
нение по технологии Wi-Fi)	