МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Физико-технический факультет

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.В.05 КРИСТАЛЛОФИЗИКА И КРИСТАЛЛОХИМИЯ

Направление подготовки 03.04.02 Физика

Направленность Физика конденсированного состояния (теория, эксперимент и дидактика)

Форма обучения очная

Квалификация магистр

Рабочая программа дисциплины составлена в соответствии с федеральным государственным стандартом высшего образования (ФГОС ВО) по направления 03.04.02 «Физика конденсированного состояния»

Программу составил:	Mecca.
П.И. Быковский., доцент кафедры физики и информаг	ционных систем
Рабочая программа дисциплины утверждена на з	аседании кафедры физики и
информационных систем	
протокол № 14 «20 » апреля 2023 г.	
заведующий кафедрой физики и	
информационных систем	bonard 1.
	подпись
Утверждена на заседании учебно-методической в	комиссии физико-технического
факультета	
протокол № 10 « 20 » апреля 2023 г.	borard
Председатель УМК факультета	DOI & 1 OB 11.1VI.
	подпись

Рецензенты:

Галуцкий В.В., канд. физ.-мат. наук, доцент кафедры оптоэлектроники

Григорьян Л.Р., генеральный директор ООО НПФ «Мезон»

1 Цели и задачи изучения дисциплины (модуля).

1.1 Цель освоения дисциплины.

Целью дисциплины «Теория и применение лазеров» является ознакомление с физическими принципами создания и возможностями практического использования оптических квантовых генераторов (лазеров).

1.2 Задачи дисциплины.

Задачами дисциплины «Теория и применение лазеров» являются:

- формирование систематических знаний по основным разделам теории лазеров, необходимых для выполнения самостоятельных научных исследований и лабораторного практикума в рамках учебного курса;
- ознакомление с многочисленными направлениями практического применения лазеров;
- выработка у магистрантов навыков самостоятельной учебной деятельности, развитие у них познавательных потребностей.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Дисциплина «Теория и применение лазеров» относится к вариативной части Блока 1 "Дисциплины (модули)" учебного плана 03.04.02 Физика профиля «Физика конденсированного состояния вещества» и ориентирована при подготовке магистрантов на изучении физических процессов, происходящих в лазерах, конструкции лазеров и области их применения. Дисциплина базируется на знаниях, полученных ранее при изучении дисциплин «Оптика» и «Квантовая теория».

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение данной учебной дисциплины направлено на формирование у обучающихся общепрофессиональных/профессиональных компетенций (ОПК/ПК)

No	Индекс	Содержание компе-	В результате	изучения учебно	ой дисциплины
П.П.	компе-	тенции (или еè ча-	об	учающиеся долх	кны
11.11.	тенции	сти)	знать	уметь	владеть
1.	ПК-1	способностью само-	основные ти-	применять	методикой
		стоятельно ставить	пы современ-	лазеры для	применения
		конкретные задачи	ных лазеров и	физических	современных
		научных исследова-	направления	исследований	лазеров для
		ний в области физи-	их развития		технологически
		ки и решать их с по-			х целей и
		мощью современной			спектроскопии;
		аппаратуры и ин-			методами
		формационных тех-			использования
		нологий с использо-			лазеров в
		ванием новейшего			инновационных
		российского и зару-			проектах
		бежного опыта			
3.	ОПК-4	способностью адап-	возможности	применять	адаптацией
		тироваться к изме-	использования	лазеры в не-	лазерных
		нению научного	лазерных	традицион-	технологий к
		профиля своей про-	принципов в	ных областях	различным
		фессиональной дея-	других		направлениям
		тельности, социо-	направлениях		своей
		культурных и соци-			профессиональ

№ п.п.	Индекс компе-	Содержание компе- тенции (или еè ча-	В результате изучения учебной дисциплины обучающиеся должны		
11.11.	тенции	сти)	знать	уметь	владеть
		альных условий дея-			ной
		тельности			деятельности

2. Структура и содержание дисциплины.

2.1 Распределение трудоемкости дисциплины по видам работ.

Общая трудоемкость дисциплины составляет 4 зач.ед. (144 часа), их распределение по видам работ представлено в таблице

(для студентов ОФО).

Вид учебной работы					стры сы)	
Контактная работа, в том	и числе:	32,5	32,5			
Аудиторные занятия (вс	его):	32	32			
Занятия лекционного типа		16	16			
Лабораторные занятия		16	16			
Занятия семинарского тип ские занятия)	а (семинары, практиче-	-	-			
Иная контактная работа	:	0,5	0,5			
Контроль самостоятельного	й работы (КСР)	-	-			
Промежуточная аттестаци	я (ИКР)	0,5	0,5			
Самостоятельная работа	, в том числе:	75,8	75,8			
Проработка учебного (тео	ретического) материала	50	50			
Подготовка к текущему ко	нтролю	25,8	25,8			
Контроль:		35,7	35,7			
Подготовка к экзамену	35,7	35,7				
Общая трудоемкость	144	144				
	в том числе контактная работа	32,5	32,5			
	зач. ед	4	4			

2.2 Структура дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в В семестре (очная форма)

		Количество часов					
№	Наименование разделов		Аудиторная работа			Внеауди- торная работа	
			Л	П3	ЛР	CPC	
1	2	3	4	5	6	7	
1.	Необходимые сведения из теории излучения	12	2	-	-	10	
2.	Принцип действия квантовых генераторов	16	2	-	4	10	
3.	Различные типы лазеров	16	2	-	4	10	
4.	Голография и нелинейная оптика	12	2	-	-	10	
5.	Нелинейная оптика	20	2	-	8	10	
6.	Применение лазеров в промышленности	12	2	-	-	10	
7.	Измерительные лазерные системы	12	2	-	-	10	
8.	Применение лазеров науке и технике	7,8	2	-	-	5,8	
	Итого по дисциплине:		16	-	16	75,8	

Примечание: Л — лекции, ПЗ — практические занятия / семинары, ЛР — лабораторные занятия, СРС — самостоятельная работа студента

2.3 Содержание разделов дисциплины:

2.3.1 Занятия лекционного типа.

	Наименование		Форма текуще-
No	раздела	Содержание раздела	ГО
	-		контроля
1	2	3	4
1.	Необходимые сведения из теории излучения	Распределение атомов по стационарным состояниям при тепловом равновесии. Спонтанное излучение и поглощение света. Индуцированные переходы в атомах. Коэффициенты Эйнштейна.	Опрос
2.	Принцип действия квантовых генераторов	Усиление света при прохождении через вещество. Молекулярный генератор электромагнитного излучения (мазер). Квантовые системы с тремя энергетическими уровнями. Принцип действия и условия самовозбуждения ОКГ. Резонаторы. Гауссовы пучки света. Свойства излучения оптического квантового генератора. Степень монохроматичности. Общая классификация оптических квантовых генераторов.	Опрос
3.	Различные типы лазеров	Схема и характерные данные. Управление излучением рубинового лазера. Газовый лазер. Полупроводниковый лазер. Электроны проводимости и дырки. Состояние с отрицательной температурой в полупроводниках. Полупроводниковый лазер. Лазер с ядерной накачкой. Лазеры на красителях. Другие типы лазеров.	Опрос
4.	Голография	Основные физические принципы голографической записи и считывания информации. Различные голографические схемы. Запись голограмм на толстослойные эмульсии по методу Денисюка. Возможность создания голографической памяти для ЭВМ.	Опрос
5.	Нелинейная оптика	Зависимость свойств среды от интенсивности падающего излучения. Отклик нелинейной среды на внешнее воздействие. Изменение прозрачности среды под действием света. Самофокусировка лазерного излучения. Многофотонный фотоэффект.	Опрос
6.	Применение лазеров в промышленности	Сварочные установки Лазерные технологии в микроэлектронике. Лазерная закалка.	Опрос
7.	Измерительные ла- зерные системы	Доплеровский анемометр. Лазерные измерители. Интерферометры. Лазерные дальномеры.	Опрос
8.	Применение лазеров науке и технике	Применение лазеров в исследовании окружающей среды. Лазерный управляемый термоядерный синтез. Применение лазеров в оптической связи. Волоконная оптика. Лазеры в вычислительной технике. Термомагнитная запись и считывание информации. Лазеры в военном деле.	Опрос

	Нелинейная оптика в лазерной технике. Лазеры в	
	медицине. Лазерный скальпель.	

2.3.2 Занятия семинарского типа.

Занятия семинарского типа не предусмотрены.

2.3.3 Лабораторные занятия.

		Форма теку-
№	Наименование лабораторных работ	щего
		контроля
1	3	4
1.	Принцип действия квантовых генераторов	Отчет по
		лабораторной
		работе (ЛР)
2.	Различные типы лазеров	ЛР
3.	Вынужденное комбинационное рассеяние	ЛР
4.	Измерение длины волны излучения лазера интерференционным ме-	ЛР
	тодом	

2.3.4 Примерная тематика курсовых работ (проектов)

Курсовые работы не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы

обучающихся по дисциплине (модулю)

№	Вид СР	Перечень учебно-методического обеспечения дисциплины по выполнению самостоятельной работы
1	2	3
1		Методические указания по организации аудиторной и внеа- удиторной самостоятельной работы, утвержденные кафед- рой теоретической физики и компьютерных технологий,
2	Подготовка к текущему контролю	протокол № 9 от «14» марта 2017г.
3	Подготовка к экзамену	

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- -в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии.

В процессе преподавания дисциплины для реализациии компетентностного подхода предусматривается использование в учебном процессе активных и интерактивных форм проведения занятий, применяются образовательные технологии лекционно-экзаменационной системы обучения. Дисциплина предполагает использование такой интерактивной образовательной технологии, как «Дискуссия».

Дискуссия

Она является одной из важнейших форм образовательной деятельности, стимулирующей инициативность учащихся. Учебный материал в ходе дискуссии усваивается за счет:

- обмена информацией между участниками;
- разных подходов к одному и тому же предмету;
- сосуществования различных, вплоть до взаимоисключающих, точек зрения;
- возможности критиковать и даже отвергать любое мнение;
- поиска группового соглашения в виде общего мнения или решения.

Задача дискуссии – коллективно, с разных точек зрения, под разными углами обсудить и исследовать спорные моменты. Основные правила ведения дискуссии:

- нельзя критиковать людей, только их идеи;
- цель дискуссии не в определении победителя, а в консенсусе;
- все участники должны быть вовлечены в дискуссию;
- выступления должны проходить организованно, с разрешения ведущего, перепалка недопустима;
 - каждый участник должен иметь право и возможность высказаться;
- обсуждению подлежат все позиции; в процессе дискуссии участники могут изменить свою позицию;
 - строить аргументацию необходимо на бесспорных фактах;
 - в заключение всегда должны подводиться итоги.

По ходу дискуссии преподаватель должен следить, чтобы слишком эмоциональные и разговорчивые учащиеся не подменили тему, и чтобы критика позиций друг друга была обоснованной. Соединение работы в группах с решением проблемной ситуации создает наиболее эффективные условия для обмена знаниями, идеями и мнениями, обеспечивает всесторонний анализ и обоснованный выбор решения той или иной темы. Студенты овладевают ораторскими умениями, искусством ведения полемики, что само по себе вносит важный вклад в их личностное развитие.

Успешное освоение материала курса предполагает большую самостоятельную работу магистров и руководство этой работой со стороны преподавателей.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

4.1Фонд оценочных средств для проведения текущего контроля.

Для проверки знаний на занятиях предусмотрены контрольные вопросы в конце каждой лабораторной работы и перечень тем для круглого стола, который проходит в форме опроса по темам дисциплины.

4.1.1 Перечень дискуссионных тем для круглого стола (дискуссии, полемики, диспута, дебатов):

1. Спонтанное излучение и поглощение света. Индуцированные переходы в атомах. Коэффициенты Эйнштейна

- 2. Усиление света при прохождении через вещество. Молекулярный генератор электромагнитного излучения (мазер).
- 3. Резонаторы. Гауссовы пучки света. Свойства излучения оптического квантового генератора.
 - 4. Лазеры на диэлектрических кристаллах.
 - 5. Газовые лазеры.
 - 6. Полупроводниковые лазеры.
 - 7. Лазеры на свободных электронах, рентгеновские и гамма-лазеры.
- 8. Основные физические принципы голографической записи и считывания информации.
- 9. Зависимость свойств среды от интенсивности падающего излучения. Отклик нелинейной среды на внешнее воздействие.
 - 10. Применение лазеров в промышленности.
 - 11. Измерительные лазерные системы.
 - 12. Применение лазеров науке и технике.

4.1.2 Пример контрольных вопросов для лабораторной работы:

Лабораторная работа №1: Принцип действия квантовых генераторов.

Контрольные вопросы:

- 1. Каковы общие принципы работы лазера?
- 2. Что такое спонтанное и вынужденное излучения? В чем их отличие?
- 3. Каков физический смысл коэффициентов Эйнштейна? Какова связь между ними?
- 4. Что такое инверсная заселенность? Каким образом осуществляется инверсная заселенность в лазере?
- 5. На каких спектральных линиях осуществляется генерация в лазере? Являются ли условия генерации на каждой линии независимыми?
- 6. Какова роль резонатора в формировании геометрии выходного пучка и его спектрального состава?
 - 7. Чем определяется состояние поляризации лазерного луча?

4.2 Фонд оценочных средств для проведения промежуточной аттестации.

Фонд оценочных средств для проведения промежуточной аттестации включает вопросы для подготовки к зачету и экзамену.

4.2.1 Вопросы для подготовки к зачету.

- 1. Необходимые сведения из теории излучения.
- 2. Принцип действия квантовых генераторов.
- 3. Различные типы лазеров.
- 4. Голография и нелинейная оптика.
- 5. Применение лазеров в промышленности.
- 6. Измерительные лазерные системы.
- 7. Применение лазеров науке и технике.

4.2.2 Вопросы для подготовки к экзамену.

- 1. Распределение атомов по стационарным состояниям при тепловом равновесии. Спонтанное излучение и поглощение света.
 - 2. Индуцированные переходы в атомах. Коэффициенты Эйнштейна.
- 3. Усиление света при прохождении через вещество. Молекулярный генератор электромагнитного излучения (мазер).
- 4. Квантовые системы с тремя энергетическими уровнями. Принцип действия и условия самовозбуждения ОКГ. Резонаторы.

- 5. Свойства излучения оптического квантового генератора. Степень монохроматичности.
 - 6. Общая классификация оптических квантовых генераторов.
- 7. Схема и характерные данные твердотельного лазера. Управление излучением рубинового лазера.
- 8. Газовый лазер. Состояние с отрицательной температурой в полупроводниках. Полупроводниковый лазер.
 - 9. Лазер с ядерной накачкой. Лазеры на красителях. Другие типы лазеров.
- 10.Основные физические принципы голографической записи и считывания информации.
- 11. Различные голографические схемы. Запись голограмм на толстослойные эмульсии по методу Денисюка.
- 12. Зависимость свойств среды от интенсивности падающего излучения. Отклик нелинейной среды на внешнее воздействие.
 - 13. Изменение прозрачности среды под действием света.
 - 14. Самофокусировка лазерного излучения. Многофотонный фотоэффект.
- 15. Применение лазеров в промышленности. Сварочные установки Лазерные технологии в микроэлектронике. Лазерная закалка.
- 16. Доплеровский анемометр. Лазерные измерители. Интерферометры. Лазерные дальномеры.
 - 17. Применение лазеров в исследовании окружающей среды.
 - 18. Лазерный управляемый термоядерный синтез.
 - 19. Применение лазеров в оптической связи. Волоконная оптика.
- 20. Лазеры в вычислительной технике. Термомагнитная запись и считывание информации.
 - 21. Лазеры в военном деле.
 - 22. Нелинейная оптика в лазерной технике.
 - 23. Лазеры в медицине.

Образец экзаменационного билета

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Кубанский государственный университет» (ФГБОУ ВО «КубГУ»)

Кафедра теоретической физики и компьютерных технологий Направление подготовки 03.04.02 Физика («Физика конденсированного состояния вещества») 2018–2019 уч. год

Дисциплина «Теория и применение лазеров»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

- 1. Распределение атомов по стационарным состояниям при тепловом равновесии. Спонтанное излучение и поглощение света.
- 2. Лазеры в медицине.

Зав. кафедрой теоретической физики и компьютерных технологий, д. ф.-м. н. доцент

В.А. Исаев

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

- 1. Лазеры: применения и приложения / А.С. Борейшо [и др.]. Санкт-Петербург: Лань, 2016. 520 с. Режим доступа: https://e.lanbook.com/book/87570.
- 2. Борейшо А.С. Лазеры: устройство и действие / А.С. Борейшо, С.В. Ивакин. Санкт-Петербург: Лань, 2017. 304 с. Режим доступа: https://e.lanbook.com/book/93585.

5.2 Дополнительная литература:

- 1. Иванов И.Г. Основы квантовой электроники / И.Г. Иванов. Ростов-н/Д: Издательство Южного федерального университета, 2011. 174 с. Режим доступа: URL: http://biblioclub.ru/ index.php?page= book&id=241055.
- 2. Шандаров С.М. Введение в нелинейную оптику / С.М. Шандаров. Томск: ТУСУР, 2012. 41 с. Режим доступа: URL: http://biblioclub.ru/index.php?page=book&id=480458.
- 3. Манцызов Б.И. Когерентная и нелинейная оптика фотонных кристаллов / Б.И. Манцызов. Москва: Физматлит, 2009. 208 с. Режим доступа: https://e.lanbook.com/book/59587.
- 4. Справочник по лазерам / пер. с англ. А.М. Прохорова; ред.кол. С.А. Ахманов, Д.Н. Вылегжанин, А.А. Каминский и др. Москва: Советское радио, 1978. Т. 1. 503 с. Режим доступа: URL: http://biblioclub.ru/index.php?page=book&id=477453.
- 5. Справочник по лазерам / пер. с англ. А.М. Прохорова; ред.кол. С.А. Ахманов, Д.Н. Вылегжанин, А.А. Каминский и др. Москва: Советское радио, 1978. Т. 2. 400 с. Режим доступа: URL: http://biblioclub.ru/index.php?page=book&id=477452.

- 6. Цернике Ф. Прикладная нелинейная оптика / Ф. Цернике, Д. Мидвинтер; пер. с англ. Б.В. Жданова, Н.И. Коротеева; под ред. С.А. Ахманов. Москва: Мир, 1976. 260 с. Режим доступа: URL: http://biblioclub.ru/index.php? page=book&id= 477406.
- 7. Делоне Н.Б. Нелинейная оптика / Н.Б. Делоне. Москва: Физматлит, 2003. 64 с. Режим доступа: https://e.lanbook.com/book/2134.
- 8. Тумаев Е. Н. Процессы переноса энергии электронного возбуждения в конденсированных средах: монография /Е. Н. Тумаев. Краснодар: [Кубанский государственный университет], 2013.

5.3. Периодические издания:

- 1. Квантовая электроника.
- 2. Физика твердого тела.
- 3. Журнал экспериментальной и теоретической физики.
- 4. Журнал физической химии.

6. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля).

- 1. Сайт научной библиотеки сибирского федерального университета http://files.lib.sfu-kras.ru/ebibl/umkd/94
- 2. Сайт, содержащий справочные данные различных кристаллов: http://refractiveindex.info.
 - 3. Официальный сайт ФГБУН «ФИАН»: http://www.lebedev.ru.
 - 4. Официальный сайт ФГБУН «ИОФ РАН»: http://www.gpi.ru.

7. Методические указания для обучающихся по освоению дисциплины (модуля).

По курсу предусмотрено проведение лекционных занятий, на которых дается основной систематизированный материал.

Сопровождение самостоятельной работы студентов организовано в следующих формах:

- оформление отчетов по лабораторным работам и подготовка к устной их защите;
- усвоение, дополнение и вникание в разбираемые разделы дисциплины при помощи знаний получаемых посредством изучения рекомендуемой литературы;
- консультации, организованные для разъяснения проблемных моментов при самостоятельном изучении тех или иных аспектов разделов усваиваемой информации в дисциплине.

В освоении дисциплины инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю).

8.1 Перечень информационных технологий.

Не предусмотрено.

8.2 Перечень необходимого программного обеспечения.

	, ,				
Программный продукт		Договор/лице	киенз		
Операционна	я система MS Windows 8	, 10		№73-АЭФ/223-ФЗ/2018	Соглашение

	Microsoft ESS 72569510 or 06.11.2018
Интегрированное офисное приложение MS	№73-АЭФ/223-Ф3/2018 Соглашение
Office Professional Plus	Microsoft ESS 72569510 or 06.11.2018
Математический пакет «Mathcad»	№127-АЭФ/2014 от 29.07.2014

8.3 Перечень информационных справочных систем:

- 1. Электронная библиотечная система eLIBRARY.RU (http://www.elibrary.ru).
- 2. Сайт, содержащий справочные данные различных кристаллов, используемых для лазеров: http://refractiveindex.info.
- 3. Электронная библиотечная система "Университетская библиотека ONLINE" [Электронный ресурс] Режим доступа: http://biblioclub.ru.
- 4. Электронная библиотечная система издательства "Лань" [Электронный ресурс] Режим доступа: http://e.lanbook.com.

9. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю).

	T	
No	Вид работ	Материально-техническое обеспечение дисциплины (мо-
	•	дуля) и оснащенность
1.	Лекционные занятия	Учебная аудитория для проведения занятий лекционного
2.	Лабораторные заня-	и лабораторного типа; оснащенность: комплект учебной
	ТИЯ	мебели на 16 мест; Аптечка «Гало» (набор изделий трав-
		матологический первой медицинской помощи); доска
		учебная магнитно-маркерная; комплект плакатов «Теория
		групп», «Физические свойства кристаллов»; компьютер-
		ное оснащение ПЭВМ – 4 шт. на 8 посадочных мест;
		средства тушения: огнетушитель
		350040 г. Краснодар, ул. Ставропольская, 149, №320С
3.	Групповые (индиви-	Аудитории для проведения групповых и индивидуальных
	дуальные) консульта-	консультаций; оснащенность: комплект учебной мебели с
	ции	учебными ПЭВМ на 14 мест; 1 ПЭВМ администратора
		(преподавательский); доска учебная магнитно-маркерная
		350040 г. Краснодар, ул. Ставропольская, 149, № 212С,
		207C
4.	Текущий контроль,	Аудитория для текущего контроля и промежуточной
	промежуточная атте-	аттестации; оснащенность: комплект учебной мебели на 16
	стация	мест, доска учебная магнитно-маркерная
_		350040 г. Краснодар, ул. Ставропольская, 149, №320С
5.	Самостоятельная ра-	Помещение для самостоятельной работы; оснащенность:
	бота	комплект учебной мебели на 10 мест, компьютерное осна-
		щение ПЭВМ с возможностью подключения к сети «Ин-
		тернет», программой экранного увеличения и доступом в
		электронную информационно-образовательную среду уни-
		верситета
		350040 г. Краснодар, ул. Ставропольская, 149, № 208С