МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет химии и высоких технологий

УТВЕРЖДАЮ:

Проректор по учебной работе,

первый проректор

загуров Т.А.

426

мая

2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.05 РАДИОСПЕКТРОСКОПИЯ НЕОРГАНИЧЕСКИХ И КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ

Направление подготовки -

04. 03.01 Химия

Направленность (профиль) -

«неорганическая химия и химия координационных соединений»

Форма обучения – очная

Квалификация выпускника – бакалавр

Рабочая программа дисциплины Б1.В.05 «Радиоспектроскопия неорганических и координационных соединений» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по направлению подготовки 04.03.01 – Химия.

Программу составил:

Волынкин В.А., зав. кафедрой общей, неорганической химии и информационно-вычислительных технологий в химии, к.х.н., доцент

Рабочая программа дисциплины Б1.В.05 «Радиоспектроскопия неорганических и координационных соединений» утверждена на заседании кафедры общей, неорганической химии и ИВТ в химии протокол N 07 от «04» апреля 2023 г.

Заведующий кафедрой Волынкин В.А.

Утверждена на заседании учебно-методической комиссии факультета химии и высоких технологий, протокол № 7 «17» апреля 2023 г.

Председатель УМК факультета Беспалов А.В.

Рецензенты:

Крапивин Г.Д, главный научный сотрудник ЦКП «ИЦПиХТ» ФГБОУ ВО «КубГТУ», д.х.н., профессор

Болотин С.Н, зав. кафедрой экологии и природопользования ФГБОУ ВО «КубГУ», к.х.н, доцент

1. Цели и задачи освоения дисциплины

1.1. Цель дисциплины:

Обучить студентов владению современными методами исследования ЯМР и ЭПР спектроскопии, освоить основные приемы работы и принципы исследования комплексных соединений, подготовить к самостоятельному решению практических задач в данной области от постановки задачи и планирования эксперимента до получения конечного результата.

1.2. Задача дисциплины:

- знакомство студентов с основными методами исследования комплексных соединений, обработки результатов спектроскопических исследований, принципами планирования эксперимента, моделирования спектров сложных равновесных систем.
- студенты должны познакомиться с современными методами, научным оборудованием и программным обеспечением. Уметь активно применять современные методы исследования в профессиональной сфере.

1.3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Радиоспектроскопия неорганических и координационных соединений» относится к части, формируемой участниками образовательных отношений, Блока 1. Дисциплины (Модули) учебного плана. В соответствии с рабочим учебным планом дисциплина изучается на 3 курсе. Вид промежуточной аттестации: экзамен.

Для ее изучения используются знания курсов «Физические методы анализа» и «Физика».

Знания и навыки, полученные в результате освоения данного курса, могут быть использованы при изучении специальных профильных дисциплин, таких как «Направленный синтез неорганических и координационных соединений», «Супрамолекулярная химия», «Методы исследования неорганических и композитных материалов» а также в научно-исследовательской работе студентов.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Изучение данной учебной дисциплины направлено на формирование у обучающихся следующих профессиональных компетенций:

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине
ПК-2 - Способен применять современну	лю аппаратуру при проведении научных иссле-
дований, а также обрабатывать и анали-	зировать полученные результаты.
ИПК-2.1. Осуществляет исследование	знает базовые и специальные эксперименталь-
химических соединений и материалов	ные методы радиоспектроскопии
с использованием современного хи-	умеет выбирать оптимальные методы радио-
мического оборудования	спектроскопии для исследования неорганиче-
	ских и координационных соединений
	владеет методологией радиоспектроскопии для
	исследования неорганических и координаци-
	онных соединений
ИПК-2.2. Обрабатывает и анализирует	знает теорию и практику ЯМР и ЭПР спектро-
экспериментальные данные, получен-	скопии
ные с использованием современной	умеет обрабатывать и осуществлять анализ
химической аппаратуры	экспериментальных данных радиоспектроско-
	пии применительно к неорганическим и коор-
	динационным соединениям
	владеет базовыми навыками использования со-
	временных программных средств для обработ-
	ки и анализа экспериментальных данных
	первичную обработку научной и научно-
технической информации по предложен	
ИПК-5.1. Осуществляет поиск науч-	знает основные направления развития теории
ной и научно-технической информа-	строения координационных соединений пере-
ции по предложенной теме	ходных металлов
	умеет проводить поиск научной и научно-
	технической информации по теме строения не-
	органических и координационных соединений
	владеет методологией поиска научной и науч-
HHI. 5.2.0	но-технической информации
ИПК-5.2. Осуществляет выбор и обра-	знает базовые и специальные методы выбора и
ботку научной и научно-технической	обработки научной и научно-технической ин-
информации по предложенной теме	формации
	умеет осуществлять выбор и обработку науч-
	ной и научно-технической информации
	владеет методологией выбора и обработки на-
	учной и научно-технической информации по
	радиоспектроскопии переходных металлов

Результаты обучения по дисциплине достигаются в рамках осуществления всех видов контактной и самостоятельной работы обучающихся в соответствии с утвержденным учебным планом.

Индикаторы достижения компетенций считаются сформированными при достижении соответствующих им результатов обучения.

2. Структура и содержание дисциплины

2.1 Распределение трудоёмкости дисциплины по видам работ

Общая трудоёмкость дисциплины составляет 4 зач. ед. (144 часа), их распределение по видам работ представлено в таблице.

Вид учебн	ой работы	Всего	(Семе	естры	
		часов		(ча	сы)	
			5			
Контактная работа, і	в том числе:					
Аудиторные занятия	(всего):	68	68			
Занятия лекционного т	типа	16	16		-	ı
Лабораторные занятия		52	52		-	ı
Занятия семинарского	типа (семинары, прак-					
тические занятия)		_	ı		-	<u>-</u>
		-	ı		-	ı
Иная контактная раб	ота:					
Контроль самостоятели	ьной работы (КСР)	2	2			
Промежуточная аттест	ация (ИКР)	0,3	0,3			
Самостоятельная раб	ота, в том числе:	38	38			
Курсовая работа		-	ı		-	1
Проработка учебного (теоретического) мате-		20	20			
риала		20	20		-	1
Выполнение индивиду	Выполнение индивидуальных заданий (под-		12			
готовка сообщений, пр	готовка сообщений, презентаций)		12		-	1
Реферат	Реферат		ı		-	ı
Подготовка к текущему контролю		6	6		-	ı
Контроль:						
Подготовка к экзамену		35,7	35,7			
Общая трудоем-	час.	144	144		-	-
кость в том числе кон-		70,3	70,3			
	тактная работа	70,5	70,3			
	зач. ед	4	4			

2.2 Структура дисциплины.

Распределение видов учебной работы и их трудоёмкости по разделам дисциплины.

Разделы дисциплины, изучаемые в 5 семестре (для студентов ОФО)

	№ Наименование разделов (тем)		Количество часов			
№			Аудиторная работа			Внеауди- торная работа
				П3	ЛР	CPC
1	2	3	4	5	6	7
1.	Спектроскопия ЭПР	20	2		10	8
2.	. Спектроскопия ЯМР		6		24	16
3.	ЯМ релаксация		2		4	2
4.	Исследование координационных соединений		4		10	8
5.	ЯМР твердого тела		2		4	4
	ИТОГО по разделам дисциплины		16		52	38
	Контроль самостоятельной работы (КСР)	2				
	Промежуточная аттестация (ИКР)	0,3				
	Подготовка к текущему контролю	35,7				
	Общая трудоемкость по дисциплине	144				

2.3 Содержание разделов дисциплины

2.3.1 Занятия лекционного типа

No	Наименование раздела	Содержание раздела	Форма текущего контроля
1	2	3	4
1.	Спектроскопия ЭПР	Основные понятия спектроскопии ЭПР. Параметры спектров ЭПР (g-фактор, константа СТВ, ширина линии). Особенности ЭПР растворов	Коллоквиум
2.	Спектроскопия ЯМР	Основные понятия спектроскопии ЯМР. Параметры спектров ЯМР. Устройство ЯМР спектрометра. Импульсный ЯМР и его особенности. Применение импульсных методов	Реферат. Док- лад на тему.
3.	Методы определения структуры соединений	Специальные методики: методы двойного резонанса, ЯЭО и др. Многомерные эксперименты. Измерение времен релаксации.	Решение задач
4.	Исследование комплексных соединений.	Равновесия в растворах комплексных соединений. Устойчивость комплексных соединений Методы определения констант устойчивости спектроскопическими методами. Информация, получаемая из ЯМР и ЭПР спектров комплексных соединений. Исследование кинетики и механизма реакций комплексообразования.	Коллоквиум
5.	Анализ формы линии.	Классическое рассмотрение. Квантово-химическое рассмотрение. Анализ формы линии спектров ЯМР и ЭПР с использованием метода матрицы спиновой плотности.	Проверка ра- бот. Отчеты о выполнении.
6.	_	Особенности экспериментальных техник. Вращение под магическим углом Получение структурной информации из спектров ЯМР твердого тела.	Выполнение ин- дивидуальных заданий

2.3.2 Занятия семинарского типа

(учебным планом занятия семинарского типа не предусмотрены)

2.3.3 Лабораторные занятия

No	Наименование лабораторных работ	Форма текущего
212	панменование лаоораторных раоот	контроля
1	3	4
1.	Знакомство с ЭПР спектрометром. Съемка спектров различных	Устный опрос
	соединений. Анализ и интерпретация спектров.	
2.	Исследования комплексообразования меди с органическими ли-	Отчет по лаб.
	гандами. Приготовление растворов, съемка спектров.	работе
3.	Анализ спектров и обработка полученных результатов.	Решение задач
4.	Знакомство с ЯМР спектрометром. Съемка спектров различных	Отчет по лаб.
	соединений. Анализ и интерпретация спектров.	работе
5.	Исследование структуры соединений. Специальные методики.	Отчет по лаб.
		работе
6.	Исследования комплексообразования РЗЭ с органическими ли-	Отчет по лаб.
	гандами. Приготовление растворов, съемка спектров	работе
7.	Анализ спектров и обработка полученных результатов.	Решение задач
8.	Приготовление образцов твердого тела, съемка спектров, рас-	Отчет по лаб.
	шифровка результатов	работе

2.3.4 Примерная тематика курсовых работ

Курсовые работы – не предусмотрены

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

			-
	№	Вид СРС	Перечень учебно-методического обеспечения дисциплины по
	312	Вид СТС	выполнению самостоятельной работы
	1	2	3
	1	Теоретическая са-	Методические рекомендации к организации аудиторной и
		моподготовка	внеаудиторной (самостоятельной) работы студентов: методи-
	2	Подготовка к ЛР	ческие указания / сост. Т.П. Стороженко, Т.Б. Починок, А.В.
	3	Реферат	Беспалов, Н.В. Лоза. – Краснодар: Кубанский гос. ун-т, 2018.
ĺ	4	Доклады, презен-	89 c.
		тации	Интернет ресурсы по дисциплине, в том числе указанные в
			п.6.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

3. Образовательные технологии

Для формирования профессиональных компетенций в процессе освоения курса используется технология профессионально-развивающего обучения, предусматривающая не только передачу теоретического материала, но и стимулирование и развитие продуктивных познавательных действий студентов (на основе психолого-педагогической теории поэтапного формирования умственных действий).

Активизации и интенсификации познавательного процесса способствуют моделирование проблемных ситуаций, мультимедийные презентации в лекционном курсе. В рамках лабораторных занятий применяются методы проектного обучения, исследовательские методы, тренинговые формы, метод конкретных ситуаций. В процессе самостоятельной деятельности студенты осваивают и анализируют передовой опыт, используя имеющуюся литературу и информационные технологии, выступают с презентациями, накапливают портфолио разработок.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

4.1 Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Текущий контроль осуществляется в устной и электронной форме в процессе выполнения лабораторных работ. Промежуточный контроль проводится в виде тестов и контрольных работ. Итоговый контроль осуществляется приемом экзамена в 5 семестре.

Критерии оценки сформированных компетенций определяются уровнем усвоения изучаемого материала.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

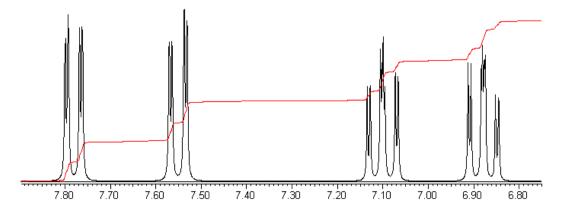
Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

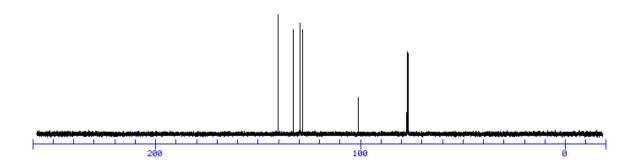
Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

Оценка	Критерии оценивания по экзамену
Высокий уровень «5» (отлично)	оценку «отлично» заслуживает студент, освоивший знания, умения, компетенции и теоретический материал без пробелов; выполнивший все задания, предусмотренные учебным планом на высоком качественном уровне; практические навыки профессионального применения освоенных знаний сформированы. Студент свободно владеет теоретическим материалом (знает как основные, так и специфические синтетические методы, а также механизмы основных реакций) и способен самостоятельно решить эк-
	заменационную задачу.

Оценка	Критерии оценивания по экзамену
Средний уровень «4» (хорошо)	оценку «хорошо» заслуживает студент, практически полностью освоивший знания, умения, компетенции и теоретический материал, учебные задания не оценены максимальным числом баллов, в основном сформировал практические навыки. Студент хорошо владеет теоретическим материалом, знает базовые синтетические методы и имеет представление о механизмах основных синтетически важных реакций, способен справиться с экзаменационной задачей при незначительной помощи со стороны преподавателя.
Пороговый уровень «3» (удовлетворительно)	оценку «удовлетворительно» заслуживает студент, частично с пробелами освоивший знания, умения, компетенции и теоретический материал, многие учебные задания либо не выполнил, либо они оценены числом баллов близким к минимальному, некоторые практические навыки не сформированы. Студент знает базовые синтетические методы, однако плохо разбирается в специфических методах и механизмах основных реакций, с трудом справляется с экзаменационной задачей при существенной помощи со стороны преподавателя.
Минимальный уровень «2» (неудовлетворительно)	оценку «неудовлетворительно» заслуживает студент, не освоивший знания, умения, компетенции и теоретический материал, учебные задания не выполнил, практические навыки не сформированы. Студент не способен решить экзаменационную задачу даже с помощью преподавателя и плохо владеет теоретическим материалом (наблюдаются существенные


4.1.1 Примеры вариантов контрольных работ, тестов

ВАРИАНТ КОНТРОЛЬНОЙ РАБОТЫ


по теме «Исследование структуры соединений»

Вариант №4.

¹Н ЯМР спектр - С₆Н₄ВrI

 $^{13}\text{С}$ ЯМР спектр - $\text{C}_6\text{H}_4\text{BrI}$ (140.2, 132.6, 129.6, 129.3, 128.3, 101.1, 77.3, 76.9, 76.6)

4.2 Фонд оценочных средств для проведения промежуточной аттестании

4.2.1 Вопросы для подготовки к экзамену

- 1. Явление ядерного магнитного резонанса. Классическое описание.
- 2. Устройство спектрометра ЯМР.
- 3. Основные параметры спектра ЯМР. Химический сдвиг.
- 4. Основные параметры спектра ЯМР. Константа спин-спинового взаимодействия.
- 5. Процессы релаксации. Природа спин-решеточной и спин-спиновой релаксации.
- 6. Общий подход к анализу спектров ЯМР. Анализ спектров первого и более высоких порядков.
- 7. Специальные методы эксперимента в спектроскопии ЯМР. Методы двойного и множественного резонанса. Многомерная спектроскопия ЯМР, основные типы экспериментов.
- 8. Динамические эффекты в спектроскопии ЯМР. Понятие быстрого и медленного обмена. Точка коалесценции.
- 9. Изменения спектров ЯМР, вызываемые процессами комплексообразования. Анализ систем в приближении медленного обмена.
- 10. Анализ спектров в приближении быстрого обмена. Понятие предельного химического сдвига. Использование аддитивной модели для наблюдаемого химического сдвига для расчета параметров динамических систем.
- 11. Анализ формы линии спектра. Классический подход (метод ГМС).
- 12. Квантовомеханический подход к описанию спектров. Теория матрицы спиновой плотности.
- 13. Принцип метода ЭПР. Теория метода. Эффект Зеемана.
- 14. Устройство спектрометра ЭПР.
- 15.Основные параметры спектров ЭПР. g-фактор.
- 16.Основные параметры спектров ЭПР. Константа СТВ. Природа сверх-

тонкого взаимодействия.

- 17. Уширение линий спектра ЭПР. Механизмы процессов уширения.
- 18. Применение спектроскопии ЭПР для исследования координационных соединений. Исследования в твердом виде и в растворах.
- 19. Форма линии спектра ЭПР. Классическое описание спектров ЭПР (метод кривых Лоренца.). Ограничения метода.
- 20. Применение метода матрицы спиновой плотности к описанию динамических систем.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

5.1 Учебная литература

- 1. Устынюк, Ю.А. Лекции по спектроскопии ядерного магнитного резонанса [Электронный ресурс]. Ч. 1 (вводный курс) / Ю.А. Устынюк. М.: Техносфера, 2016. 288 с. ISBN 978-5-94836-410-0. Режим доступа: https://biblioclub.ru/index.php?page=book_red&id=444862&sr=1
- 1. Пентин, Юрий Андреевич, Вилков, Лев Васильевич. Физические методы исследования в химии. М.: Изд-во "МИР" Изд-во "АСТ", 2003. 683с.
- 2. В.Т. Панюшкин, Ю.Е. Черныш, В.А. Волынкин, Г.С. Бородкин, И.Г. Бородкина. Ядерный магнитный резонанс в структурных исследованиях / Отв. ред. Р.З. Сагдеев. М.: Красанд, 2017. 350 с.

5.2 Периодические издания

Периодические журналы: "Журнал координационной химии "; "Журнал структурной химии".

- 1. http://www.sciencedirect.com
- 2. http://www.spectroscopynow.com
- 3. http://www.msg.ameslab.gov/gamess/

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. ЭБС «BOOK.ru» https://www.book.ru
- 4. JBC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Scopus http://www.scopus.com/
- ScienceDirect www.sciencedirect.com
- 3. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 4. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 5. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 6. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
- 7. Springer Journals https://link.springer.com/
- 8. Nature Journals https://www.nature.com/siteindex/index.html
- 9. Springer Nature Protocols and Methods
- 10.https://experiments.springernature.com/sources/springer-protocols
- 11. Springer Materials http://materials.springer.com/
- 12. Springer eBooks: https://link.springer.com/

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. КиберЛенинка (http://cyberleninka.ru/);
- 3. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 4. Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru/

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
- 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/

6. Методические указания для обучающихся по освоению дисциплины (модуля)

Методические рекомендации преподавателям по методике проведения основных видов учебных занятий

Лекции

Методика чтения лекций

Лекции являются одним из основных методов обучения по дисциплине, которые должны решать следующие задачи:

- изложить важнейший материал программы курса, освещающий основные моменты;
- развить у студентов потребность к самостоятельной работе над учебной и научной литературой.

Главной задачей каждой лекции является раскрытие сущности темы и анализ ее главных положений. Рекомендуется на первой лекции довести до внимания студентов структуру курса и его разделы, а в дальнейшем указывать начало каждого раздела, суть и его задачи, а, закончив изложение, подводить итог по этому разделу, чтобы связать его со следующим.

Содержание лекций

Содержание лекций определяется рабочей программой курса. Крайне желательно, чтобы каждая лекция охватывала и исчерпывала определенную тему курса и представляла собой логически вполне законченную работу. Лучше сократить тему, но не допускать перерыва ее в таком месте, когда основная идея еще полностью не раскрыта.

Лабораторные занятия

Методика проведения лабораторных занятий

Целями проведения лабораторных работ являются:

- установление связей теории с практикой в форме экспериментального подтверждения положений теории;
- обучение студентов умению анализировать полученные результаты;
- контроль самостоятельной работы студентов по освоению курса;
- обучение навыкам профессиональной деятельности

Цели лабораторного практикума достигаются наилучшим образом в том случае, если выполнению эксперимента предшествует определенная подготовительная внеаудиторная работа. Поэтому преподаватель обязан довести до всех студентов график выполнения лабораторных работ с тем, чтобы они могли заниматься целенаправленной домашней подготовкой. Перед началом очередного занятия преподаватель должен удостовериться в готовности студентов к выполнению лабораторной работы путем короткого собеседования и проверки наличия у студентов заготовленных протоколов проведения работы.

Указания по самостоятельной работе.

Самостоятельная работа составляет не менее 50% от времени, отводимого на изучение дисциплины. При самостоятельной работе студент должен ознакомиться с основными учебниками и учебными пособиями, дополнительной литературой и иными доступными литературными источниками. При работе с литературой по конкретным темам курса, в том числе указанным для самостоятельной проработки. основное внимание следует уделять важнейшим понятиям, терминам, определениям, для скорейшего усвоения которых целесообразно вести краткий конспект.

7. Материально-техническое обеспечение по дисциплине (модулю)

Наименование специаль-	Оснащенность специаль-	Перечень лицензионного
ных помещений	ных помещений	программного обеспечения
Учебные аудитории для	Мебель: учебная мебель	Microsoft Windows, Micro-
проведения занятий лекци-	Технические средства обу-	soft PowerPoint
онного типа	чения: интерактивная доска	
	SMART Board, короткофо-	
	кусный интерактивный	
	проектор, ноутбук, меловая	
	доска (ауд. 422С).	
Учебные аудитории для	Мебель: учебная мебель	Microsoft Windows, Micro-
проведения занятий семи-	Технические средства обу-	soft PowerPoint
нарского типа, групповых и	чения: интерактивная доска	
индивидуальных консуль-	SMART Board, короткофо-	
таций, текущего контроля и	кусный интерактивный	
промежуточной аттестации	проектор, ноутбук, меловая	
	доска (ауд. 422С).	
Учебные аудитории для	Мебель: учебная мебель	Microsoft Windows, Micro-
проведения лабораторных	Технические средства обу-	soft Office (Word, Excel,
работ. Компьютерные	чения: рабочие станции с	PowerPoint), ACD Labs
классы.	операционной системой	Chemsketch freeware,
	Windows и необходимым	HyperChem 8.0, JEOL Delta
	программным обеспечени-	
	ем, ЯМР спектрометры	
	JEOL JMN-ECA-400,	
	TESLA BS-587A, ЭΠΡ	
	спектрометры JEOL JES	
	FA-300, Radiopan SE/X-	
	2543 (ауд. 136, ауд. А019	
	НОЦ ДССН).	
N. C	16.5	N. C. XV. 1
Учебные аудитории для	Мебель: учебная мебель	Microsoft Windows, Micro-
курсового проектирования	Технические средства обу-	soft Office (Word, Excel,
(выполнения курсовых ра-	чения: компьютерная тех-	PowerPoint), ACD Labs
бот)	ника с возможностью под-	Chemsketch freeware

Наименование специаль-	Оснащенность специаль-	Перечень лицензионного
ных помещений	ных помещений	программного обеспечения
	ключения к сети «Интер-	
	нет» и доступом в элек-	
	тронную информационно-	
	образовательную среду	
	университета (проводное	
	соединение и беспроводное	
	соединение по технологии	
	Wi-Fi). (ауд. 428c, 431c)	