Аннотация по дисциплине

Б1.В.ДВ.05.01 «Нелинейные задачи в анализе и механике» для направления: 01.05.01 Фундаментальные математика и механика, профиль: Математическое моделирование

Объем трудоемкости: 2 зачетные единицы (72 часа, из них -44,2 ч. контактной работы: лекционных 14 ч., лабораторных 28 ч., КСР 2 ч., ИКР 0,2 ч.; 27,8 ч. СР).

Цель дисциплины:

Освоение основных идей методов, особенностей областей применения и методики использования их как готового инструмента практической работы при проектировании и разработке систем, математической обработке данных экономических и других задач, построении алгоритмов и организации вычислительных процессов на ПК. В курсе изучаются основные сведения о классических методах оптимизации решения различных прикладных задач.

Задачи дисциплины:

- 1. научить студента постановке математической модели практической задачи ианализу полученных данных;
- 2. подготовить студентов к практическому применению полученных знаний впрофессиональной деятельности;
- 3. привить студенту определенную математическую грамотность, достаточную длясамостоятельной работы с литературой;
- 4. вооружить учащихся системой знаний и умений по решению математических задач, возникающих в ходе практической деятельности;
- 5.научить применять знания по математике при изучении других дисциплин и впрофессиональной деятельности;

6. научить применять навыки коллективного обсуждения планов работ на основеполученных научных результатов.

Место дисциплины в структуре ООП ВО:

Дисциплина «Нелинейные задачи в анализе и механике» относится к вариативной части Блока 1 "Дисциплины" учебного плана и является дисциплиной по выбору.

Дисциплина базируется на знаниях, полученных по стандарту высшего образования в области математики и информатики, является основой для решения исследовательских задач. Для успешного освоения дисциплины студент должен владеть обязательным минимумом содержания основных образовательных программ по математике и информатике для специалистов.

изучения данной дисциплины необходимы Для следующие дисциплины: математический анализ, линейная алгебра, аналитическая геометрия, теория вероятностей и математическая статистика, основные направления развития современной математики и компьютерных наук, новые информационные технологии. Данная дисциплина является предшествующей для следующих: математические модели в научных исследованиях и образовании, интерактивные технологии в образовательном процессе, а также для научно-исследовательской работы.

Требования к уровню освоения дисциплины

Изучение данной учебной дисциплины направлено на формирование у

обучающихся общепрофессиональных и профессиональных компетенций (ПК-1, ПК-5)

Код компетенции	Формулировка компетенции
ПК-1	Способен формулировать ирешать актуальные и значимые задачи фундаментальной и прикладной математики.
Знать	теоретические основы оптимизации и исследования операций и содержательную сторону задач, возникающих в практике.
Уметь	использовать полученные знания для осуществления анализа управленческих ситуаций и идентифицировать проблему.
Владеть	навыками принятия решений всовременных условиях хозяйствования.
ПК-5	Способен находить и извлекать актуальную научно- техническую информацию из электронных библиотек, реферативных журналов и т.п.
Знать	Формулировки и доказательства утверждений, методы их доказательства.
Уметь	определять класс задач, для которых применим тот или иной аппарат, выбирать метод решения конкретного типа задач.
Владеть	аппаратом математического анализа, методами применения этого аппарата к решению задач.

Основные разделы дисциплины:

Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы (темы) дисциплины, изучаемые в 9 семестре *(очная форма)*

		Количество часов				
№	Наименование разделов	Всего	Аудиторная работа			Самостоятельная работа
раз-			Л	П3	ЛР	
дела						
1	2	3	4	5	6	7
	Предмет «Исследование					
1.	операций и методы	1	-	-	-	1
	оптимизации».					
	Элементы линейной					
	алгебры и					
	геометрии выпуклых					
	множеств.					

	Постоиовка за наи					
	Постановка задач линейного	4			2	2
2.		4	-	-	2	2
	программирования.					
	Теоретические основы					
	линейного					
	программирования.					
	Графический метод					
	решения					
	задач линейного					
	программирования.	_			2	2
3.	Симплексный метод.	5	-	-	2	3
	Определение					
4.	двойственности. Взаимно	4	-	-	2	2
	двойственные задачи ЛП					
	и её свойства. Теоремы двойственности.					
	Транспортная задача и её					
5.	приложения. Алгоритм	7	2	_	2	3
٦.	решения транспортной	'	<u> </u>	_		<i>J</i>
	задачи. Вырожденные					
	транспортные задачи. Задача целочисленного					
6.	линейного	5	2	-	2	1
	программирования. Задача					
	коммивояжера.					
	Постановка задач					
7.	нелинейного	6	2	-	2	2
	программирования. Метод					
	исключения. Метод					
	множителей Лагранжа.					
	Метод штрафной функции.					
	Динамическое					
8.	программирование.	9	6	-	2	1
	Принцип оптимальности					
	и управления Беллмана.					
	Задача о					
	замене оборудования.					
	Общая модель управления					
9.	запасами. Статические	5	2	_	2	1
/.	модели управления		_			
	запасами. Динамические Задачи					
	, ,					
	экономического					
	размера заказа.					
	Одноэтапные и					
	многоэтапные					
	модели.					
	Марковская задача					
10.	принятия решений.	10	6	-	2	2
	Цепи Маркова,					
1	<u> </u>	1			1	

	марковские процессы.					
	Марковская					
	конечношаговая					
	модель принятия					
	решений.					
	Модель Ховарда.					
11.	Марковские случайные	4	2	-	-	2
	процессыс непрерывным					
	временем и доходами.					
	Марковская					
	непрерывная модель					
	принятия решений. Принятия решений в					
12.	условии неопределённости.	4	-	-	2	2
	Принятия решений в					
	условиях риска.					
	Теория игр. Основные					
13.	понятия теории игр.	5,8	-	-	2	3,8
	Сведение матричной					
	игры к задаче линейного					
	программирования.					
	Матричная игра двух					
	лиц с					
	ненулевой постоянной					
	суммой. Итого:		22		22	25,8
	rimucu.		44	-	44	23,0

Курсовые работы: не предусмотрены.

Вид аттестации: зачет. Основная литература:

1. Окулов, С.М. Динамическое программирование [Электронный ресурс]: учебное пособие / С.М. Окулов, О.А. Пестов. — Электрон. дан. — Москва: Издательство "Лаборатория знаний", 2015. — 299 с. — Режим доступа: https://e.lanbook.com/book/66114

2. Лунгу, Константин Никитович. **Линейное** программирование [Текст]: руководство к решению задач: учебное пособие для студентов вузов / К. Н. Лунгу. - Изд. 2-е, испр. и доп. - М.: ФИЗМАТЛИТ, 2009. - 131 с.: ил. - Библиогр. : с. 131. - ISBN 9785922110297: (15 шт.)

Для освоения дисциплины инвалидами и лицами с ограниченными возможностямиздоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Юрайт».

Автор: Гаврилюк М.Н.