МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Факультет математики и компьютерных наук

УТВЕРЖДАЮ:
Проректор по учебной работе, качеству образования — первый проректор

Хагуров Т.А.

«27» мая 2022 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.19 АЛГЕБРА

Специальность _	01.05.01 Фундаментальные математика и механика
Направленность (профиль) Фундаментальная математика и ее приложения,
	Вычислительная механика и компьютерный инжиниринг
Форма обучения	Очная
Квалификация	Математик. Механик. Преподаватель

Рабочая программа модуля «Алгебра» составлена в соответствии с федеральным государственным образовательным стандартом высшего образования (ФГОС ВО) по специальности 01.05.01 Фундаментальные математика и механика

Программу составил:

О.К. Тен, доцент кафедры функционального анализа и алгебры, канд. физ.-мат. наук, доцент

Рабочая программа модуля «Алгебра» утверждена на заседании кафедры функционального анализа и алгебры протокол № 9 «13» апреля 2022 г.

Заведующий кафедрой (разработчика) Барсукова В.Ю.

A

Рабочая программа обсуждена на заседании кафедры функционального анализа и алгебры протокол № 9 «13» апреля 2022 г.

Заведующий кафедрой (выпускающей) Барсукова В.Ю.

Утверждена на заседании учебно-методической комиссии факультета математики и компьютерных наук протокол № 5 «05» мая 2022 г.

Председатель УМК факультета Шмалько С.П.

Рецензенты:

Кирий К.А., канд. физ.-мат. наук, доцент кафедры прикладной математики ФГБОУ ВО «Кубанский государственный технологический университет»

Павлова А.В., доктор физ.-мат. наук, профессор кафедры математического моделирования ФГБОУ ВО «Кубанский государственный университет»

1 Цели и задачи изучения дисциплин модуля.

- **1.1 Цель освоения дисциплин модуля** формирование у студентов базовых знаний по высшей алгебре, линейной алгебре и геометрии, обеспечении подготовки студентов в области анализа алгеброгеометрических объектов.
- 1.2 Задачи дисциплин модуля получение основных теоретических сведений, развитие познавательной деятельности и приобретение практических навыков работы с понятиями по следующим разделам алгебры: основные алгебраические структуры: кольца, поля, группы, комплексные числа, системы линейных уравнений, матрицы и определители, многочлены от одной и нескольких переменных, линейные пространства и подпространства, линейные операторы, евклидовы и унитарные пространства, линейные преобразования евклидовых и унитарных пространств, билинейные и квадратичные формы, элементы многомерной геометрии, элементы тензорной алгебры, элементы теории групп, элементы теории представлений, элементы теории колец и полей.

При освоении дисциплин модуля «Алгебра» вырабатывается общематематическая культура: умение логически мыслить, проводить доказательства основных утверждений, устанавливать логические связи между понятиями, применять полученные знания для решения задач по алгебре, линейной алгебре и геометрии.

1.3 Место дисциплины (модуля) в структуре образовательной программы.

Модуль «Алгебра» включает в себя 2 дисциплины: Б1.О.19 «Алгебра» (1 и 3 семестры) и Б1.О.20 «Линейная алгебра» (2 семестр), которые относятся к обязательной части Блока 1 "Дисциплины (модули)" учебного плана.

Для освоения дисциплин модуля студенты должны владеть знаниями по школьному курсу математики. Знания, полученные по данной дисциплине, используются в аналитической геометрии, математическом анализе, функциональном анализе, дифференциальной геометрии и топологии, дифференциальных уравнениях, дискретной математике и математической логике, теории чисел, методах оптимизации и др.

1.4 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы.

Изучение дисциплин модуля направлено на формирование у обучающихся следующих общепрофессиональных и профессиональных компетенций: ОПК-1, ПК-1.

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине
ОПК-1. Способен находить, формулировать и рематематики и механики	шать актуальные и значимые проблемы фундаментальной
ИОПК-1.1. Знает актуальные и значимые про-	ИОПК-1.1. 3-1. Знает основные факты и идеи курса ал-
блемы фундаментальной математики	гебры, формулировки утверждений, методы их доказа-
	тельства
	ИОПК-1.1.У-1.Умеет связывать идеи алгебры с кон-
	кретными проблемами фундаментальной математики
	ИОПК-1.1.В-1. Владеет навыками решения типовых
	практических заданий курса алгебры
ИОПК-1.2. Осуществляет выбор методов реше-	ИОПК-1.2. 3-1. Знает связи между основными понятия-
ния задач фундаментальной математики	ми и результатами алгебры, свойства математических
	объектов в этой области
	ИОПК-1.2. У-1. Умеет применять теоретические знания
	при выборе методов решении задач фундаментальной
	математики
	ИОПК-1.2.В-1. Владеет методами алгебраического ана-
	лиза задач фундаментальной математики

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине
ИОПК-1.3. Владеет навыками формализации актуальных задач фундаментальной математики	ИОПК-1.3. 3-1. Знает возможные сферы приложений математических понятий и идей алгебры
и применения подходящих методов их решения	ИОПК-1.3. У-1. Умеет находить основные закономерности алгебраического характера в задачах фундамен-
	тальной математики
	ИОПК-1.3. В-1. Владеет навыками алгебраической формализации задач фундаментальной математики
ПК-1. Способен формулировать и решать актуал математики	ьные и значимые задачи фундаментальной и прикладной
ИПК-1.1. Знает основные понятия, идеи и мето-	ИПК-1.1. 3-1. Знает основные понятия, идеи и методы
ды фундаментальных математических дисци-	курса алгебры для решения базовых задач алгебры
плин для решения базовых задач	ИПК-1.1. У-1. Умеет устанавливать логические связи
	между понятиями, применять полученные знания для
	решения задач по теории групп, теории чисел, теории
	колец, общей и линейной алгебре ИПК-1.1. В-1. Владеет методами и идеями алгебры для
	решения базовых задач
ИПК-1.2. Умеет передавать результаты прове-	ИПК-1.2. 3-1. Знает значение и место алгебраических
денных теоретических и прикладных исследо-	методов в теоретических и прикладных математических
ваний в виде конкретных предметных рекомен-	исследованиях
даций в терминах предметной области	ИПК-1.2. У-1. Умеет выделять алгебраические свой-
	ства результатов теоретических и прикладных исследований
	ИПК-1.2. В-1. Владеет навыками интерпретации резуль-
	татов проведенных теоретических и прикладных иссле-
ИПК-1.3. Самостоятельно и корректно решает	дований с точки зрения алгебры ИПК-1.3. 3-1. Знает алгебраические методы решения
стандартные задачи фундаментальной и при-	стандартных задач фундаментальной и прикладной ма-
кладной математики	тематики
	ИПК-1.3. У-1. Умеет решать стандартные задачи фун-
	даментальной и прикладной математики с привлечени-
	ем методов алгебры
	ИПК-1.3. В-1. Владеет навыками решения стандартных
	задач фундаментальной и прикладной математики с привлечением методов алгебры
ИПК-1.4. Имеет навыки решения математиче-	привлечением методов алгеоры ИПК-1.4. 3-1. Знает методы решения задач по алгебре,
ских задач, соответствующих квалификации,	возникающих при проведении научных и прикладных
возникающих при проведении научных и при-	исследований
кладных исследований	ИПК-1.4. У-1.Умеет выстраивать и реализовывать план
	проведения научно-прикладных исследований, связан-
	ных с решением заданий по алгебре.
	ИПК-1.4. В-1. Владеет навыками описания алгоритмов
	решения алгебраических задач, вплоть до их возможной
	компьютерной реализации.

2. Структура и содержание дисциплины.
2.1 Распределение трудоёмкости дисциплины по видам работ.
Общая трудоёмкость дисциплины составляет 14 зач.ед. (504 часов), их распределение по видам работ представлено в таблице (для студентов ОФО).

Вид учебной работы	Всего	Семестры			
	часов	(часы)			
		1	2	3	
Контактная работа, в том числе:					
Аудиторные занятия (всего):	218	86	80	52	
Занятия лекционного типа	84	34	32	18	-
Лабораторные занятия	134	52	48	34	-

Занятия семинарского типа (семинары, практические занятия)			-	-	-	-
,	VIIII SUIMIIM)			-	_	-
Иная контактная работа	:					
Контроль самостоятельной	й работы (КСР)	14	4	2	8	
Промежуточная аттестаци	я (ИКР)	1,1	0,5	0,3	0,3	
Самостоятельная работа, в том числе:			44,8	17	84	
Проработка учебного (тео	ретического) материала	67	15	9	43	-
Выполнение домашних и і	Выполнение домашних и индивидуальных заданий			8	41	-
Подготовка к текущему ко	нтролю	14,8	14,8			-
Контроль:						
Подготовка к экзамену		125,1	44,7	44,7	35,7	-
Общая трудоемкость	час.	504	180	144	180	
	в том числе контактная работа	233,1	90,5	82,3	60,3	•
	зач. ед	14	5	4	5	

2.2 Структура дисциплины: Распределение видов учебной работы и их трудоемкости по разделам дисциплины. Разделы дисциплины, изучаемые в 1 семестре (очная форма)

			Колі	ичество	часов	
No	Наименование разделов (тем)		Аудиторная работа			Внеауди- торная работа
			Л	П3	ЛР	CPC
1	2	3	4	5	6	7
1.	Комплексные числа	22	6	-	8	8
2.	Системы линейных уравнений. Линейная зависимость. Ранг системы векторов	28,8	8	-	10	10,8
1.5	Матрицы и определители. Приложения теории пределителей 36 9		9	-	15	12
4.	Кольца вычетов. Поля и подполя. Характеристика поля	18	4	-	8	6
5.	Многочлены от одной и нескольких переменных. Симметрические многочлены. Дискриминант и результант.	26	7	-	11	8
	Итого по дисциплине:	130,8	34	-	52	44,8

Разделы дисциплины, изучаемые в 2 семестре (очная форма)

			Количество часов				
№	№ Наименование разделов (тем)			удиторн работа	ая	Внеауди- торная работа	
			Л	ПЗ	ЛР	CPC	
1	2	3	4	5	6	7	
1.	Линейные пространства и подпространства.	20	6	-	9	5	

2.	Евклидовы и унитарные пространства	18	6	-	9	3
3.	Линейные операторы. Структура линейных операторов.	25	7	1	14	4
4.	Линейные преобразования евклидовых и унитарных пространств	9	4	1	4	1
5.	Билинейные и квадратичные функции	15	5	-	8	2
6.	Элементы многомерной геометрии	7	3	1	3	1
7.	Элементы тензорной алгебры	3	1	-	1	1
	Итого по дисциплине:	97	32	-	48	17

Разделы дисциплины, изучаемые в 3 семестре (очная форма)

	Наименование разделов (тем)		Количество часов					
№			Аудиторная работа			Внеауди- торная работа		
			Л	П3	ЛР	CPC		
1	2	3	4	5	6	7		
1.	Элементы теории групп	92	12	-	24	56		
2.	Элементы теории колец и полей	44	6	-	10	28		
	Итого по дисциплине:		18	-	34	84		

2.3 Содержание разделов дисциплины:2.3.1 Занятия лекционного типа.

№	Наименование раздела	Содержание раздела	Форма текуще- го
1	1	контроля	
1	2	3	4
1.	Введение	Предмет и содержание дисциплины. Место алгебры в математике и ее приложениях. Множества, отображения, алгебраические операции	
2	.	Комплексные числа. Алгебраическая форма комплексного числа. Свойства действий над комплексными числами. Геометрическое изображение и тригонометрическая форма комплексного числа. Геометрическая интерпретация действий над комплексными числами. Формула Муавра. Корни из комплексных чисел. Корни из 1. Первообразные корни.	Тестирование
3	Системы линейных	Системы линейных уравнений. Исследовании	Тестирование

	уравнений. Линей-	систем методом Гаусса.	
	ная зависимость. Ранг	Линейные пространства. Линейная зависимость векторов. Ранг и база системы векторов. Базис и размерность линейного пространства. Координаты вектора.	
		Ранг матрицы. Теорема о ранге матрицы. Вычисление ранга матрицы с помощью элементарных преобразований. Теорема Кронекера-Капели. Теорема о фундаментальной системе решений системы однородных линейных уравнений. Связь между решениями системы линейных уравнений и соответствующей системы однородных линейных уравнений.	
		Действия над матрицами. Кольца матриц. Нахождение обратной матрицы с помощью элементарных преобразований.	Тестирование
		Перестановки. Теоремы о четных и нечетных перестановках. Формула определителя. Определитель транспонированной матрицы. Определитель треугольной матрицы. Элементарные свойства определителя.	
4	Матрицы и определители. Приложения теории определителей	Разложение определителя по строке (столбцу). Фальшивое разложение. Определитель матрицы с углом нулей. Теорема Лапласа (б/д). Определитель Вандермонда. Определитель произведения матриц.	
		Критерий существования и формула обратной матрицы. Теорема Крамера. Критерий невырожденности матрицы. Лемма об окаймляющих минорах и ее приложения. Матричные уравнения. Нахождение обратной матрицы с помощью элементарных преобразований.	
5	Кольца вычетов и поля	Отношение эквивалентности. Теорема о разбиении множества на классы эквивалентности. Фактормножество. Делимость в кольце целых чисел. Кольца вычетов. Обратимые элементы колец вычетов. Поля вычетов.	Тестирование
		Характеристика поля. Простые поля.	
6	Многочлены от од- ной переменной	Многочлены от одной переменной. Делимость многочленов. Теорема о делении с остатком. НОД и НОК. Алгоритм Евклида. Линейное представление НОД. Свойства взаимно простых многочленов. Разложение многочленов на не-	Тестирование

		приводимые множители. Корни многочленов. Теорема Безу. Отделение кратных корней. Основная теорема алгебры. Неприводимые многочлены над полями вещественных и комплексных чисел. Границы вещественных корней многочлена. Теорема Штурма.	
7	Многочлены от не- скольких перемен- ных	Кольцо многочленов от нескольких переменных. Группа подстановок. Представление подстановок в виде произведения независимых циклов и транспозиций. Симметрические многочлены. Основная теорема о симметрических многочленах. Формулы Ньютона. Результант двух многочленов. Исключение неизвестных из систем двух алгебраических уравнений с двумя неизвестными. Дискриминант многочлена и его свойства.	Тестирование
8	Линейные про- странства и под- пространства	Линейные пространства. Размерность и базис линейного пространства. Координаты вектора. Изоморфизм линейных пространств. Линейные подпространства. Критерий и основные способы задания. Сумма и пересечение линейных подпространств. Теорема о размерности суммы линейных подпространств. Прямая сумма линейных подпространств. Сопряженное пространство.	Тестирование
9	Евклидовы и уни- тарные простран- ства	Евклидовы и унитарные векторные пространства. Скалярное произведение векторов. Примеры евклидовых пространств. Неравенство Коши-Буняковского. Длина вектора и угол между векторами в евклидовом пространстве. Ортогонализация Грама-Шмидта. Ортонормированные базисы. Изоморфность евклидовых (унитарных) пространств одинаковой размерности. Ортогональные матрицы. Матрица перехода между ортонормированными базисами. Матрица Грама. Объем к-мерного параллелепипеда. Геометрическая интерпретация определителя матрицы. Ортогональное дополнение линейного подпространства. Ортогональная проекция вектора на подпространство.	Тестирование
10	Линейные отобра- жения. Структура линейных операто- ров	Линейные отображения. Теорема о размерности ядра и образа линейного отображения. Невырожденные линейные операторы. Матрица линейного оператора. Изоморфизм алгебр линейных операторов и матриц. Теорема о координатах образа вектора относительно линейного опера-	Тестирование

	1		T
		тора. Закон изменения матрицы линейного оператора при переходе к другому базису. Ранг произведения матриц.	
		Инвариантные подпространства линейного оператора. Собственные векторы и собственные значения линейного оператора. Теорема Гамильтона-Кэли. Теорема о существовании инвариантного подпространства вещественного линейного оператора. Теорема о разложении пространства в прямую сумму корневых подпространства. Разложение корневого подпространства в прямую сумму циклических. Жорданов базис и жорданова матрица. Теорема о единственности жордановой нормальной формы.	
11	Линейные преобра- зования евклидовых и унитарных про- странств	Преобразования евклидовых и унитарных пространств. Ортогональные и унитарные преобразования: определение и эквивалентные условия. Ортогональные преобразования евклидовых пространств размерности ≤ 2 . Основная структурная теорема об ортогональных и унитарных преобразованиях. Теорема Эйлера. Самосопряженные преобразования.	Тестирование
12	Билинейные и квадратичные функции	Билинейные и квадратичные функции: определение, примеры, свойства. Закон изменения матрицы квадратичной функции при переходе к другому базису. Квадратичные функции и квадратичные формы. Критерий эквивалентности квадратичных форм. Теорема Лагранжа и закон инерции для квадратичных функций. Положительно определенные квадратичные функции. соответствие между билинейными формами и линейными операторами. Теорема о приведении вещественной квадратичной формы к главным осям. Пары форм.	Тестирование
13	Элементы много- мерной геометрии	Аффинные пространства: эквивалентные определения, изоморфизм. Аффинные подпространства: определение, способы задания, взаимное расположение. Аффинная система координат. Аффинные координаты. Формулы преобразования координат. Квадрики в аффинном пространстве. Центр квадрики. Аффинная и евклидова классификации квадрик. Аффинные отображения: эквивалентные определения, дифференциал, свойства, критерий обратимости. Группа аффинных преобразований.	Тестирование

		П	
		Движения аффинно-евклидовых пространств.	
		Проективные пространства и подпространства. Проективные оболочки. Теорема о размерности и ее следствия. Аффинные карты. Однородные и неоднородные координаты. Теорема Дезарга.	
		Группа проективных преобразований. Интерпретация проективного преобразования на аффинной карте как суперпозиции линейного преобразования и центрального проектирования. Запись проективных преобразований в однородных и неоднородных координатах. Реализация группы подстановок в дробно-линейных функциях. Отношение четырех точек как проективный инвариант. Гармонические четверки точек. Квадрики в проективных пространствах.	
14	Элементы тензор- ной алгебры	Полилинейные функции на векторном пространстве. Общее понятие тензора. Изменение координаты тензора при переходе к новой системе координат. Интерпретации тензоров небольшого ранга. Операции над тензорами, свертка тензора. Симметрические и кососимметрические тензоры. Операции симметрирования и альтернатирования, внешнее умножение. Внешняя алгебра: связь с определителями; ориентация конечномерного векторного пространства.	Тестирование
		Группы, изоморфизм групп. Группы подстановок. Теорема Кэли. Циклические группы. Подгруппы. Смежные классы по подгруппе. Теорема Лагранжа и ее следствия. Подгруппы циклических групп.	Тестирование
15	Элементы теории групп	Нормальные подгруппы. Факторгруппы по нормальным подгруппам. Гомоморфизм групп. Основная теорема об изоморфизме. Теорема о соответствии подгрупп при гомоморфизме. Произведение подгрупп. Вторая и третья теоремы об изоморфизме. Композиционный рыд. Композиционные факторы. Теорема Жордана-Гельдера. Разрешиые группы. Группы автоморфизмов. Внутренние автоморфизмы.	
		Классы сопряженных элементов. Формула классов. Нетривиальность центра конечной ргруппы. Группы порядка p^2 . Простые группы. Классы сопряженных элементов в группах подстановок. Простота групп A_n , $n \ge 5$.	

		Действие групп на множествах. Орбиты и стабилизаторы. Теорема о количестве элементов в орбите. Силовские подгруппы. Теорема Силова. Описание групп небольших порядков. Внешнее и внутренне произведение групп. Конечнопорожденные группы и их свойства. Теорема о подгруппах свободных абелевых групп. Описание конечнопорожденных абелевых групп. Свободные группы. Задание групп образующими и определяющими соотношениями.	
16	Элементы теории представлений	Линейные и матричные представления групп. Изоморфизм и эквивалентность представлений. Приводимость и разложимость линейных и матричных представлений. G-модули. Подмодули и фактормодули. Гомоморфизмы модулей и сплетающие операторы представлений. Лемма Шура и ее следствия. Вполне приводимые представления и полупростые модули. Свойства. Вполне приводимость мономиального представления симметрической группы. Теорема об ортогональности (унитарности) вещественных (комплексных) представлений. Теорема Машке. Неприводимые комплексные представления группы диэдра D_n . Неприводимые представления абелевых групп. Коммутант группы и одномерные представления групп. Характеры групп. Определение, примеры и свойства. Унитарное пространство центральных функций. Основная теорема теории комплексных характеров и ее следствия. Количество и размерности неприводимых комплексных представлений. Представления и таблицы характеров групп $S_3, A_4, S_4, Q_8, D_4 A_5$.	Тестирование
17	Элементы теории колец и полей	Целостные кольца. Поля частных. Делимость в целостных кольцах. Факториальные кольца. Евклидовы кольца. Факториальность евклидовых колец. Примеры евклидовых колец. Идеалы колец. Кольца главных идеалов. Факторкольца. Гомоморфизмы колец. Теоремы о гомоморфизмах. Конечные поля.	Тестирование

2.3.2 Занятия семинарского типа — не предусмотрены.

2.3.3 Лабораторные занятия.

№	Наименование раздела	Тематика лабораторных работ	Форма текущего контроля
1	2	2 3	
1	Комплексные числа	Действия с комплексными числами. Геометрическое изображение и тригонометрическая форма комплексного числа. Формула Муавра. Корни из комплексных чисел. Корни из 1.	Проверка домашнего задания, контрольная работа
2	Системы линейных уравнений. Линейная зависимость. Ранг	Исследование систем линейных уравнений методом Гаусса. Линейные пространства. Линейная зависимость векторов. Ранг и база системы векторов. Ранг матрицы. Вычисление ранга матрицы с помощью элементарных преобразований. Фундаментальная система решений системы однородных линейных уравнений.	Проверка домашнего задания
3	Матрицы и определи- тели. Приложения тео- рии определителей	Действия над матрицами. Перестановки. Формула определителя. Нахождение определителей матриц с помощью элементарных преобразований и с использованием свойств определителя. Нахождение обратной матрицы с помощью формулы и с помощью элементарных преобразований. Формулы Крамера решения СЛУ. Нахождение ранга матрицы методом окаймляющих миноров. Матричные уравнения.	Проверка домашнего задания, контрольная работа
4	Кольца вычетов и поля	Задачи на делимость целых чисел. Кольца вычетов. Обратимые элементы колец вычетов. Поля вычетов.	Проверка домашнего задания
5	Многочлены от одной переменной	Делимость многочленов, деление с остатком. Схема Горнера. НОД и НОК. Алгоритм Евклида. Линейное представление НОД. Корни многочленов, границы вещественных корней, отделение кратных корней. Разложение многочленов на неприводимые множители.	
6	Многочлены от не- скольких переменных	Группа подстановок, представление подстановок в виде произведения неза-	Проверка домашнего задания, кон-

		висимых циклов и транспозиций. Симметрические многочлены, представление через элементарные функции. Формулы Ньютона. Результант двух многочленов, исключение неизвестных из систем двух алгебраических уравнений с двумя неизвестными. Дискриминант многочлена.	трольная работа
7	Линейные простран- ства и подпространства	Матрица перехода и закон изменения координат вектора. Линейные подпространства. Сумма и пересечение линейных подпространств. Базис и размерность подпространств.	Проверка домашнего задания
8	Евклидовы и унитар- ные пространства	Длина вектора и угол между векторами в евклидовом пространстве. Ортогонализация Грама-Шмидта. Ортонормированные базисы. Матрица Грама. Объем к-мерного параллелепипеда. Ортогональное дополнение линейного подпространства. Ортогональная проекция вектора на подпространство. Расстояние от вектора до подпространства, угол между вектором и подпространством.	Проверка домаш- него задания, кон- трольная работа
9	Линейные отображе- ния. Структура линей- ных операторов	Линейные отображения, ядро и образ линейного отображения. Матрица линейного оператора. Изменение матрицы линейного оператора при переходе к другому базису. Собственные векторы и собственные значения линейного оператора, диагонализируемость. Жорданов базис и жорданова матрица линейного оператора. Инвариантные подпространства линейного оператора.	
10	Линейные преобразо- вания евклидовых и унитарных про- странств	Ортогональные и унитарные преобразования. Самосопряженные преобразования. Приведение к каноническому виду.	Проверка домашнего задания, контрольная работа
11	Билинейные и квадра- тичные функции	Приведение квадратичных форм к каноническому и нормальному виду методом Лагранжа. Эквивалентность квадратичных форм. Приведение вещественных квадратичных форм к глав-	Проверка домашнего задания, контрольная работа

		ным осям. Положительно определенные квадратичные формы. Пары форм.	
12	Элементы многомер- ной геометрии	Аффинные пространства и подпространства. Взаимное расположение аффинных подпространств. Аффинные отображения. Квадрики в аффинном пространстве. Центр квадрики. Аффинная и евклидова классификации квадрик.	Проверка домашнего задания
		Проективные пространства и подпространства. Проективные оболочки. Однородные и неоднородные координаты. Проективные преобразования. Квадрики в проективных пространствах.	
13	Элементы тензорной алгебры	Операции над тензорами, свертка тензора. Операции симметрирования и альтернатирования, внешнее умножение.	
	Элементы теории групп	Группы, изоморфизм групп. Группы подстановок. Теорема Кэли. Циклические группы. Подгруппы. Смежные классы по подгруппе. Подгруппы циклических групп.	Проверка домашнего задания, контрольная работа
14		Нормальные подгруппы. Факторгруппы по нормальным подгруппам. Гомоморфизм групп. Группы автоморфизмов. Классы сопряженных элементов. Формула классов. Действие групп на множествах. Орбиты и стабилизаторы. Силовские подгруппы. Группы небольших порядков. Конечнопорожденные абелевы группы. Задание групп образующими и определяющими соотношениями.	
15	Элементы теории представлений	Линейные и матричные представления групп. Приводимость и разложимость линейных и матричных представлений. Модули, подмодули и фактормодули, гомоморфизмы модулей. Одномерные представления. Неприводимые ком-	Проверка домашнего задания
		плексные представления групп. Характеры групп. Количество и размерности неприводимых комплексных представлений. Представления и таблицы характеров групп.	

		Элементы теории ко-	Целостные кольца. Делимость в це-	Проверка домаш-
		лец и полей	лостных кольцах. Факториальные коль-	него задания, кон-
1.0			ца. Евклидовы кольца. Примеры евкли-	трольная работа
	16		довых колец. Идеалы колец. Фактор-	
			кольца. Гомоморфизмы колец. Конеч-	
			ные поля.	

2.3.4 Примерная тематика курсовых работ (проектов) Курсовые работы - не предусмотрены.

2.4 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Вид № самостоятельной работы		Перечень учебно-методического обеспечения дисципли- ны по выполнению самостоятельной работы	
1	2	3	
1.	Подготовка к те- кущему контролю	1. Методические указания для подготовки к занятиям лекционного и семинарского типа. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г. 2. Методические указания по выполнению самостоятельной работы обучающихся. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г. 3. Методические указания по использованию интерактивных методов обучения. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5т от 05 мая 2022 г. 4. Методические указания по подготовке эссе, рефератов, курсовых работ. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5т от 05 мая 2022 г.	
2.	Выполнение лабораторных работ и расчетнографических заданий	1. Методические указания по выполнению лабораторных работ. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г. 2. Методические указания по выполнению расчетнографических заданий. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.	
4.	Подготовка и оформление отчетов по практике	Методические указания по подготовке и оформлению отчета по практике. Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ». Протокол № 5 от 05 мая 2022 г.	
5.	Выполнение и за- щита выпускной квалификационной работы	Методические указания по выполнению и защите выпускной квалификационной работы (бакалавриат, магистратура, специалитет). Утверждены на заседании Совета факультета математики и компьютерных наук ФГБОУ ВО «КубГУ».	

Протокол № 5 от 05 мая 2022 г.

Учебно-методические материалы для самостоятельной работы обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья (ОВЗ) предоставляются в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа,

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа,

3. Образовательные технологии.

При изучении данного курса используются традиционные лекции и лабораторные занятия.

Цель лабораторных занятий – научить студента применять полученные на лекциях теоретические знания к решению и исследованию конкретных задач. В каждом семестре проводятся контрольные работы для проверки усвоения материала студентами.

Для лиц с ограниченными возможностями здоровья предусмотрена организация консультаций с использованием электронной почты.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

Учебная деятельность проходит в соответствии с графиком учебного процесса. Процесс самостоятельной работы контролируется во время аудиторных занятий и индивидуальных консультаций.

Оценочными средствами дисциплины являются средства текущего контроля (коллоквиумы, контрольные работы, а также на лабораторных занятиях — ответ у доски и проверка домашних заданий) и итоговая аттестация (зачет, экзамен).

4.1 Структура оценочных средств для текущей и промежуточной аттестации

	I.C.		Наименование оценочно	ого средства
№ п/п	Код и наименование индикатора (в соответствии с п. 1.4)	Результаты обучения (в соответствии с п. 1.4)	Текущий контроль	Промежуточная аттестация
1	ИОПК-1.1. Знает актуальные и значимые проблемы фундаментальной математики	ИОПК-1.1. 3-1. Знает основные факты и идеи курса алгебры, формулировки утверждений, методы их доказательства ИОПК-1.1.У-1.Умеет связывать идеи алгебры с конкретными проблемами фундаментальной математики	Выполнение домашних заданий, опрос на лекционных и лабораторных занятиях. Контрольные и самостоятельные работы, коллоквиум	Вопросы на экзаменах во 1, 2 и 3 семестрах

		Lucrus since		
		ИОПК-1.1.В-1. Владеет		
		навыками решения ти-повых практических за-		
		даний курса алгебры		
	HOTH 42 C		7	-
	ИОПК -1.2. Осуществ- ляет выбор методов ре-	ИОПК-1.2. 3-1. Знает связи между основными	Выполнение домашних заданий, опрос на лекционных	Вопросы на эк- заменах
	шения задач фундамен-	понятиями и результата-	и лабораторных занятиях.	во 1,2 и 3 се-
	тальной математики	ми алгебры, свойства	Контрольные и самостоя-	местрах
		математических объек-	тельные работы, коллокви-	
		тов в этой области	ум	
		ИОПК-1.2. У-1. Умеет применять теоретические		
2		знания при выборе мето-		
		дов решении задач фун-		
		даментальной математи-		
		КИ		
		ИОПК-1.2. В-1. Владеет методами алгебраическо-		
		го анализа задач фунда-		
		ментальной математики		
	ИОПК-1.3 Владеет	ИОПК-1.3. 3-1. Знает	Выполнение домашних за-	Вопросы на эк-
	навыками формализа-	возможные сферы при-	даний, опрос на лекционных	заменах
	ции актуальных задач фундаментальной мате-	ложений математических понятий и идей алгебры	и лабораторных занятиях. Контрольные и самостоя-	во 1, 2 и 3 се- местрах
	матики и применения	ИОПК-1.3. У-1. Умеет	тельные работы, коллокви-	местрих
	подходящих методов их	находить основные зако-	ум	
	решения	номерности алгебраиче-		
		ского характера в зада- чах фундаментальной		
3		математики		
		ИОПК-1.3. В-1. Владеет		
		навыками алгебраиче-		
		ской формализации задач фундаментальной мате-		
		фундаментальной мате-		
	ИПК-1.1. Знает основ-	ИПК-1.1. 3-1. Знает ос-	Выполнение домашних за-	Вопросы на эк-
	ные понятия, идеи и	новные понятия, идеи и	даний, опрос на лекционных	заменах
	методы фундаменталь-	методы курса алгебры	и лабораторных занятиях.	во 1 и 3 семест-
	ных математических	для решения базовых	Контрольные и самостоя-	pax
	дисциплин для решения базовых задач	задач алгебры ИПК-1.1. У-1. Умеет	тельные работы, коллокви- ум	
	оазовых задач	устанавливать логиче-	y W	
		ские связи между поня-		
4		тиями, применять полу-		
'		ченные знания для реше-		
		ния задач по теории групп, теории чисел,		
		теории колец, общей и		
		линейной алгебре		
		ИПК-1.1. В-1. Владеет		
		методами и идеями ал-		
		гебры для решения базо- вых задач		
	ИПК-1.2. Умеет переда-	ИПК-1.2. 3-1. Знает зна-	Выполнение домашних за-	Вопросы на эк-
	вать результаты прове-	чение и место алгебраи-	даний, опрос на лекционных	заменах
5	денных теоретических и	ческих методов в теоре-	и лабораторных занятиях.	во 1, 2 и 3 се-
	прикладных исследований в виде конкретных	тических и прикладных математических иссле-	Контрольные и самостоя- тельные работы, коллокви-	местрах
	предметных рекоменда-	дованиях	ум	
L	T 13	<u>, , , , , , , , , , , , , , , , , , , </u>	1 -	

	ций в терминах пред-	ИПК-1.2. У-1. Умеет		
	метной области	выделять алгебраиче-		
	merion concern	ские свойства результа-		
		тов теоретических и при-		
		кладных исследований		
		ИПК-1.2. В-1. Владеет		
		навыками интерпретации		
		результатов проведен-		
		ных теоретических и		
		прикладных исследова-		
		ний с точки зрения ал-		
		гебры		
	ИПК-1.3. Самостоя-	ИПК-1.3. 3-1. Знает ал-	Выполнение домашних за-	Вопросы на эк-
	тельно и корректно ре-	гебраические методы	даний, опрос на лекционных	заменах
	шает стандартные зада-	решения стандартных	и лабораторных занятиях.	во 1, 2 и 3 се-
	чи фундаментальной и	задач фундаментальной	Контрольные и самостоя-	местрах
	прикладной математики	и прикладной математи-	тельные работы, коллокви-	
	· ·	КИ	ум	
		ИПК-1.3. У-1. Умеет ре-	•	
		шать стандартные задачи		
		фундаментальной и при-		
6		кладной математики с		
0		привлечением методов		
		алгебры		
		ИПК-1.3. В-1. Владеет		
		навыками решения стан-		
		дартных задач фунда-		
		ментальной и приклад-		
		ной математики с при-		
		влечением методов ал-		
	11777 1 4 17	гебры		
	ИПК-1.4. Имеет навыки	ИПК-1.4. 3-1. Знает ме-	Выполнение домашних за-	
	решения математиче-	тоды решения задач по	даний, опрос на лекционных	
	ских задач, соответ-	алгебре, возникающих	и лабораторных занятиях.	
	ствующих квалифика-	при проведении научных	Контрольные и самостоя-	
	ции, возникающих при	и прикладных исследо-	тельные работы, коллокви-	
	проведении научных и	ваний	ум	
	прикладных исследова-	ИПК-1.4. У-1. Умеет вы-		
	ний	страивать и реализовы-		
		вать план проведения		
7		научно-прикладных ис-		
/		следований, связанных с		
		решением заданий по		
		алгебре.		
		ИПК-1.4. В-1. Владеет		
		навыками описания ал-		
		горитмов решения ал-		
		гебраических задач,		
		вплоть до их возможной		
		компьютерной реализа-		
		ции.		
		ции.		l

4.2 Фонд оценочных средств для проведения текущего контроля.

Пример варианта контрольной работы в первом семестре

1. Решить систему линейных уравнений:
$$\begin{cases} 2x - 4y + 3z = 1 \\ -3x + y - 2z = -2 \\ 4x + 3y - z = -1 \end{cases}$$

2. Решить матричное уравнение:
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 $\cdot X = \begin{pmatrix} -2 & 3 \\ 3 & -2 \end{pmatrix}$.

3. Вычислить определитель матрицы:
$$\begin{vmatrix} 2 & -2 & 1 & -2 \\ -1 & 2 & 2 & 1 \\ 1 & -1 & 1 & 2 \\ -3 & 4 & 3 & 1 \end{vmatrix}.$$

Пример варианта контрольной работы во втором семестре

- 1. Найти собственные значения и собственные векторы линейного оператора, заданного своей матрицей в некотором базисе.
- 2. Найти характеристический и минимальный многочлен матрицы.
- 3. Найти ЖНФ матрицы линейного оператора.

Пример варианта контрольной работы в третьем семестре

- 1. Описать все абелевы группы заданного порядка.
- 2. Перечислить элементы факторгруппы группы по подгруппе.
- 3. Указать классы сопряженных элементов данной конечной группы.

4.3 Фонд оценочных средств для проведения промежуточной аттестации.

Примерное задание к зачету

ПЕРВЫЙ СЕМЕСТР

- 1. Решить квадратное уравнение над полем комплексных чисел.
- 2. Найти тригонометрическую форму и степень/корень из комплексного числа.
- 3. Решить систему линейных уравнений.
- 4. Найти фундаментальную систему решений системы однородных линейных уравнений.
- 5. Найти ранг матрицы: с помощью элементарных преобразований, методом окаймляющих миноров.
- 6. Найти базу системы векторов и выразить оставшиеся векторы через найденную базу.
- 7. Найти определитель матрицы с помощью элементарных преобразований.

- 8. Найти обратную матрицу: с помощью формулы обратной матрицы, с помощью элементарных преобразований.
- 9. Решить матричное уравнение.
- 10. Найти обратимые элементы и их обратные элементы в кольце вычетов.
- 11. Найти НОД и НОК многочленов и линейное представление НОД.
- 12. Отделить кратные корни многочленов.
- 13. С помощью схемы Горнера: найти разложение многочлена по степеням x-c, значения многочлена и его производных в точке c.
- 14. Разложить многочлен на неприводимые множители над полями вещественных и комплексных чисел.
- 15. Найти дискриминант и результант для многочленов.

ВТОРОЙ СЕМЕСТР

- 1. Найти базис суммы и пересечения линейных подпространств.
- 2. Найти собственные векторы и собственные значения линейного оператора. Найти собственные и корневые подпространства линейного оператора.
- 3. Найти жорданову нормальную форму и жорданов базис линейного оператора
- 4. Ортогонализовать систему векторов.
- 5. Найти ортогональную проекцию и ортогональную составляющую вектора.
- 6. Привести квадратичную форму к главным осям.
- 7. Выписать систему линейных уравнений для плоскости, заданной параметрически.
- 8. Исследовать взаимное расположение плоскостей, заданных параметрически.
- 9. Найти расстояние от точки до плоскости.
- 10. Составить формулы аффинного преобразования.

ТРЕТИЙ СЕМЕСТР

- 1. Найти циклические подгруппы группы.
- 2. Найти смежные классы подгруппы.
- 3. Построить конечное поле, состоящее из 16 элементов.
- 4. Найти обратный элемент в факторкольце.
- 5. Построить таблицу характеров группы.

Примерный перечень вопросов к экзамену

ПЕРВЫЙ СЕМЕСТР

- 1. Множества и отображения множеств. Теорема об ассоциативности умножения отображений.
- 2. Алгебраические операции. Теорема об ассоциативной операции.
- 3. Поле комплексных чисел. Алгебраическая форма комплексного числа.
- 4. Геометрическое изображение комплексных чисел. Тригонометрическая форма комплексного числа.
- 5. Геометрическая интерпретация действий над комплексными числами. Формула Муавра.
- 6. Корни n-ой степени из комплексного числа.
- 7. Свойства корней n-ой степени из 1. Первообразные корни.
- 8. Исследование систем линейных уравнений методом Гаусса.
- 9. Критерий определенности совместной системы линейных уравнений.
- 10. Линейные пространства. Линейная зависимость векторов.
- 11. Основная лемма о линейной зависимости.
- 12. Ранг и база системы векторов.
- 13. Базис и размерность линейного пространства. Координаты вектора.
- 14. Теорема о ранге матрицы. Вычисление ранга матрицы приведением к ступенчатому виду.
- 15. Теорема Кронекера-Капели.
- 16. Теорема о фундаментальной системе решений: размерность и базис пространства решений.
- 17. Действия над матрицами. Кольцо $M_{n}(R)$.
- 18. Теорема о реализации элементарных преобразований матрицы умножением на элементарные матрицы
- 19. Матрица перехода. Закон изменения координат вектора при переходе к новому базису.
- 20. Теоремы о четных и нечетных перестановках.
- 21. Определитель матрицы. Определитель транспонированной матрицы.
- 22. Определитель треугольной матрицы.
- 23. Элементарные свойства определителя.
- 24. Разложение определителя по строке (столбцу). Фальшивое разложение.
- 25. Определитель матрицы с углом нулей. Теорема Лапласа (без доказательства).
- 26. Определитель Вандермонда. Критерий невырожденности матрицы Вандермонда.
- 27. Определитель произведения матриц.
- 28. Критерий существования и формула обратной матрицы.
- 29. Теорема Крамера и ее следствие.
- 30. Критерий невырожденности матрицы.
- 31. Теорема об окаймляющих минорах. Базисные миноры.

- 32. Матричные уравнения. Нахождение обратной матрицы с помощью элементарных преобразований.
- 33. Свойства делимости в кольце целых чисел. Теорема о делении с остатком.
- 34. НОД и НОК. Линейное представление НОД. Алгоритм Евклида.
- 35. Взаимно простые числа и их свойства.
- 36. Простые числа. Основная теорема арифметики.
- 37. Теорема о разбиении множества на классы эквивалентности. Фактормножество.
- 38. Классы вычетов по модулю натурального числа. Свойства сравнимых чисел.
- 39. Кольцо Z_{m} классов вычетов по модулю m.
- 40. Обратимые элементы в кольце $Z_{_m}$. Условие поля.
- 41. Характеристика поля.
- 42. Подполя. Наименьшее поле.
- 43. Теорема о простых полях характеристики 0.
- 44. Теорема о простых полях характеристики p > 0.
- 45. Кольцо R[x] многочленов от одной переменной. Делители нуля и закон сокращения.
- 46. Делимость в кольце K[x]. Теорема о делении с остатком.
- 47. Взаимно простые многочлены.
- 48. Теоремы о НОД многочленов.
- 49. Теоремы о НОК многочленов.
- 50. Значение многочлена в точке. Пример различных многочленов, задающих одну полиномиальную функцию.
- 51. Теорема Безу. Простые и кратные корни многочленов.
- 52. Производная многочлена. Отделение кратных корней.
- 53. Теорема о количестве корней многочлена и ее следствия.
- 54. Задача интерполяции. Интерполяционный многочлен Лагранжа.
- 55. Неприводимые многочлены. Теорема о разложении многочленов на неприводимые множители.
- 56. Основная теорема алгебры (без доказательства). Неприводимые многочлены над R и C.
- 57. Многочлены от нескольких переменных.
- 58. Группа подстановок S_n . Представление подстановок в виде произведения циклов и транспозиций.
- 59. Четные и нечетные подстановки. Правило знаков умножения подстановок. Группа A_n .
- 60. Симметрические многочлены. Основная теорема о симметрических многочленах.

- 61. Теорема Виета. Значение симметрического многочлена от корней многочлена.
- 62. Дискриминант многочлена.
- 63. Результант многочленов. Системы алгебраических уравнений.

ВТОРОЙ СЕМЕСТР

- 1. Линейные пространства: примеры и простейшие свойства.
- 2. Линейная зависимость векторов: основные: свойства. Эквивалентные определения базиса линейного пространства.
- 3. Матрица перехода. Закон изменения координат вектора при переходе к новому базису.
- 4. Изоморфизм линейных пространств: основные свойства.
- 5. Критерий изоморфности линейных пространств.
- 6. Линейные подпространства: критерий, основные способы задания. Теорема о размерности линейного подпространства.
- 7. Сумма и пересечение линейных подпространств. Теорема о размерности суммы линейных подпространств.
- 8. Прямая сумма линейных подпространств.
- 9. Евклидовы пространства. Примеры евклидовых пространств.
- 10. Неравенство Коши-Буняковского. Длина вектора и угол между векторами в евклидовом пространстве.
- 11. Матрица Грама. Объем k -мерного параллелепипеда. Геометрическая интерпретация определителя матрицы.
- 12. Ортогонализация Грама-Шмидта.
- 13. Ортонормированные базисы. Изоморфизм евклидовых пространств одинаковой размерности.
- 14. Ортогональные матрицы. Матрица перехода между ортонормированными базисами.
- 15. Ортогональное дополнение линейного подпространства. Ортогональная проекция вектора па подпространство.
- 16. Унитарные пространства.
- 17. Линейные отображения: определение, примеры, ядро и образ. Невырожденные линейные операторы.
- 18. Теорема о размерностях ядра и образа линейного отображения.
- 19. Матрица линейного оператора. Теорема о координатах образа вектора относительно линейного оператора.
- 20. Закон изменения матрицы линейного оператора при переходе к другому базису.
- 21. Ранг произведения матриц.
- 22. Действия над линейными операторами. Изоморфизм алгебр линейных операторов и матриц.
- 23. Инвариантные подпространства линейного оператора.

- 24. Теорема о существовании инвариантного подпространства размерности ≤ 2 для вещественного линейного оператора.
- 25. Собственные векторы и собственные значения линейного оператора. Диагонализируемые операторы.
- 26. Теорема Гамильтона-Кэли.
- 27. Теорема о разложении пространства в прямую сумму корневых подпространств.
- 28. Разложение корневого подпространства в прямую сумму циклических. Жорданов базис и жорданова матрица.
- 29. Теорема о единственности жордановой нормальной формы.
- 30. Ортогональные преобразования евклидовых пространств: определение и эквивалентные условия.
- 31. Ортогональные преобразования евклидовых пространств размерности ≤ 2 .
- 32. Основная структурная теорема об ортогональных преобразованиях. Теорема Эйлера.
- 33. Сопряженные операторы. Структура самосопряженных преобразованиий евклидовых пространств.
- 34. Линейные преобразования унитарных пространств.
- 35. Билинейные и квадратичные функции: определение, примеры, свойства.
- 36. Закон изменения матрицы квадратичной функции при переходе к другому базису.
- 37. Квадратичные функции и квадратичные формы. Критерий эквивалентности квадратичных форм.
- 38. Теорема Лагранжа о приведении квадратичной формы к каноническому виду.
- 39. Закон инерции для вещественных квадратичных функций.
- 40. Положительно определенные квадратичные функции. Критерий Сильвестра.
- 41. Теорема о приведении вещественной квадратичной формы к главным осям. Теорема о паре форм.
- 42. Аффинные пространства: эквивалентные определения, изоморфизм.
- 43. Аффинные подпространства: определение, способы задания, взаимное расположение.
- 44. Аффинные отображения: эквивалентные определения, дифференциал, свойства, критерий обратимости.
- 45. Барицентрические комбинации точек. Аффинная оболочка.
- 46. Аффинная система координат. Аффинные координаты.
- 47. Барицентрические координаты. Связь с аффинными координатами.
- 48. Задание аффинного отображения образами базисных точек.
- 49. Центр масс системы материальных точек. Физическая интерпретация барицентрических координат. Теорема о группировке масс.
- 50. Группа аффинных преобразований. Теорема о разложении в полупрямое произведение.

- 51. Геометрия аффинно-евклидовых пространств.
- 52. Движения аффинно-евклидовых пространств.
- 53. Квадрики. Аффинная и метрическая классификация квадрик.
- 54. Проективные пространства и подпространства. Проективные оболочки. Теорема о размерности и ее следствия.
- 55. Аффинные карты. Однородные и неоднородные координаты. Связь с барицентрическими координатами.
- 56. Теорема Дезарга.
- 57. Группа проективных преобразований.
- 58. Интерпретация проективного преобразования на аффинной карте как суперпозиции линейного преобразования и центрального проектирования.
- 59. Задание проективного преобразования образами точек в общем положении.
- 60. Запись проективных преобразований в однородных и неоднородных координатах.
- 61. Реализация группы подстановок в дробно-линейных функциях.
- 62. Отношение четырех точек как проективный инвариант.
- 63. Гармонические четверки точек.
- 64. Классификация квадрик в проективных пространствах.
- 65. Полилинейные функции на векторном пространстве. Интерпретация тензоров небольших рангов.
- 66. Действия над тензорами. Симметрические и кососимметрические тензоры. Операции симметрирования и альтернирования.
- 67. Внешняя алгебра. Определитель и ориентация конечномерного векторного пространства.

ТРЕТИЙ СЕМЕСТР

- 1. Определение, простейшие свойства и примеры групп. Изоморфизм групп.
- 2. Степень элемента. Порядок элемента и его свойства.
- 3. Группа подстановок. Представление подстановок в виде произведения циклов и транспозиций.
- 4. Четные и нечетные подстановки. Правило знаков умножения подстановок. Знакопеременная группа.
- 5. Подгруппы. Критерий подгруппы. Циклические подгруппы.
- 6. Циклические группы и их классификация.
- 7. Смежные классы по подгруппе. Свойства смежных классов.
- 8. Теорема Лагранжа и ее следствия. Индекс подгруппы.
- 9. Нормальные подгруппы. Критерий нормальной подгруппы.
- 10. Факторгруппа по нормальной подгруппе.
- 11. Гомоморфизмы групп. Ядро и образ гомоморфизма.

- 12. Основная теорема об изоморфизме.
- 13. Произведение подгрупп. Теорема Э. Нетер.
- 14. Классы сопряженных элементов. Классы сопряженных элементов в группе подстановок.
- 15. Нормализатор (централизатор) элемента. Формула классов.
- 16. Центр группы. Нетривиальность центра конечной p -группы. Группы порядка p^2 .
- 17. Группа автоморфизмов. Внутренние автоморфизмы.
- 18. Внешнее прямое произведение групп.
- 19. Внутреннее прямое произведение групп: определение и критерий, примеры.
- 20. Изоморфизм внешнего и внутреннего произведений групп.
- 21. Классы сопряженных элементов в симметрической и знакопеременной группах.
- 22. Простые группы. Простота групп A_n , $n \ge 5$.
- 23. Действие группы на множестве. Орбиты и стабилизаторы. Теорема о колчестве элементов в орбите.
- 24. Теорема Силова: сопряженность силовских *p* -подгрупп.
- 25. Теорема Силова: существование и число силовских p-подгрупп.
- 26. Описание групп небольших порядков.
- 27. Внешнее прямое произведение групп.
- 28. Внутреннее прямое произведение групп: определение и критерий, примеры.
- 29. Изоморфизм внешнего и внутреннего произведений групп.
- 30. Конечнопорожденные группы и их свойства.
- 31. Теорема о подгруппах свободных абелевых групп.
- 32. Описание конечнопорожденных абелевых групп.
- 33. Линейные и матричные представления групп. Дифференцируемые представления группы R.
- 34. Мономиальное представление группы подстановок.
- 35. Построение представлений по действиям групп. Регулярные представления групп.
- Изоморфизм и эквивалентность представлений. Изоморфизм левых и правых регулярных представлений групп.
- 37. Приводимость и разложимость линейных и матричных представлений.
- 38. Подпредставления и факторпредставления.
- 39. G -модули. Подмодули и фактормодули. Простые модули.
- 40. Неприводимые комплексные представления абелевых групп.
- 41. Неприводимые комплексные представления группы диэдра D_n .
- 42. Теорема об ортогональности (унитарности) вещественных (комплексных) представлений.
- 43. Неприводимые вещественные представления циклических групп.

- 44. Вполне приводимые представления и полупростые модули. Свойства полупростых модулей.
- 45. Теорема Машке. Контрпример к теореме Машке.
- 46. Структура конечномерных полупростых модулей.
- 47. Вполне приводимость мономиального представления симметрической группы.
- 48. Коммутант группы и одномерные представления групп.
- 49. Гомоморфизмы модулей и сплетающие операторы представлений.
- 50. Гомоморфизмы простых модулей. Лемма Шура.
- 51. Основная теорема об изоморфизмах модулей.
- 52. Теорема о соответствии модулей при гомоморфизме. Максимальные подмодули.
- 53. Теорема о пересечении максимальных подмодулей.
- 54. Композиционные ряды модулей. Теорема Жордана-Гельдера.
- 55. Теорема об однозначности разложения конечномерного полупростого G -модуля.
- 56. Характеры групп. Определение, примеры и свойства.
- 57. Унитарное пространство центральных функций.
- 58. Основная теорема теории комплексных характеров. Следствия о соответствии представлений и характеров представлений.
- 59. Теорема о размерностях неприводимых комплексных представлений.
- 60. Представления и таблицы характеров групп S_3 , A_4 , S_4 , Q_8 , D_4 , A_5 .
- 61. Поле отношений и теорема о вложимости целостых колец в поле. Поле рациональных дробей.
- 62. Идеалы колец и алгебр. Главные идеалы. Примеры идеалов, не являющихся главными.
- 63. Кольца главных идеалов. Примеры Z и K[x].
- 64. Кольцо гауссовых чисел. Теорема о делении с остатком в кольце гауссовых чисел.
- 65. Евклидовые кольца. Примеры евклидовых и неевклидовых колец.
- 66. Простые алгебры. Теорема о простоте алгебры $M_{_n}(K)$. Теорема о простых коммутативных кольцах.
- 67. Факторкольца и факторалгебры. Условие равенства элементов факторкольца. Примеры.
- 68. Факторкольца K[x]/(f) . Изоморфизм $R[x]/(x^2+1) \cong C$
- 69. Гомоморфизмы колец и алгебр. Ядро и образ гомоморфизма. Естественная проекция $\pi:R \to R/I$.
- 70. Основная теорема об изоморфизме. Изоморфизмы $R[x]/(x^2+1) \cong C$ и $R[x]/(x^2-1) \cong R \oplus R$.
- 71. Теорема о соответствии идеалов при гомоморфизме.
- 72. Максимальные идеалы и простые факторалгебры.
- 73. Максимальные идеалы в Z. Условие поля для кольца вычетов Z_n .

- 74. Максимальные идеалы в K[x]. Условие поля для факторкольца K[x]/(f).
- 75. Примеры построения конечных полей.
- 76. Вторая и третья теоремы об изоморфизмах.

ПРИМЕРНЫЕ БИЛЕТЫ К ЭКЗАМЕНУ

БИЛЕТ № 1

(Первый семестр)

- 1. Теорема о корнях n-ой степени из комплексных чисел.
- 2. Ранг и база системы векторов.
- 3. Выписать формулу определителя матрицы четвертого порядка.

БИЛЕТ № 2

(Второй семестр)

- 1. Теорема об изменении матрицы линейного оператора при переходе к новому базису.
 - 2. Положительно определенные квадратичные формы.
 - 3. Найти собственные векторы и собственные значения линейного оператора, за-

данного в некотором базисе матрицей $A = \begin{pmatrix} 7 & 5 & -10 \\ 2 & 4 & -4 \\ 3 & 3 & -4 \end{pmatrix}$. Найти невырожденную матри-

цу C такую, что матрица $C^{\scriptscriptstyle -1}AC$ диагональна.

БИЛЕТ № 1

(Второй семестр)

- 1. Инвариантные подпространства линейного оператора. Собственные подпространства.
 - 2. Матрица Грама и ее свойства.
 - 3. Найти аффинную оболочку прямых.

БИЛЕТ № 2

(Третий семестр)

- 1. Классы сопряженных элементов групп. Формула классов.
- 2. Изоморфизм колец $C \cong R[x]/(x^2 + 1)$.
- 3. Найти смежные классы группы $\langle a \rangle_{\!_{12}}$ по подгруппе $\langle a_{\!\scriptscriptstyle 8} \rangle$.

Эталон решения практического задания экзамена

Задача. Выписать формулу определителя матрицы четвертого порядка.

Решение. Имеем следующие четные и, соответственно, нечетные перестановки чисел 1, 2, 3, 4:

$$(1,2,3,4), (1,3,4,2), (1,4,2,3), (2,1,4,3), (2,3,1,4), (2,4,3,1), (3,1,2,4), (3,2,4,1), (3,4,1,2), (4,1,3,2), (4,2,1,3), (4,3,2,1),$$

$$(1,2,4,3), (1,3,2,4), (1,4,3,2), (2,1,3,4), (2,3,4,1), (2,4,1,3), (3,1,4,2), (3,2,1,4), (3,4,2,1), (4,1,2,3), (4,2,3,1), (4,3,1,2).$$

Тогда, согласно определению, получаем следующую формулу определителя матрицы $A = (a_{ii})$ четвертого порядка:

$$\begin{split} \left|A\right| &= a_{11}a_{22}a_{33}a_{44} + a_{11}a_{23}a_{34}a_{42} + a_{11}a_{24}a_{32}a_{43} + a_{12}a_{21}a_{34}a_{43} + a_{12}a_{23}a_{31}a_{44} + a_{12}a_{24}a_{33}a_{41} + \\ &+ a_{13}a_{21}a_{32}a_{44} + a_{13}a_{22}a_{34}a_{41} + a_{13}a_{24}a_{31}a_{42} + a_{14}a_{21}a_{33}a_{42} + a_{14}a_{22}a_{31}a_{43} + a_{14}a_{23}a_{32}a_{41} + \\ &- a_{11}a_{22}a_{34}a_{43} - a_{11}a_{23}a_{32}a_{44} - a_{11}a_{24}a_{33}a_{42} - a_{12}a_{21}a_{33}a_{44} - a_{12}a_{23}a_{34}a_{41} - a_{12}a_{24}a_{31}a_{43} - \\ &- a_{13}a_{21}a_{34}a_{42} - a_{13}a_{22}a_{31}a_{44} - a_{13}a_{24}a_{32}a_{41} - a_{14}a_{21}a_{32}a_{43} - a_{14}a_{22}a_{33}a_{41} - a_{14}a_{23}a_{31}a_{42} \end{split}$$

Задача. Найти собственные векторы и собственные значения линейного оператора,

заданного в некотором базисе матрицей
$$A = \begin{pmatrix} 7 & 5 & -10 \\ 2 & 4 & -4 \\ 3 & 3 & -4 \end{pmatrix}$$
. Найти невырожденную мат-

рицу C такую, что матрица $C^{\scriptscriptstyle -1}AC$ диагональна.

Решение. Характеристический многочлен $|A - \lambda E|$ матрицы A имеет вид $-(\lambda-3)(\lambda-2)^2$. Следовательно, собственные значения линейного оператора равны 3 и 2. Решая системы линейных уравнений $(A-\lambda E)X=0$ для $\lambda=2;3$, получаем, что соответствующие собственные подпространства имеют вид $\langle (2,0,1), (-1,1,0) \rangle$, $\langle (5,2,3) \rangle$. Следовательно, имеем базис (2,0,1), (-1,1,0), (5,2,3) из собственных векторов, в котором

матрица линейного оператора имеет вид:
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
. Значит, $C^{-1}AC = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, где

$$C = \begin{pmatrix} 2 & -1 & 5 \\ 0 & 1 & 2 \\ 1 & 0 & 3 \end{pmatrix}.$$

Задача. Найти аффинную оболочку прямых $x_1=2+t$, $x_2=-1-3t$, $x_3=-2+2t$, $x_4=-t$ и $x_1=3-t$, $x_2=-2+3t$, $x_3=1+2t$, $x_4=-1-2t$.

Решение. Аффинная оболочка пары прямых совпадает с аффинной оболочкой 4 точек: двух точек одной прямой и двух точек другой прямой. В частности, это означает, что направляющее пространство аффинной оболочки натянуто на три вектора: направляющие векторы (1,-3,2,-1), (-1,3,2,-2) прямых и вектор (1,-1,3,-1), соединяющий точки, лежащие на первой и второй прямых. Имеем, что

$$\dim \langle (1,-3,2,-1), (-1,3,2,-2), (1,-1,3,-1) \rangle = rk \begin{pmatrix} 1 & -3 & 2 & -1 \\ -1 & 3 & 2 & -2 \\ 1 & -1 & 3 & -1 \end{pmatrix} = 3$$
, поэтому аф-

финная оболочка имеет размерность 3 и задается следующим параметрическим уравнением: $x_1=2+t_1-t_2+t_3, \qquad x_2=-1-3t_1+3t_2-t_3, \qquad x_3=-2+2t_1+2t_2+3t_3, \qquad x_4=-t_1-2t_2-t_3.$

Задача. Найти смежные классы группы $\langle a \rangle_{\!\scriptscriptstyle 12}$ по подгруппе $\langle a_{\scriptscriptstyle 8} \rangle$.

Решение. Пусть H — подгруппа в $\left\langle a\right\rangle_{12}=\{e,a,a^2,a^3,a^4,a^5,a^6,a^7,a^8,a^9,a^{10},a^{11}\}$, порожденная a_8 . Тогда $H=\{e,a^4,a^8\}$ и

$$eH = \{e, a^4, a^8\} = a^4H = a^8H,$$

$$aH = \{a, a^5, a^9\} = a^5H = a^9H,$$

$$a^2H = \{a^2, a^6, a^{10}\} = a^6H = a^{10}H,$$

$$a^3H = \{a^3, a^7, a^{11}\} = a^7H = a^{11}H.$$

. Критерии оценок. Задания оцениваются в баллах от 0 до 3: высший балл 3 ставится за полное решение задания; 2 балла ставится в случае описки либо негрубой арифметиче-

ской ошибки, приведшей при правильных рассуждениях к неправильному ответу; 1 балл ставится в случае нескольких описок или ошибок при условии, что алгоритм решения задания является верным. В остальных случаях ставится 0 баллов.

4.4 Критерии оценивания результатов обучения

Оценка	Критерии оценивания по экзамену
Высокий уро-	Оценка «отлично» выставляется студенту, показавшему все-
вень «5»	сторонние, систематизированные, глубокие знания учебной про-
(отлично)	граммы дисциплины и умение уверенно применять их на практике
	при решении конкретных задач.
Средний уро-	Оценка «хорошо» выставляется студенту, если он твердо
вень «4»	знает материал, грамотно и по существу излагает его, умеет приме-
(xopowo)	нять полученные знания на практике, но допускает в ответе или в
	решении задач некоторые неточности.
	Оценка «удовлетворительно» выставляется студенту, пока-
Пороговый уро-	завшему разрозненный характер знаний, недостаточно правильные
вень «З» (удо-	формулировки базовых понятий, нарушения логической последова-
влетворитель-	тельности в изложении программного материала, но при этом он
но)	владеет основными разделами учебной программы в некотором
	объеме, необходимом для дальнейшего обучения и может приме-
	нять полученные знания по образцу в стандартной ситуации.
	Оценка «неудовлетворительно» выставляется студенту, ко-
Минимальный	торый не знает большей части основного содержания учебной про-
уровень «2» (неудовлетво-	граммы дисциплины, допускает грубые ошибки в формулировках
рительно)	основных понятий дисциплины и не умеет использовать получен-
punicion)	ные знания при решении типовых практических задач.

Критерии оценивания по зачету:

«зачтено»: студент владеет теоретическими знаниями по данному разделу, умеет решать стандартные задачи курса, допускает незначительные ошибки; студент умеет правильно объяснять теоретический и практический материал, иллюстрируя его примерами.

«не зачтено»: материал курса не усвоен или усвоен частично, студент затрудняется решать стандартные задачи, привести примеры по материалу курса, имеет большое (более 60 % занятий) пропусков, написал контрольные работы на неудовлетворительные оценки.

Оценочные средства для инвалидов и лиц с ограниченными возможностями здоровья выбираются с учетом их индивидуальных психофизических особенностей.

- при необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на экзамене;
- при проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья предусматривается использование технических средств, необходимых им в связи с их индивидуальными особенностями;
- при необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине (модулю) предусматривает предоставление ин-

формации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,
- в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.

Для лиц с нарушениями опорно-двигательного аппарата:

- в печатной форме,
- в форме электронного документа.

Данный перечень может быть конкретизирован в зависимости от контингента обучающихся.

5. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

5.1 Основная литература:

- 1. Фаддеев Д.К. Лекции по алгебре. СПб.: Лань, 2007.
 - https://e.lanbook.com/book/397#authors
- 2. Винберг Э.Б., Курс алгебры. М., МЦНМО. 2011. http://biblioclub.ru/index.php?page=book_red&id=63299&sr=1
- 3. Кострикин А.И. Введение в алгебру. Ч.1. Основы алгебры. М.: МЦНМО, 2009. http://biblioclub.ru/index.php?page=book_red&id=63140&sr=1
- 4. Кострикин А.И. Введение в алгебру. Ч.2. Линейная алгебра. М.: МЦНМО, 2009. http://biblioclub.ru/index.php?page=book_red&id=63144&sr=1
- 5. Кострикин А.И. Введение в алгебру. Ч.3. Основные структуры алгебры. М., МЦН-MO, 2009. http://biblioclub.ru/index.php?page=book_red&id=62951&sr=1
- 6. Каргаполов М.И., Мерзляков Ю.И. Основы теории групп. СПб, Лань. 2009. https://e.lanbook.com/book/177#book_name
- 7. Проскуряков И.В. Сборник задач по линейной алгебре. М., 2005.
- 8. https://e.lanbook.com/book/529#book_name
- 9. Фаддеев Д.К., Соминский И.С. Сборник задач по высшей алгебре. М., Лань. 2008. https://e.lanbook.com/book/399#authors
- 10. Сборник задач по алгебре. Под. ред. А. И. Кострикина. М, 2007. https://e.lanbook.com/book/2743#book_name

Дополнительная литература:

- 1. Мальцев А.И. Основы линейной алгебры. СПб.: Лань, 2009. https://e.lanbook.com/book/251#book_name
- 2. Кряквин В.Д. Линейная алгебра в примерах и задачах. М., Лань. 2016. https://e.lanbook.com/book/72583#book name

- 3. Мальцев И.А. Линейная алгебра. М., Лань. 2010. https://e.lanbook.com/book/610#book_name
- 4. Курош А.Г. Курс высшей алгебры. М.: Лань, 2013.

https://e.lanbook.com/book/30198#book_name

5. Курош А.Г. Теория групп. М., Физматлит. 2011.

https://e.lanbook.com/book/59755#book_name

6. Боревич З.И. Определители и матрицы. М., Лань. 2009.

https://e.lanbook.com/book/71#book name

- 7. Ефимов Н.В., Розендорн Э.Р. Линейная алгебра и многомерная геометрия. М., Физматлит. 2005. https://e.lanbook.com/book/2144#book_name
- 8. Беклемишева Л.А., Беклемишев Д.В., Птрович Чубаров И. Сборник задач по линейной алгебре. М. 2017. https://e.lanbook.com/book/97281#book_name

Для освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья имеются издания в электронном виде в электронно-библиотечных системах «Лань» и «Библиоклуб».

5.2. Периодическая литература

- 1. Журнал "Вестник Московского университета. Серия 01. Математика. Механи-ка" Издательство Московского университета. ISSN 0579-9368. https://dlib.eastview.com/browse/publication/9045
- 2. Журнал "Известия высших учебных заведений. Математика" ISSN 0021-3446 (Print), ISSN 2076-4626 (Online) . Учредитель и издатель: Казанский (Приволжский) федеральный университет. https://dlib.eastview.com/browse/publication/7087

5.3. Интернет-ресурсы, в том числе современные профессиональные базы данных и информационные справочные системы

Электронно-библиотечные системы (ЭБС):

- 1. ЭБС «ЮРАЙТ» https://urait.ru/
- 2. ЭБС «УНИВЕРСИТЕТСКАЯ БИБЛИОТЕКА ОНЛАЙН» www.biblioclub.ru
- 3. 3EC «BOOK.ru» https://www.book.ru
- 4. 9EC «ZNANIUM.COM» www.znanium.com
- 5. ЭБС «ЛАНЬ» https://e.lanbook.com

Профессиональные базы данных:

- 1. Web of Science (WoS) http://webofscience.com/
- 2. Scopus http://www.scopus.com/
- 3. ScienceDirect www.sciencedirect.com
- 4. Журналы издательства Wiley https://onlinelibrary.wiley.com/
- 5. Научная электронная библиотека (НЭБ) http://www.elibrary.ru/
- 6. Полнотекстовые архивы ведущих западных научных журналов на Российской платформе научных журналов НЭИКОН http://archive.neicon.ru
- 7. Национальная электронная библиотека (доступ к Электронной библиотеке диссертаций Российской государственной библиотеки (РГБ) https://rusneb.ru/
 - 8. Президентская библиотека им. Б.Н. Ельцина https://www.prlib.ru/
 - 9. Электронная коллекция Оксфордского Российского Фонда https://ebookcentral.proquest.com/lib/kubanstate/home.action
 - 10. Springer Journals https://link.springer.com/

- 11. Nature Journals https://www.nature.com/siteindex/index.html
- 12. Springer Nature Protocols and Methods https://experiments.springernature.com/sources/springer-protocols
- 13. Springer Materials http://materials.springer.com/
- 14. zbMath https://zbmath.org/
- 15. Nano Database https://nano.nature.com/
- 16. Springer eBooks: https://link.springer.com/
- 17. "Лекториум ТВ" http://www.lektorium.tv/
- 18. Университетская информационная система РОССИЯ http://uisrussia.msu.ru

Информационные справочные системы:

1. Консультант Плюс - справочная правовая система (доступ по локальной сети с компьютеров библиотеки)

Ресурсы свободного доступа:

- 1. Американская патентная база данных http://www.uspto.gov/patft/
- 2. Полные тексты канадских диссертаций http://www.nlc-bnc.ca/thesescanada/
- 3. КиберЛенинка (http://cyberleninka.ru/);
- 4. Министерство науки и высшего образования Российской Федерации https://www.minobrnauki.gov.ru/;
 - 5. Федеральный портал "Российское образование" http://www.edu.ru/;
- 6. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru/;
- 7. Единая коллекция цифровых образовательных ресурсов $\underline{\text{http://school-collection.edu.ru/}}$.
- 8. Федеральный центр информационно-образовательных ресурсов (http://fcior.edu.ru/);
- 9. Проект Государственного института русского языка имени А.С. Пушкина "Образование на русском" https://pushkininstitute.ru/;
 - 10. Справочно-информационный портал "Русский язык" http://gramota.ru/;
 - 11. Служба тематических толковых словарей http://www.glossary.ru/;
 - 12. Словари и энциклопедии http://dic.academic.ru/;
 - 13. Образовательный портал "Учеба" http://www.ucheba.com/;
- 14. Законопроект "Об образовании в Российской Федерации". Вопросы и ответы http://xn--273--84d1f.xn--p1ai/voprosy_i_otvety

Собственные электронные образовательные и информационные ресурсы КубГУ:

- 1. Среда модульного динамического обучения http://moodle.kubsu.ru
- 2. База учебных планов, учебно-методических комплексов, публикаций и конференций http://mschool.kubsu.ru/
- 3. Библиотека информационных ресурсов кафедры информационных образовательных технологий http://mschool.kubsu.ru;
 - 4. Электронный архив документов КубГУ http://docspace.kubsu.ru/
- 5. Электронные образовательные ресурсы кафедры информационных систем и технологий в образовании КубГУ и научно-методического журнала "ШКОЛЬНЫЕ ГО-ДЫ" http://icdau.kubsu.ru/

6 Методические указания для обучающихся по освоению дисциплины

Самостоятельная работа студента включает в себя повторение лекционного материала и материала учебников и учебных пособий, подготовка к лабораторным занятиям, к коллоквиумам, к контрольным работам, к зачетам и к экзаменам. Такой вид СРС контролируется в ходе проверки контрольных работ, коллоквиумов, зачетов и экзаменов.

Виды самостоятельной работы

Обязательными при изучении дисциплин модуля «Алгебра» являются следующие виды самостоятельной работы:

- разбор и самостоятельное изучение теоретического материала по конспектам лекций и по учебным пособиям из списка источников литературы;
 - самостоятельное решение задач по темам практических занятий;
 - подготовка к контрольным работам;
 - подготовка к коллоквиумам;
 - подготовка к зачетам;
 - подготовка к экзаменам.

6.1. Методические указания к самостоятельному изучению студентами теоретического материала

Для подготовки к ответам на теоретические вопросы экзаменов студентам достаточно использовать материал лекций, основные источники литературы из пункта 5. Также, для расширения и углубления понимания изучаемого материала пользоваться дополнительной литературой, и, возможно, сведениями интернет-сайтов. В случае затруднений, возникающих у студентов в процессе самостоятельного изучения теории, преподаватель разъясняет сложные моменты на консультациях.

6.2. Методические указания к самостоятельной подготовке студентов к выполнению заданий по темам лабораторных занятий

Для выполнения домашнего практического задания необходимо разобрать материал по соответствующей теме лабораторного занятия. При этом используются указания, данные преподавателем в ходе занятия, а также теоретический материал, в краткой форме имеющийся в сборниках задач. Если студент не смог понять приведенный в указанных задачниках разбор типовых примеров в той степени, чтобы самостоятельно использовать предложенный алгоритм для решения задания, то он может получить консультацию преподавателя.

6.3. Методические указания к самостоятельной подготовке студентов к выполнению контрольных работ

Для подготовки к контрольной работе необходимо выполнять задания в ходе практических занятий, а также домашние задания. В процессе самоподготовки студенту желательно ознакомиться с разбором опорных по рассматриваемым темам задач, имеющихся в сборниках задач из пункта 5.1.

6.4. Методические указания к самостоятельной подготовке студентов к коллоквиумам

В каждом семестре проводится коллоквиум в целях закрепления студентами знаний теоретического материала. Коллоквиум может проводиться в устной и в письменной форме. Положительный ответ студента может быть учтен при сдаче экзаменов.

6.5. Методические рекомендации для самостоятельной подготовки студентов к зачету

В конце первого семестра формой итогового контроля знаний студентов по дисциплине «Алгебра» является зачет. Для подготовки к зачету студентам необходимо выполнить текущие семестровые контрольные работы и разбирать теоретический материал. Требования для выставления студенту зачета приведены в пункте 4.4.

6.6. Методические рекомендации для самостоятельной подготовки студентов к экзамену

В конце первого, второго и третьего семестров формой итогового контроля знаний студентов по дисциплинам модуля «Алгебра» является экзамен. Для подготовки к экзамену студентам необходимо выполнить текущие семестровые контрольные работы и разбирать теоретический материал. Экзаменационный билет состоит из трех вопросов — двух теоретических и одного практического. При выставлении оценки может учитываться успеваемость студента в течение семестра: активность на лекционных и практических занятиях, качество выполняемых в течение семестра домашних практических заданий, ответы на коллоквиумах, оценки за контрольные работы. Критерии оценок ответов на экзамене приведены в пункте 4.4.

В освоении дисциплин модуля «Алгебра» инвалидами и лицами с ограниченными возможностями здоровья большое значение имеет индивидуальная учебная работа (консультации) – дополнительное разъяснение учебного материала.

Индивидуальные консультации по предмету являются важным фактором, способствующим индивидуализации обучения и установлению воспитательного контакта между преподавателем и обучающимся инвалидом или лицом с ограниченными возможностями здоровья.

7. Материально-техническое обеспечение по дисциплине

По всем видам учебной деятельности в рамках дисциплины используются аудитории, кабинеты и лаборатории, оснащенные необходимым специализированным и лабораторным оборудованием.

1 13		
Наименование специальных помеще-	Оснащенность специальных по-	Перечень лицензионного
ний	мещений	программного обеспечения
Учебные аудитории для проведения	Мебель: учебная мебель.	Microsoft Office;
занятий лекционного типа (ауд.302Н,	Технические средства обучения:	Программы для демонстра-
ауд.303Н, ауд.308Н, ауд.505А,	экран, проектор, компьютер.	ции и создания презентаций
ауд.507А)	Средства обучения:	(«Microsoft Power Point»)
	доска, маркеры и мел.	
Учебные аудитории для проведения	Мебель: учебная мебель	
групповых и индивидуальных кон-	Средства обучения:	
сультаций (кабинет 314Н).	доска, маркеры и мел.	

Учебные аудитории для проведения текущего контроля и промежуточной аттестации (ауд.302H, ауд.303H, ауд.308H, ауд.505A, ауд.507A)	Мебель: учебная мебель Технические средства обучения: экран, проектор, компьютер. Средства обучения: доска, маркеры и мел.	Microsoft Office; Программы для демонстрации и создания презентаций («Microsoft Power Point»)
Учебные аудитории для проведения лабораторных занятий (ауд.310H, ауд.312H, ауд.314H)	Мебель: учебная мебель Средства обучения: доска, маркеры и мел.	

Для самостоятельной работы обучающихся предусмотрены помещения, укомплектованные специализированной мебелью, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

Наименование помещений для само-	Оснащенность помещений для	Перечень лицензионного
стоятельной работы обучающихся	самостоятельной работы обуча-	программного обеспечения
Crossession pacetts coy lateratives	ющихся	inporpaisioner de de le remisi
Помещение для самостоятельной ра-	Мебель: учебная мебель	
боты обучающихся (читальный зал	Комплект специализированной	
Научной библиотеки)	мебели: компьютерные столы	
паучной ойолиотеки)		
	техника с подключением к ин-	
	формационно-	
	коммуникационной сети «Интер-	
	нет» и доступом в электронную	
	информационно-	
	образовательную среду образова-	
	тельной организации, веб-	
	камеры, коммуникационное обо-	
	рудование, обеспечивающее до-	
	ступ к сети интернет (проводное	
	соединение и беспроводное со-	
П	единение по технологии Wi-Fi)	
Помещения для самостоятельной ра-	Мебель: учебная мебель	
боты обучающихся (ауд.309Н,	Комплект специализированной	
ауд.320Н)	мебели: компьютерные столы	
	Оборудование: компьютерная	
	техника с подключением к ин-	
	формационно-	
	коммуникационной сети «Интер-	
	нет» и доступом в электронную	
	информационно-	
	образовательную среду образова-	
	тельной организации, веб-	
	камеры, коммуникационное обо-	
	рудование, обеспечивающее до-	
	ступ к сети интернет (проводное	
	соединение и беспроводное со-	
	единение по технологии Wi-Fi)	